يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Advanced surfaces"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Amaris Castilla, Carlos Fidel

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Mecànica

    Thesis Advisors: Vallès Rasquera, J. Manel, Bourouis Chebata, Mahmoud

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: 1. Amaris, C.; Vallès, M.; Bourouis, M. Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 2018, 231, 826–853. [CrossRef]; 2. Aggarwal, M.K.; Agarwal, R.S. Thermodynamic properties of lithium nitrate-ammonia mixtures. Int. J. Energy Res. 1986, 10, 59–68. [CrossRef]; 3. Infante Ferreira, C.A. Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Sol. Energy 1984, 32, 231–236. [CrossRef]; 4. Abdulateef, J.M.; Sopian, K.; Alghoul, M.A. Optimum design for solar absorption refrigeration systems and comparison of the performances using ammonia-water, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Int. J. Mech. Mater. Eng. 2008, 3, 17–24.; 5. Infante Ferreira, C.A. Operating characteristics of NH3–LiNO3 and NH3–NaSCN absorption refrigeration machines. In Proceedings of the 19th Int. Congr. Refrig, the Hague, The Netherlands, 20–25 August 1995; pp. 321–328.; 6. Ayala, R.; Frías, J.L.; Lam, L.; Heard, C.L.; Holland, F.A. Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy. Heat Recover. Syst. CHP 1994, 14, 437–446. [CrossRef]; 7. Heard, C.L.; Ayala, R.; Best, R. An experimental comparison of an absorption refrigerator using ammonia/water and ammonia/lithium nitrate. In Proceedings of the International Sorption Heat Pump Conference, Montreal, QC, Canada, 17–20 September 1996; pp. 245–252.; 8. Oronel, C.; Amaris, C.; Bourouis, M.; Vallès, M. Heat and mass transfer in a bubble plate absorber with NH3 /LiNO3 and NH3 /(LiNO3+ H2O) mixtures. Int. J. Therm. Sci. 2013, 63. [CrossRef]; 9. Amaris, C.; Bourouis, M.; Vallès, M. Effect of advanced surfaces on the ammonia absorption process with NH3 /LiNO3 in a tubular bubble absorber. Int. J. Heat Mass Transf. 2014, 72. [CrossRef]; 11. Kang, Y.T.; Akisawa, A.; Kashiwagi, T. Analytical investigation of two different absorption modes: Falling film and bubble types. Int. J. Refrig. 2000, 23, 430–443. [CrossRef]; 12. Castro, J.; Oliet, C.; Rodríguez, I.; Oliva, A. Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems. Int. J. Therm. Sci. 2009, 48, 1355–1366. [CrossRef]; 13. Infante Ferreira, C.A. Combined momentum, heat and mass transfer in vertical slug flow absorbers. Int. J. Refrig. 1985, 8, 326–334. [CrossRef]; 14. Cerezo, J.; Best, R.; Romero, R.J. A study of a bubble absorber using a plate heat exchanger with NH3–H2O, NH3–LiNO3 and NH3–NaSCN. Appl. Therm. Eng. 2011, 31, 1869–1876. [CrossRef]; 15. Herbine, G.S.; Perez-Blanco, H. Model of an ammonia-water bubble absorber. ASHRAE Trans. 1995, 101, 1324–1334.; 16. Fernández-Seara, J.; Sieres, J.; Rodríguez, C.; Vázquez, M. Ammonia–water absorption in vertical tubular absorbers. Int. J. Therm. Sci. 2005, 44, 277–288. [CrossRef]; 17. Fernández-Seara, J.; Uhía, F.J.; Sieres, J. Analysis of an air cooled ammonia–water vertical tubular absorber. Int. J. Therm. Sci. 2007, 46, 93–103. [CrossRef]; 18. Kang, Y.T.; Christensen, R.N.; Kashiwagi, T. Ammonia-Water bubble absorber with a plate heat exchanger. Int. J. Refrig. 1998, 104, 956–966.; 19. Lee, J.-C.; Lee, K.-B.; Chun, B.-H.; Lee, C.H.; Ha, J.J.; Kim, S.H. A study on numerical simulations and experiments for mass transfer in bubble mode absorber of ammonia and water. Int. J. Refrig. 2003, 26, 551–558. [CrossRef]; 20. Cerezo, J.; Best, R.; Bourouis, M.; Coronas, A. Comparison of numerical and experimental performance criteria of an ammonia–water bubble absorber using plate heat exchangers. Int. J. Heat Mass Transf. 2010, 53, 3379–3386. [CrossRef]; 21. Wang, M.; He, L.; Infante Ferreira, C.A. Ammonia absorption in ionic liquids-based mixtures in plate heat exchangers studied by a semi-empirical heat and mass transfer framework. Int. J. Heat Mass Transf. 2019, 134, 1302–1317. [CrossRef]; 22. Sujatha, K.S.; Mani, A.; Srinivasa Murthy, S. Finite element analysis of a bubble absorber. Int. J. Numer. Methods Heat Fluid Flow 1997, 7, 737–750. [CrossRef]; 23. Sujatha, K.S.; Mani, A.; Srinivasa, M.S. Analysis of a bubble absorber working with R22 and five organic absorbents. Heat Mass Transf. Stoffuebertragung 1997, 32, 255–259. [CrossRef]; 24. Merrill, T.L.; Perez-Blanco, H. Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 1997, 40, 589–603. [CrossRef]; 25. Terasaka, K.; Oka, J.; Tsuge, H. Ammonia absorption from a bubble expanding at a submerged orifice into water. Chem. Eng. Sci. 2002, 57, 3757–3765. [CrossRef]; 26. Kim, J.-K.; Park, C.W.; Kang, Y.T. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber. Int. J. Refrig. 2003, 26, 575–585. [CrossRef]; 27. Elperin, T.; Fominykh, A. Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 2003, 58, 3555–3564. [CrossRef]; 28. Suresh, M.; Mani, A. Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 2010, 53, 2813–2825. [CrossRef]; 29. Staicovici, M.D. A non-Equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II—Modeling of the NH3 /H2O bubble absorption, analytical study of absorption and experiments. Int. J. Heat Mass Transf. 2000, 43, 4175–4188. [CrossRef]; 30. Staicovici, M.D. A non-Equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I—Application to NH3 /H2O and other working systems. Int. J. Heat Mass Transf. 2000, 43, 4153–4173. [CrossRef]; 31. Kaji, R.; Azzopardi, B.J.; Lucas, D. Investigation of flow development of co-current gas–liquid vertical slug flow. Int. J. Multiph. Flow 2009, 35, 335–348. [CrossRef]; 32. Muniz, M.; Sommerfeld, M. On the force competition in bubble columns: A numerical study. Int. J. Multiph. Flow 2020, 128. [CrossRef]; 33. Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2000, 5, 373–401. [CrossRef]; 34. Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renew. Sustain. Energy Rev. 2012, 16, 1340–1358. [CrossRef]; 35. Sözen, A.; Akçayol, M.A. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle. Appl. Energy 2004, 79, 309–325. [CrossRef]; 36. Manohar, H.J.; Saravanan, R.; Renganarayanan, S. Modelling of steam fired double effect vapour absorption chiller using neural network. Energy Convers. Manag. 2006, 47, 2202–2210. [CrossRef]; 37. Chow, T.T.; Zhang, G.Q.; Lin, Z.; Song, C.L. Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build. 2002, 34, 103–109. [CrossRef]; 38. Hernández, J.A.; Juárez-Romero, D.; Morales, L.I.; Siqueiros, J. COP prediction for the integration of a water purification process in a heat transformer: With and without energy recycling. Desalination 2008, 219, 66–80. [CrossRef]; 39. Labus, J.; Bruno, J.C.; Coronas, A. Performance analysis of small capacity absorption chillers by using different modeling methods. Appl. Therm. Eng. 2013, 58, 305–313. [CrossRef]; 40. Álvarez, M.E.; Hernández, J.A.; Bourouis, M. Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks. Energy 2016, 102, 313–323. [CrossRef]; 41. Amaris, C. Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3 /LiNO3 Absorption Chillers. Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2013.; 42. Libotean, S.; Salavera, D.; Valles, M.; Esteve, X.; Coronas, A. Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 2007, 52, 1050–1055. [CrossRef]; 43. Libotean, S.; Martín, A.; Salavera, D.; Valles, M.; Esteve, X.; Coronas, A. Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 2008, 53, 2383–2388. [CrossRef]; 44. Cuenca, Y.; Vernet, A.; Vallès, M. Thermal conductivity enhancement of the binary mixture (NH3+ LiNO3) by the addition of CNTs. Int. J. Refrig. 2014, 41, 113–120. [CrossRef]; 45. Haltenberger, W. Enthalpy-Concentration charts from vapor pressure data. Ind. Eng. Chem. 1939, 31, 783–786. [CrossRef]; 46. McNeely, L.A. Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 1979, 85, 413–434.; 47. Infante Ferreira, C.A. Vertical Tubular Absorbers for Ammonia—Salt Absorption Refrigeration. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1985.; 48. Despagne, F. Neural networks in multivariate calibration. Analyst 1998, 123. [CrossRef] [PubMed]; 49. Cerezo, J. Estudio Del Proceso De Absorción Con Amoníaco-Agua en Intercambiadores De Placas Para Equipos de Refrigeración Por Absorción. Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2006.; 50. Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Technical Note 1297; Diane Publishing: Darby, PA, USA, 1994; https://hdl.handle.net/11323/7275; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  4. 4
    Conference
  5. 5

