-
1Dissertation/ Thesis
المؤلفون: López Gómez, Antonio
المساهمون: University/Department: Universitat de les Illes Balears. Departament de Biologia
Thesis Advisors: Garmendia García, Juncal, Bengoechea Alonso, José Antonio, Lalucat Jo, Jordi
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: adhesinas, mutantes, aislados clínicos, péptidos antimicrobianos, biopelículas, lipooligosacárido, subversión, epitelio respiratorio, adhesión, invasión, cascadas de señalización., Microbiología Ambiental y Biotecnología
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/104205
-
2Academic Journal
المؤلفون: Claudia Acosta-Astaiza, Alexis López-Sandoval, Juan Bonilla-Chaves, Anyi Valdes-Valdes, William Romo-Romero
المصدر: Revista Peruana de Medicina Experimental y Salud Pública, Pp 348-53 (2023)
مصطلحات موضوعية: helicobacter pylori, gastritis, adhesinas bacterianas, factores de virulencia, inflamación, Medicine, Medicine (General), R5-920
وصف الملف: electronic resource
-
3
المؤلفون: Roldán Pérez, Samantha
المساهمون: Márquez Fernández, María Elena, Montoya Campuzano, Olga Inés, Probióticos: Prospección Funcional y Metabolitos, Grupo de Investigación en Biotecnología Animal (Giba), Márquez Fernández, María Elena [0000-0001-5760-9907]
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Bacteria, Bacterias Ácido Lácticas, Capa paracristalina, 572 - Bioquímica [570 - Biología], Epitelio intestinal, Adhesins, S-layer, Adhesinas, Lactic Acid Bacteria, Bacterias probióticas, 570 - Biología, 610 - Medicina y salud, Intestinal epithelium, Bacterias
وصف الملف: 104 páginas; application/pdf
-
4Dissertation/ Thesis
المؤلفون: Roldán Pérez, Samantha
المساهمون: Márquez Fernández, María Elena, Montoya Campuzano, Olga Inés, Probióticos: Prospección Funcional y Metabolitos, Grupo de Investigación en Biotecnología Animal (Giba), Márquez Fernández, María Elena 0000-0001-5760-9907
مصطلحات موضوعية: 570 - Biología, 610 - Medicina y salud, 570 - Biología::572 - Bioquímica, Bacterias, Bacteria, Bacterias probióticas, Bacterias Ácido Lácticas, Epitelio intestinal, Capa paracristalina, Adhesinas, Lactic Acid Bacteria, Intestinal epithelium, S-layer, Adhesins
وصف الملف: 104 páginas; application/pdf
Relation: RedCol; LaReferencia; Abraham, B. P., & Quigley, E. M. M. (2017). Probiotics in Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 46(4), 769–782. https://doi.org/10.1016/j.gtc.2017.08.003; Abriouel, H., Lerma, L. L., Casado Muñoz, M. del C., Montoro, B. P., Kabisch, J., Pichner, R., Cho, G. S., Neve, H., Fusco, V., Franz, C. M. A. P., Gálvez, A., & Benomar, N. (2015). The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology, 6(OCT). https://doi.org/10.3389/fmicb.2015.01197; Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2021). Diversity and technological characterization of Pediococcus pentosaceus strains isolated from Nigerian traditional fermented foods. LWT, 140(110697). https://doi.org/10.1016/j.lwt.2020.110697; Adu, K. T., Wilson, R., Baker, A. L., Bowman, J., & Britz, M. L. (2020). Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J. Proteome Res, 19, 47. https://doi.org/10.1021/acs.jproteome.0c00107; Akpınar Kankaya, D., & Tuncer, Y. (2020). Antibiotic resistance in vancomycin-resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. Journal of Food Processing and Preservation, 44(6), 1–14. https://doi.org/10.1111/jfpp.14468; Allied Market Research. (2021). Probiotics Market Size & Share Analysis Report, 2021-2028. https://www.grandviewresearch.com/industry-analysis/probiotics-market/methodology; Alp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), 1–9. https://doi.org/10.1007/s11274-019-2730-x; Aman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36(COVID19-S4). https://doi.org/10.12669/PJMS.36.COVID19-S4.2776; Ángela Castro, L., Act, B., & R Ovetto, C. DE. (2006). Probióticos: utilidad clínica (Vol. 37). Octubre-Diciembre.; Angelis, M. De, & Gobbetti, M. (2016). Lactobacillus SPP.: General Characteristics☆. In Reference Module in Food Science (pp. 1–12). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.00851-9; Armas, F., Camperio, C., & Marianelli, C. (2017). In Vitro Assessment of the probiotic potential of Lactococcus lactis LMG 7930 against ruminant mastitis-causing pathogens. PLOS ONE, 12(1), e0169543. https://doi.org/10.1371/journal.pone.0169543; Arshad, F., Mehmood, R., Hussain, S., Khan, M. A., & Khan, M. S. (2018). Lactobacilli as Probiotics and their Isolation from Different Sources. Br J Res, 5(3), 43. https://doi.org/10.21767/2394-3718.100043; Aryal Sagal. (2018, June 12). Capsule Staining- Principle, Reagents, Procedure and Result. Microbiologyinfo.Com. https://microbiologyinfo.com/capsule-staining-principle-reagents-procedure-and-result/; Assamoi, A. A., Krabi, E. R., Ehon, A. F., N’guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. BASE, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117; Astó, E., Huedo, P., Altadill, T., Aguiló García, M., Sticco, M., Perez, M., & Espadaler-Mazo, J. (2022). Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741391; ATCC. (2020). SW480 [SW-480] ATCC ® CCL-228TM. ATCC.Org. https://www.atcc.org/Products/All/CCL-228.aspx#characteristics; Ayeni, F. A., Sánchez, B., Adeniyi, B. A., de los Reyes-Gavilán, C. G., Margolles, A., & Ruas-Madiedo, P. (2011). Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow’s intestine. International Journal of Food Microbiology, 147(2), 97–104. https://doi.org/10.1016/j.ijfoodmicro.2011.03.014; Bakar, F., Karakay, Songül, Bostanlık, D., Gül, F., & Kılıç, C. S. (2016). Anticancer Effect of Ferulago Mughlea Peşmen (Apiaceae) on Cancer Cell Proliferation. Iranian Journal of Pharmaceutical Research : IJPR, 15(3), 501. https://doi.org/10.22037/ijpr.2016.1882; Balakrishna, A. (2013). In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (poecilia reticulata). Brazilian Archives of Biology and Technology, 56(5), 793–800. https://doi.org/10.1590/S1516-89132013000500010; Baliga, S., Muglikar, S., & Kale, R. (2013). Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology, 17(4), 461. https://doi.org/10.4103/0972-124X.118317; Balthazar, C. F., Silva, H. L. A., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A. V., Azevedo, L., Camps, I., K.D Abud, Y., Sant’Anna, C., Franco, R. M., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Escher, G. B., Granato, D., Senaka Ranadheera, C., Nazarro, F., & Cruz, A. G. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246(August 2017), 464–472. https://doi.org/10.1016/j.foodchem.2017.12.002; Baranov, V., & Hammarström, S. (2004). Carcinoembryonic antigen [CEA] and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochemistry and Cell Biology, 121(2), 83–89. https://doi.org/10.1007/s00418-003-0613-5; Barzegar, H., Alizadeh Behbahani, B., & Falah, F. (2021). Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition, 9(8). https://doi.org/10.1002/FSN3.2365; Beldarrain-Iznaga, T., Villalobos-Carvajal, R., Sevillano-Armesto, E., & Leiva-Vega, J. (2021). Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Research International, 141(January), 110136. https://doi.org/10.1016/j.foodres.2021.110136; Beltrán de Heredia, M. R. (2017). Microbiota autóctona. Farmacia Profesional, 31(2), 17–21. https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-X0213932417608739; Bergey, D. H. (2009). Vol 3: The Firmicutes. In Bergey’s manual of systematic bacteriology. https://doi.org/10.1007/b92997; Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079; Betancur, C., Martínez, Y., Tellez‐isaias, G., Avellaneda, M. C., & Velázquez‐martí, B. (2020). In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals, 10(7), 1–11. https://doi.org/10.3390/ani10071204; Bharat, T. A. M., von Kügelgen, A., & Alva, V. (2021). Molecular Logic of Prokaryotic Surface Layer Structures. Trends in Microbiology, 29(5), 405. https://doi.org/10.1016/J.TIM.2020.09.009; Bhukya, K. K., & Bhukya, B. (2021). Unraveling the probiotic efficiency of bacterium Pediococcus pentosaceus OBK05 isolated from buttermilk: An in vitro study for cholesterol assimilation potential and antibiotic resistance status. PLoS ONE, 16(11 November), 1–20. https://doi.org/10.1371/journal.pone.0259702; Biazik, J. M., Jahn, K. A., Su, Y., Wu, Y. N., & Braet, F. (2010). Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World Journal of Gastroenterology, 16(22), 2743–2753. https://doi.org/10.3748/wjg.v16.i22.2743; Björkroth, J., Dicks, L. M. T., Endo, A., & H.Holzapfel, W. (2014). The genus Leuconostoc. In Lactic Acid Bacteria (pp. 391–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118655252.ch23; Blottière, H. M., de Vos, W. M., Ehrlich, S. D., & Doré, J. (2013). Human intestinal metagenomics: State of the art and future. Current Opinion in Microbiology, 16(3), 232–239. https://doi.org/10.1016/j.mib.2013.06.006; Bolen, B. (2019). Types and Functions of Digestive Enzymes. Verywellhealth. https://www.verywellhealth.com/what-are-digestive-enzymes-1945036; Bolívar Parra, L., Giraldo Hincapié, P. A., & Montoya Campuzano, O. I. (2020). Antimicrobial activity of a synthetic bacteriocin found in the genome of lactobacillus casei on the microbiota of antioquian soft cheese (Quesito antioqueÑo). Vitae, 27(1), 1–9. https://doi.org/10.17533/udea.vitae.v27n1a02; Bron, P. A., Kleerebezem, M., Brummer, R.-J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Ródenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93–107. https://doi.org/10.1017/S0007114516004037; Brunser T, O. (2013). El desarrollo de la microbiota intestinal humana, el concepto de probiótico y su relación con la salud humana. Revista Chilena de Nutrición, 40(3), 283–289. https://doi.org/10.4067/S0717-75182013000300011; Byakika, S., Mukisa, I. M., Byaruhanga, Y. B., & Muyanja, C. (2019). A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. Food Reviews International, 35(5), 427–466. https://doi.org/10.1080/87559129.2019.1584815; Cadirci, B., & Sumru, C. (2005). A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition, 4. https://doi.org/10.3923/pjn.2005.237.241; Cámara de Industria y Comercio Colombo-Alemana, Cámara de Comercio de Medellín para Antioquia, Institución Universitaria Esumer, & Observatorio de Tendencias Futuras 360°. (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021. In Derivados lácteos (Vol. 1). https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO DE TENDENCIAS DERIVADOS LACTEOS 2021 abril 12.pdf?ver=2021-04-13-140402-407; Camilleri, M. (2021). Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clinical and Translational Gastroenterology, 12(1), e00308. https://doi.org/10.14309/ctg.0000000000000308; Cao, Z., Pan, H., Tong, H., Gu, D., Li, S., Xu, Y., Ge, C., & Lin, Q. (2016). In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 66(3), 963–971. https://doi.org/10.1007/s13213-015-1182-2; Casalta, E., & Montel, M. (2008). Safety assessment of dairy microorganisms: The Lactococcus genus☆. International Journal of Food Microbiology, 126(3), 271–273. https://doi.org/10.1016/j.ijfoodmicro.2007.08.013; Casarotti, S. N., Carneiro, B. M., Svetoslav, &, Todorov, D., Nero, L. A., Rahal, P., Lúcia, A., Penna, B., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301. https://doi.org/10.1007/s13213-017-1258-2; Castilho, N. P. A., Colombo, M., Oliveira, L. L. De, Todorov, S. D., & Nero, L. A. (2019). Lactobacillus curvatus UFV-NPAC1 and other lactic acid bacteria isolated from calabresa, a fermented meat product, present high bacteriocinogenic activity against Listeria monocytogenes. BMC Microbiology, 19(1), 1–13. https://doi.org/10.1186/S12866-019-1436-4/FIGURES/4; Cázares-Vásquez, M. L., Rodríguez-Herrera, R., Aguilar-González, C. N., Sáenz-Galindo, A., Solanilla-Duque, J. F., Contreras-Esquivel, J. C., & Flores-Gallegos, A. C. (2021). Microbial exopolysaccharides in traditional mexican fermented beverages. Fermentation, 7(4). https://doi.org/10.3390/FERMENTATION7040249; Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50, 103. https://doi.org/10.1038/s12276-018-0126-x; Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789; Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertlé, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. Food Science and Technology, 40(3), 571–579. https://doi.org/10.1590/fst.13219; Chondrou, P., Karapetsas, A., Kiousi, D. E., Tsela, D., Tiptiri-Kourpeti, A., Anestopoulos, I., Kotsianidis, I., Bezirtzoglou, E., Pappa, A., & Galanis, A. (2018). Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Beneficial Microbes, 9(6), 975–983. https://doi.org/10.3920/BM2017.0183; CLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard — Tenth Edition. CLSI document M07-A10. In Clinical and Laboratory Standars Institute.; Darmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion properties of lactobacillus plantarum dad-13 and lactobacillus plantarum mut-7 on sprague dawley rat intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336; Das, D., & Goyal, A. (2012). Lactic Acid Bacteria in Food Industry. In Microorganisms in Sustainable Agriculture and Biotechnology (pp. 757–772). Springer Netherlands. https://doi.org/10.1007/978-94-007-2214-9_33; Davis, K. (2014). Impact of Carbohydrates on the Aggregation of Probiotic Bacteria. 1(1), 1–9. https://pdfs.semanticscholar.org/59f5/27493fe786cac425391cf21af1cc6b01a1a3.pdf; de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003; Dell’anno, M., Giromini, C., Reggi, S., Cavalleri, M., Moscatelli, A., Onelli, E., Rebucci, R., Sundaram, T. S., Coranelli, S., Spalletta, A., Baldi, A., & Rossi, L. (2021). Evaluation of adhesive characteristics of l. Plantarum and l. reuteri isolated from weaned piglets. Microorganisms, 9(8), 1–12. https://doi.org/10.3390/microorganisms9081587; Deng, Z., Dai, T., Zhang, W., Zhu, J., Luo, X. M., Fu, D., Liu, J., & Wang, H. (2020). Glyceraldehyde-3-phosphate dehydrogenase increases the adhesion of Lactobacillus reuteri to host mucin to enhance probiotic effects. International Journal of Molecular Sciences, 21(24), 1–16. https://doi.org/10.3390/ijms21249756; Divyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, e00672. https://doi.org/10.1016/j.btre.2021.e00672; do Carmo, F. L. R., Rabah, H., de Oliveira Carvalho, R. D., Gaucher, F., Cordeiro, B. F., da Silva, S. H., Loir, Y. Le, Azevedo, V., & Jan, G. (2018). Extractable Bacterial Surface Proteins in Probiotic–Host Interaction. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/FMICB.2018.00645; do Carmo, M. S., Santos, C. I. Dos, Araújo, M. C., Girón, J. A., Fernandes, E. S., & Monteiro-Neto, V. (2018). Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food & Function, 9(10), 5074–5095. https://doi.org/10.1039/c8fo00376a; Douillard, F. P., Ribbera, A., Järvinen, H. M., Kant, R., Pietilä, T. E., Randazzo, C., Paulin, L., Laine, P. K., Caggia, C., von Ossowski, I., Reunanen, J., Satokari, R., Salminen, S., Palva, A., & de Vosa, W. M. (2013). Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Applied and Environmental Microbiology, 79(6), 1923–1933. https://doi.org/10.1128/AEM.03467-12; Doyle, R. J., & Ofek, I. (1994). Bacterial Adhesion to Cells and Tissues (1st ed.). Chapman & Hall, Inc.; Dubey, V., Mishra, A. K., & Ghosh, A. R. (2020). Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp). Journal of Proteomics, 226(December 2019), 103894. https://doi.org/10.1016/j.jprot.2020.103894; EFSA. (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6). https://doi.org/10.2903/j.efsa.2012.2740; Erdoǧmuş, S. F., Erişmiş, U. C., & Uǧuz, C. (2021). Isolation and identification of lactic acid bacteria from fermented meat products and evaluation of their antimicrobial effect. Czech Journal of Food Sciences, 39(4), 289–296. https://doi.org/10.17221/222/2020-CJFS; Escobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1), 311. https://doi.org/10.1186/s12866-014-0311-6; Espinoza-Monje, M., Campos, J., Alvarez Villamil, E., Jerez, A., Dentice Maidana, S., Elean, M., Salva, S., Kitazawa, H., Villena, J., & García-Cancino, A. (2021). Characterization of weissella viridescens uco-smc3 as a potential probiotic for the skin: Its beneficial role in the pathogenesis of acne vulgaris. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071486; FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. In Joint FAO/WHO Working Group Report.; FAO/WHO. (2006). Probiotics in food Health and nutritional properties and guidelines for evaluation. In Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. http://www.fao.org/3/a-a0512e.pdf; Farkye, N. Y. (2014). CHEESE %7C Microbiology of Cheesemaking and Maturation. Encyclopedia of Food Microbiology: Second Edition, 395–401. https://doi.org/10.1016/B978-0-12-384730-0.00059-8; Fernándes, M. L., Perin, L. M., Todorov, S. D., Nero, L. A., De Alencar, E. R., & De Aguiar Ferreira, M. (2018). In vitro evaluation of the safety and probiotic and technological potential of pediococcus pentosaceus isolated from sheep milk. Semina:Ciencias Agrarias, 39(1), 113–132. https://doi.org/10.5433/1679-0359.2018v39n1p113; Fessard, A., & Remize, F. (2017). Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation? Fermentation, 3(38), 17–18. https://doi.org/10.3390/fermentation3030038ï; Fhoula, I., Rehaiem, A., Najjari, A., Usai, D., Boudabous, A., Sechi, L. A., & Hadda-Imene, O. (2018). Functional Probiotic Assessment and in Vivo Cholesterol-Lowering Efficacy of Weissella sp. Associated with Arid Lands Living-Hosts. BioMed Research International, 2018. https://doi.org/10.1155/2018/1654151; Fijan, S. (2016). Antimicrobial Effect of Probiotics against Common Pathogens. In V. Rao & L. Rao (Eds.), Probiotics and Prebiotics in Human Nutrition and Health (pp. 191–221). InTech. https://doi.org/10.5772/63141; Fina Martin, J., Palomino, M. M., Cutine, A. M., Modenutti, C. P., Fernández Do Porto, D. A., Allievi, M. C., Zanini, S. H., Mariño, K. V, Barquero, A. A., & Ruzal, S. M. (2019). Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Applied Microbiology and Biotechnology, 103(12), 4839–4857. https://doi.org/10.1007/s00253-019-09795-y; Foley, M. H., O’Flaherty, S., Allen, G., Rivera, A. J., Stewart, A. K., Barrangou, R., & Theriot, C. M. (2021). Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proceedings of the National Academy of Sciences of the United States of America, 118(6). https://doi.org/10.1073/pnas.2017709118; Francisco Guarner., A. G. K. (2017). Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. In World Gastroenterology Organisation.; Franz, C. M. A. P., Endo, A., Abriouel, H., Van Reenen, C. A., Gálvez, A., & Dicks, L. M. T. (2014). The genus Pediococcus. Lactic Acid Bacteria: Biodiversity and Taxonomy, 9781444333(2009), 359–376. https://doi.org/10.1002/9781118655252.ch21; García-hernández, Y., Pérez-sánchez, T., García-curbelo, Y., Sosa-cossio, D., & Nicoli, J. R. (2017). Growth ability , microbial activity and susceptibility to antimicrobials of two strains of Pediococcus pentosaceus , candidates to probiotic Capacidad de crecimiento , actividad antimicrobiana y susceptibilidad a antimicrobianos de dos cepas de Pediococcu. Cuban Journal of Agricultural Science, 51(4), 433–442.; García Torres, L. (2015). Análisis proteómico de células de colon humano antes y después de la interacción con Lactobacillus casei Shirota [INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.]. https://repositorio.ipicyt.edu.mx/handle/11627/3906; Gerbino, E., Carasi, P., Mobili, P., Serradell, M. A., & Gómez-Zavaglia, A. (2015). Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology, 31(12), 1877–1887. https://doi.org/10.1007/s11274-015-1952-9; Gil-Sánchez, I., Bartolomé Suáldea, B., & Victoria Moreno-Arribas, M. (2019). Malolactic Fermentation. In Red Wine Technology (pp. 85–98). Elsevier. https://doi.org/10.1016/B978-0-12-814399-5.00006-2; Gogineni, V. K., Morrow, L. E., Gregory, P. J., & Malesker, M. A. (2013). Probiotics: History and Evolution. Journal of Infectious Diseases and Preventive Medicine, 1(2), 1–7. https://doi.org/10.4172/2329-8731.1000107; Grilli, D. J., Mansilla, M. E., Giménez, M. C., Sohaefer, N., Ruiz, M. S., Terebiznik, M. R., Sosa, M., & Arenas, G. N. (2019). Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe, 56, 1–7. https://doi.org/10.1016/J.ANAEROBE.2019.01.001; Guan, C., Chen, X., Jiang, X., Zhao, R., Yuan, Y., Chen, D., Zhang, C., Lu, M., Lu, Z., & Gu, R. (2020). In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances, 10(41), 24234–24240. https://doi.org/10.1039/d0ra03517c; Guan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 104(1), 51–65. https://doi.org/10.1007/s00253-019-10226-1; Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., & Garisch, J. (2017). Guías Mundiales de la Organización Mundial de Gastroenterología Enfermedad celíaca. In Organización Mundial de Gastroenterología. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-spanish-2017.pdf; Guidoli, M. G., Mendoza, J. A., Falcón, S. L., Boehringer, S. I., Sánchez, S., & Macías, M. E. F. N. (2018). Autochthonous probiotic mixture improves biometrical parameters of larvae of piaractus mesopotamicus (Caracidae, characiforme, teleostei). Ciencia Rural, 48(7). https://doi.org/10.1590/0103-8478cr20170764; Hakeem Said, I. (2018). Interaction between Plant Phenolics and Bacteria-Structure, Identification, Bioactivity and Uptake. Jacobs University.; Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791; Harvey, A., Yen, T.-Y., Aizman, I., Tate, C., & Case, C. (2013). Proteomic Analysis of the Extracellular Matrix Produced by Mesenchymal Stromal Cells: Implications for Cell Therapy Mechanism. PLoS ONE, 8(11), 79283. https://doi.org/10.1371/journal.pone.0079283; Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 0(SEP), 2107. https://doi.org/10.3389/FMICB.2018.02107; Horáčková, Š., Plocková, M., & Demnerová, K. (2018). Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnology Advances, 36(3), 682–690. https://doi.org/10.1016/j.biotechadv.2017.12.005; Howe, B., Umrigar, A., & Tsien, F. (2014). Chromosome preparation from cultured cells. Journal of Visualized Experiments, 83(e50203). https://doi.org/10.3791/50203; Husain, K., Zhang, A., Shivers, S., Davis-Yadley, A., Coppola, D., Yang, C. S., & Malafa, M. P. (2019). Chemoprevention of azoxymethane-induced colon carcinogenesis by delta-tocotrienol. Cancer Prevention Research, 12(6), 357–366. https://doi.org/10.1158/1940-6207.CAPR-18-0290/36512/AM/CHEMOPREVENTION-OF-AZOXYMETHANE-INDUCED-COLON; Hynönen, U., & Palva, A. (2013). Lactobacillus surface layer proteins: structure, function and applications. Applied Microbiology and Biotechnology 2013 97:12, 97(12), 5225–5243. https://doi.org/10.1007/S00253-013-4962-2; Isaacson, B., Hadad, T., Bachrach, G., & Mandelboim, O. (2018). Quantification of Bacterial Attachment to Tissue Sections. Bio-Protocol, 8(5). https://doi.org/10.21769/BIOPROTOC.2741; Jaafar, R. S., Al-Knany, F. N., Mahdi, B. A., & Al-Taee, A. M. R. (2019). Study the probiotic properties of pediococcus pentosaceus isolated from fish ponds in basra city, south of Iraq. Journal of Pure and Applied Microbiology, 13(4), 2343–2351. https://doi.org/10.22207/JPAM.13.4.50; Jang, Y. J., Gwon, H. M., Jeong, W. S., Yeo, S. H., & Kim, S. Y. (2021). Safety evaluation of weissella cibaria jw15 by phenotypic and genotypic property analysis. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122450; Jatmiko, Y. D., Howarth, G. S., & Barton, M. D. (2017). Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. AIP Conference Proceedings, 1908(1), 50008. https://doi.org/10.1063/1.5012732; Jessie Lau, L. Y., & Chye, F. Y. (2018). Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control. https://doi.org/10.1016/j.foodcont.2018.04.001; Jia, K., Tong, X., Wang, R., & Song, X. (2018). The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine, 97(51), e13792. https://doi.org/10.1097/MD.0000000000013792; Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. 20(1), 1–14. https://doi.org/10.1186/S12934-021-01537-Y; Jung, S. H., Hong, D. K., Bang, S. J., Heo, K., Sim, J. J., & Lee, J. L. (2021). The functional properties of lactobacillus casei hy2782 are affected by the fermentation time. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062481; Kang, M. S., Na, H. S., & Oh, J. S. (2005). Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiology Letters, 253(2), 323–329. https://doi.org/10.1016/j.femsle.2005.10.002; Kang, M. S., Piao, M., Shin, B. A., Lee, H. C., & Oh, J. S. (2006). Adhesion of Weissella cibaria to the epithelial cells and factors affecting its adhesion. Journal of Bacteriology and Virology, 36(3), 151–157. https://doi.org/10.4167/JBV.2006.36.3.151; Karki, G. (2017). Genus Streptococcus: habitat, morphology, culture and biochemical characteristics - Online Biology Notes. Onlinebiologynotes. https://www.onlinebiologynotes.com/genus-streptococcus-habitat-morphology-culture-biochemical-characteristics/; Katsikogianni, M., Missirlis, Y. F., Harris, L., & Douglas, J. