يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Ahsani, Sima"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3556867; zbl:Zbl 06644033; reference:[1] Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products.Linear Algebra Appl. 26 (1979), 203-241. Zbl 0495.15018, MR 0535686, 10.1016/0024-3795(79)90179-4; reference:[2] Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities.Linear Algebra Appl. 197/198 (1994), 113-131. Zbl 0793.15011, MR 1275611; reference:[3] Araki, H.: On an inequality of Lieb and Thirring.Lett. Math. Phys. 19 (1990), 167-170. Zbl 0705.47020, MR 1039525, 10.1007/BF01045887; reference:[4] Audenaert, K. M. R.: A norm inequality for pairs of commuting positive semidefinite matrices.Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. Zbl 1326.15030, MR 3318430; reference:[5] Bhatia, R.: The Riemannian mean of positive matrices.Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. Zbl 1271.15019, MR 2964446, 10.1007/978-3-642-30232-9_2; reference:[6] Bhatia, R.: Postitive Definite Matrices.Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). MR 3443454; reference:[7] Bhatia, R.: Matrix Analysis.Graduate Texts in Mathematics 169 Springer, New York (1997). MR 1477662; reference:[8] Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean.Linear Algebra Appl. 437 (2012), 726-733. Zbl 1252.15023, MR 2921731; reference:[9] Bourin, J.-C.: Matrix subadditivity inequalities and block-matrices.Int. J. Math. 20 (2009), 679-691. Zbl 1181.15030, MR 2541930, 10.1142/S0129167X09005509; reference:[10] Bourin, J.-C., Uchiyama, M.: A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}.Linear Algebra Appl. 423 (2007), 512-518. Zbl 1123.15013, MR 2312422; reference:[11] Fiedler, M., Pták, V.: A new positive definite geometric mean of two positive definite matrices.Linear Algebra Appl. 251 (1997), 1-20. Zbl 0872.15014, MR 1421263; reference:[12] Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin.Bull. Aust. Math. Soc. 88 (2013), 384-389. Zbl 1287.47011, MR 3189289, 10.1017/S0004972712001104; reference:[13] Lin, M.: Remarks on two recent results of Audenaert.Linear Algebra Appl. 489 (2016), 24-29. Zbl 1326.15033, MR 3421835; reference:[14] Lin, M.: Inequalities related to {$2\times2$} block PPT matrices.Oper. Matrices 9 (2015), 917-924. MR 3447594, 10.7153/oam-09-54; reference:[15] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications.Springer Series in Statistics Springer, New York (2011). Zbl 1219.26003, MR 2759813; reference:[16] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature.IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). Zbl 1115.53002, MR 2132506; reference:[17] Pusz, W., Woronowicz, S. L.: Functional calculus for sesquilinear forms and the purification map.Rep. Math. Phys. 8 (1975), 159-170. Zbl 0327.46032, MR 0420302, 10.1016/0034-4877(75)90061-0; reference:[18] Thompson, R. C.: Singular values, diagonal elements, and convexity.SIAM J. Appl. Math. 32 (1977), 39-63. Zbl 0361.15009, MR 0424847, 10.1137/0132003; reference:[19] Zhan, X.: Matrix Inequalities.Lecture Notes in Mathematics 1790 Springer, Berlin (2002). Zbl 1018.15016, MR 1927396, 10.1007/b83956

  3. 3
    Academic Journal
  4. 4
    Dissertation/ Thesis