    المصدر: Energies, Vol 13, Iss 4313, p 4313 (2020)
    Energies
    REDICUC-Repositorio CUC
    Corporación Universidad de la Costa
    instacron:Corporación Universidad de la Costa
    Energies; Volume 13; Issue 17; Pages: 4313

    وصف الملف: application/pdf

  6. 6
    Academic Journal

    المصدر: Reinforced Plastics. Jul2017, Vol. 61 Issue 4, p220-221. 2p.

    الشركة/الكيان: OXFORD Advanced Surfaces Group PLC

  7. 7
    Academic Journal

    المصدر: Reinforced Plastics. Sep2016, Vol. 60 Issue 5, p258-259. 2p.

    الشركة/الكيان: OXFORD Advanced Surfaces Group PLC

  8. 8
    Academic Journal

    المصدر: Tenside Surfactants Detergents. May/Jun2012, Vol. 49 Issue 3, p270-271. 2p.

    مصطلحات موضوعية: *LED displays, *SURFACE coatings

    الشركة/الكيان: OXFORD Advanced Surfaces Group PLC

  9. 9
    Periodical

    المصدر: Oregon Business Magazine. Mar94, Vol. 17 Issue 3, p12. 1/4p.

    الشركة/الكيان: ADVANCED Surfaces & Processes Inc. 606695930

  10. 10
    Periodical

    المصدر: British Plastics & Rubber. May2017, p30-30. 1/2p. 1 Color Photograph.

    الشركة/الكيان: OXFORD Advanced Surfaces Group PLC

  11. 11
    Academic Journal

    المؤلفون: Jeffries, Elisabeth

    المصدر: Materials World. Mar2011, Vol. 19 Issue 3, p4-4. 1/2p.

    مصطلحات موضوعية: *ADHESIVES industry, *DELAMINATION of composite materials

    الشركة/الكيان: OXFORD Advanced Surfaces Group PLC

  12. 12
    Dissertation/ Thesis

    المؤلفون: Amaris Castilla, Carlos Fidel

    المساهمون: Vallès Rasquera, J. Manel, Bourouis Chebata, Mahmoud, Universitat Rovira i Virgili. Departament d'Enginyeria Mecànica

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 536, 62, 621, 66

    وصف الملف: 207 p.; application/pdf

    Relation: http://hdl.handle.net/10803/128504; T.66-2014

  13. 13
    Periodical

    المصدر: Coatings World. Mar2012, Vol. 17 Issue 3, p18-19. 2p.

    مصطلحات موضوعية: *COATINGS industry, *COMMERCIAL products

  14. 14
    Periodical

    المصدر: Paint & Coatings Industry. Feb2012, Vol. 28 Issue 2, p52-52. 1p.

    مصطلحات موضوعية: *PAINT industry, *COATINGS industry, ADULT education workshops

  15. 15
    Electronic Resource

    المصدر: Energies; 10.3390/en13174313; Energies. 13 (17):

  16. 16
    Electronic Resource

    المصدر: Applied Energy; 10.1016/j.apenergy.2018.09.071; Applied Energy. 231 826-853

  17. 17
    Electronic Resource

    المصدر: Energy; 10.1016/j.energy.2014.02.039; Energy. 68 519-528

  18. 18
    Electronic Resource