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37–57. https://doi.org/10.22203/eCM.v008a05; Kaur, G., & Dufour, J. M. (2012). Cell lines. Spermatogenesis, 2(1), 1–5. https://doi.org/10.4161/spmg.19885; Kavitake, D., Devi, P. B., & Shetty, P. H. (2020). Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules, 164, 2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185; Kayode Titus, A. (2018). Prolonged heat stress of Lactobacillus casei GCRL163 and the impact on the cell physiology and probiotic functionality using proteomics. Universidad de Tasmania.; Keyhani, G., Hosseini, H. M., & Salimi, A. (2022). Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 14(1), 90. https://doi.org/10.18502/IJM.V14I1.8809; Khalil, E. S., Manap, M. Y., Mustafa, S., Amid, M., Alhelli, A. M., & Aljoubori, A. (2018). Probiotic characteristics of exopolysaccharides-producing Lactobacillus isolated from some traditional Malaysian fermented foods. Journal of Foods, 16(1), 287–298. https://doi.org/10.1080/19476337.2017.1401007; Kim, E., Yang, S. M., Kim, D., & Kim, H. Y. (2022). Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Frontiers in Microbiology, 12, 4135. https://doi.org/10.3389/fmicb.2021.794315; Klotz, C., Goh, Y. J., O’Flaherty, S., & Barrangou, R. (2020). S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01908-2; Knobloch, D., Ostermann, K., & Rödel, G. (2012). Production, Secretion, and Cell Surface Display of Recombinant Sporosarcina ureae S-Layer Fusion Proteins in Bacillus megaterium. Applied and Environmental Microbiology, 78(2), 560. https://doi.org/10.1128/AEM.06127-11; Knutsen, T., Padilla-Nash, H. M., Wangsa, D., Barenboim-Stapleton, L., Camps, J., McNeil, N., Difilippantonio, M. J., & Ried, T. (2010). Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines. Genes Chromosomes and Cancer, 49(3), 204–223. https://doi.org/10.1002/gcc.20730; Koirala, S., & Anal, A. K. (2021). Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods, 3, 100013. https://doi.org/10.1016/J.FUFO.2021.100013; Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4). https://doi.org/10.3390/fermentation5040100; Kumar, R., Bansal, P., Singh, J., Dhanda, S., & Bhardwaj, J. K. (2020). Aggregation, adhesion and efficacy studies of probiotic candidate Pediococcus acidilactici NCDC 252: a strain of dairy origin. World Journal of Microbiology and Biotechnology, 36(1), 1–15. https://doi.org/10.1007/s11274-019-2785-8; La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. https://doi.org/10.1007/s12602-017-9322-6; Ladha, G., & Jeevaratnam, K. (2018). Probiotic Potential of Pediococcus pentosaceus LJR1, a Bacteriocinogenic Strain Isolated from Rumen Liquor of Goat (Capra aegagrus hircus). Food Biotechnology, 32(1), 60–77. https://doi.org/10.1080/08905436.2017.1414700; Lakra, A. K., Domdi, L., Hanjon, G., Tilwani, Y. M., & Arul, V. (2020). Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. Lwt, 125(October 2019), 109261. https://doi.org/10.1016/j.lwt.2020.109261; Langdon, S. P. (2003). Cancer Cell Culture. In Cancer Cell Culture. Humana Press. https://doi.org/10.1385/1592594069; Lee, H. K., Choi, S. H., Lee, C. R., Lee, S. H., Park, M. R., Kim, Y., Lee, M. K., & Kim, G. B. (2015). Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and caenorhabditis elegans model testing. Korean Journal for Food Science of Animal Resources, 35(1), 91–100. https://doi.org/10.5851/kosfa.2015.35.1.91; Lee, Y. (2005). Characterization of Weissella kimchii PL9023 as a potential probiotic for women. FEMS Microbiology Letters, 250(1), 157–162. https://doi.org/10.1016/J.FEMSLE.2005.07.009; Li, N., Huang, Y., Liu, Z., You, C., & Guo, B. (2015). Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering. Letters in Applied Microbiology, 61(6), 555–561. https://doi.org/10.1111/LAM.12492; Li, Y., Zhang, T., Guo, C., Geng, M., Gai, S., Qi, W., Li, Z., Song, Y., Luo, X., Zhang, T., & Wang, N. (2020). Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathogens and Disease, 78(2). https://doi.org/10.1093/FEMSPD/FTAA016; Liu, C., Han, F., Cong, L., Sun, T., Menghe, B., & Liu, W. (2022). Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Science & Nutrition, 10(1), 227–238. https://doi.org/10.1002/FSN3.2662; Liu, M., Ding, J., Zhang, H., Shen, J., Hao, Y., Zhang, X., Qi, W., Luo, X., Zhang, T., & Wang, N. (2020). Lactobacillus casei LH23 modulates the immune response and ameliorates DSS-induced colitis via suppressing JNK/p-38 signal pathways and enhancing histone H3K9 acetylation. Food and Function, 11(6), 5473–5485. https://doi.org/10.1039/d0fo00546k; Liu, Q., Yu, Z., Tian, F., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 19(1), 1–11. https://doi.org/10.1186/s12934-020-1289-4; Llamas-Arriba, M. G., Hernández-Alcántara, A. M., Mohedano, M. L., Chiva, R., Celador-Lera, L., Velázquez, E., Prieto, A., Dueñas, M. T., Tamame, M., & López, P. (2021). Lactic acid bacteria isolated from fermented doughs in Spain produce dextrans and riboflavin. Foods, 10(9), 1–20. https://doi.org/10.3390/foods10092004; Londoño-Zapata, A. F., Durango-Zuleta, M. M., Sepúlveda-Valencia, J. U., & Moreno Herrera, C. X. (2017). Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology, 82, 39–48. https://doi.org/10.1016/J.LWT.2017.03.058; Lonvaud-Funel, A. (2014). Leuconostocaceae Family. In C. A. Batt & M. Lou Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition) (Second Edi, pp. 455–465). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384730-0.00185-3; Lorenzo, J. M., Munekata, P. E., Dominguez, R., Pateiro, M., Saraiva, J. A., & Franco, D. (2018). Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms, 53–107. https://doi.org/10.1016/B978-0-12-811031-7.00003-0; Luan, C., Jiang, N., Zhou, X., Zhang, C., Zhao, Y., Li, Z., & Li, C. (2022). Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microbial Pathogenesis, 164, 105446. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105446; Luis, P., Arroyo, C., Augusto, C., Hurtado, B., & Pardo Pérez, E. (2018). CHARACTERIZATION OF MICROORGANISMS WITH PROBIOTIC POTENTIAL ISOLATED FROM BRAHMAN CALF MANURE IN SUCRE, COLOMBIA. Rev Inv Vet Perú, 29(2), 438–448. https://doi.org/10.15381/rivep.v29i2.14482; Lv, L. X., Li, Y. D., Hu, X. J., Shi, H. Y., & Li, L. J. (2014). Whole genome sequence assembly of Pediococcus pentosaceus LI05 (CGMCC 7049) from the human gastrointestinal tract and comparative analysis with representative sequences from three food-borne strains. Gut Pathogens, 6(1), 36. https://doi.org/10.1186/s13099-014-0036-y; Ma, J., Yu, W., Hou, J., Han, X., Shao, H., & Liu, Y. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), 677–692. https://doi.org/10.1080/10942912.2020.1751656; Maamer-Azzabi, A., Ndozangue-Touriguine, O., & Bréard, J. (2013). Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death & Disease, 4(9), e801. https://doi.org/10.1038/CDDIS.2013.328; Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Roux, Y. Le, Hassouna, M., Mahmoudi, I., Moussa, O. Ben, Khaldi, T., Kebouchi, M., Soligot-hognon, C., Mahmoudi, I., Moussa, O. Ben, Khaldi, T. E., & Kebouchi, M. (2022). Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk To cite this version : HAL Id : hal-03611850 Adhesion Properties of Probiotic Lactobacillus Strains Isolated from Tunisian Sheep and Goat Milk.; Mantzourani, I., Chondrou, P., Bontsidis, C., Karolidou, K., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Galanis, A., & Plessas, S. (2019). Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Annals of Microbiology, 69(7), 751–763. https://doi.org/10.1007/s13213-019-01467-6; Marchwińska, K., & Gwiazdowska, D. (2022). Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. 204, 61. https://doi.org/10.1007/s00203-021-02700-0; Marques, J. de L., Funck, G. D., Dannenberg, G. da S., Ames, C. W., Vitola, H. R. S., Borchardt, J. L., Cruxen, C. E. dos S., Leite, F. P. L., Fiorentini, Â. M., & da Silva, W. P. (2022). Evaluation of probiotic potential of Pediococcus pentosaceus isolates and application in Minas Frescal cheese. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16166; McAuliffe, O. (2017). Genetics of Lactic Acid Bacteria. In Cheese (pp. 227–247). Elsevier. https://doi.org/10.1016/B978-0-12-417012-4.00009-0; Milanovic, V., Osimani, A., Garofalo, C., Belleggia, L., Maoloni, A., Cardinali, F., Mozzon, M., Foligni, R., Aquilanti, L., & Clementi, F. (2020). Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. Plos One, 15(7 July), 1–21. https://doi.org/10.1371/journal.pone.0236190; Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, 212–217. https://doi.org/10.1016/j.micpath.2018.11.014; Mokhtar, N. M., Wong, K., Affendi Raja Ali, R., Jian, T. W., Mokhtar, N. M., Raja Ali, R. A., Ken, W. K., Wong, K., & Affendi Raja Ali, R. (2018). Manipulation of Gut Microbiota in Vitro Model of Colorectal Cancer: Strong Adherence Ability of Lactobacillus Rhamnosus. Gut, 67(Suppl 1), A23--A23. https://doi.org/10.1136/gutjnl-2018-IDDFabstracts.130; Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-09978-7; Morovic, W., & Budinoff, C. R. (2021). Epigenetics: A New Frontier in Probiotic Research. Trends in Microbiology, 29(2), 117–126. https://doi.org/10.1016/J.TIM.2020.04.008; Muñoz-Provencio, D., Pérez-Martínez, G., & Monedero, V. (2010). Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. Journal of Applied Microbiology, 108(3), 1050–1059. https://doi.org/10.1111/j.1365-2672.2009.04508.x; Nghe, D., & Nguyen, T. (2014). Characterization of Antimicrobial Activities of Pediococcus pentosaceus Vtcc-B-601 ARTICLE INFO ABSTRACT. Journal of Applied Pharmaceutical Science, 4(05), 61–064. https://doi.org/10.7324/JAPS.2014.40511; Nonaka, T., & Wong, D. T. W. (2017). Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva (pp. 125–151).; Novoa, C. F., & Lopéz, N. (2008). Evaluación de la vida útil sensorial del queso doble crema con dos niveles de grasa. Rev. Med. Vet. Zoot., 55, 91–99.; Nwoko, E. S. Q. A., & Okeke, I. N. (2021). Bacteria autoaggregation: How and why bacteria stick together. Biochemical Society Transactions, 49(3), 1147–1157. https://doi.org/10.1042/BST20200718; O’bryan, C. A., Koo, O. K., Sostrin, M. L., Ricke, S. C., Crandall, P. G., & Johnson, M. G. (2018). Chapter 15 - Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. https://doi.org/10.1016/B978-0-12-811835-1.00015-4; Oh, Y. J., & Jung, D. S. (2015). Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented milletalcoholic beverage in Korea. Lwt, 63(1), 437–444. https://doi.org/10.1016/j.lwt.2015.03.005; Ohkusa, T., Yoshida, T., Sato, N., Watanabe, S., Tajiri, H., & Okayasu, I. (2009). Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. Journal of Medical Microbiology, 58(Pt 5), 535–545. https://doi.org/10.1099/JMM.0.005801-0; Okonkwo, C. C. (2017). Process development and metabolic engineering to enhance 2 , 3- butanediol production by Paenibacillus polymyxa DSM 365. Ohio State University.; Ortiz Balderas, M. (2006). Identificación bioquímica de Bacterias Ácido Lácticas aisladas a partir de productos lácteos en el estado de Hidalgo [Universidad Autónoma del Estado de Hidalgo]. https://repository.uaeh.edu.mx/bitstream/bitstream/handle/123456789/10741/Identificacion bioquimica.pdf?sequence=1&isAllowed=y; Osorio, D. P., Novoa, C. F., & Gutiérrez, L. F. (2012). Determinación de la viabilidad de la nariz electrónica en la predicción de la vida útil del queso doble crema. Alimentos Hoy, 21(26), 26–42. http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/120/114; Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Https://Doi.Org/10.3109/07853890.2016.1161232, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232; Ouwehand, A. C., & Salminen, S. (2003). In vitro Adhesion Assays for Probiotics and their in vivo Relevance: A Review. Microbial Ecology in Health and Disease, 15(4), 175–184. https://doi.org/10.1080/08910600310019886; Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165. https://doi.org/10.3920/BM2014.0103; Park, S. H., Kim, Y. A., Chung, M. J., Kang, B. Y., & Ha, N. J. (2007). Inhibition of Proliferation by Anti-microbial Peptide Isolated from Pediococcus pentosaceus and Lactobacillus spp. in Colon Cancer Cell Line (HT-29, SW 480 and Caco-2).; Parma Augusto Castilho, N. DE. (2018). BACTERIOCINOGENIC POTENTIAL OF LACTIC ACID BACTERIA ISOLATES FROM ARTISANAL FERMENTED MEAT PRODUCTS. Universidade Federal de Viçosa.; Patrone, V., Al-Surrayai, T., Romaniello, F., Fontana, A., Milani, G., Sagheddu, V., Puglisi, E., Callegari, M. L., Al-Mansour, H., Kishk, M. W., & Morelli, L. (2021). Integrated Phenotypic-Genotypic Analysis of Candidate Probiotic Weissella Cibaria Strains Isolated from Dairy Cows in Kuwait. Probiotics and Antimicrobial Proteins, 13(3), 809–823. https://doi.org/10.1007/S12602-020-09715-X/TABLES/4; Pavkov-Keller, T., Howorka, S., & Keller, W. (2011). The structure of bacterial S-layer proteins. Progress in Molecular Biology and Translational Science, 103, 73–130. https://doi.org/10.1016/B978-0-12-415906-8.00004-2; Pellegrino, M. S., Frola, I. D., Natanael, B., Gobelli, D., Nader-Macias, M. E. F., & Bogni, C. I. (2019). In Vitro Characterization of Lactic Acid Bacteria Isolated from Bovine Milk as Potential Probiotic Strains to Prevent Bovine Mastitis. Probiotics and Antimicrobial Proteins, 11(1), 74–84. https://doi.org/10.1007/s12602-017-9383-6; Pérez-Ramos, A., Mohedano, M. L., Puertas, A., Lamontanara, A., Orru, L., Spano, G., Capozzi, V., Teresa Dueñas, M., & López, P. (2016). Draft genome sequence of Pediococcus parvulus 2.6, a probiotic β-glucan producer strain. Genome Announcements, 4(6). https://doi.org/10.1128/GENOMEA.01381-16; Pino, A., Bartolo, E., Caggia, C., Cianci, A., & Randazzo, C. L. (2019). Detection of vaginal lactobacilli as probiotic candidates. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-40304-3; Pisano, M. B., Rosa, A., Putzu, D., Cesare Marincola, F., Mossa, V., Viale, S., Fadda, M. E., & Cosentino, S. (2020). Influence of Autochthonous Putative Probiotic Cultures on Microbiota, Lipid Components and Metabolome of Caciotta Cheese. Frontiers in Microbiology, 11, 2620. https://doi.org/10.3389/FMICB.2020.583745/BIBTEX; Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(suppl_1), S49–S66. https://doi.org/10.1093/advances/nmy063; Rahman, M., Kim, W.-S., Kumura, H., & Shimazaki, K. (2008). Autoaggregation and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology, 24, 1593–1598. https://doi.org/10.1007/s11274-007-9650-x; Ramírez Ramírez, C., Rosas Ulloa, P., Velázquez González, M. Y., Ulloa, J. A., & Arce Romero, F. (2011). Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Revista Fuente, 2(7), 1–16. http://fuente.uan.edu.mx/publicaciones/03-07/1.pdf; Ravi, J., & Fioravanti, A. (2021). S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Frontiers in Microbiology, 12, 685. https://doi.org/10.3389/FMICB.2021.663468/BIBTEX; Reale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. Lwt, 60(2), 721–728. https://doi.org/10.1016/j.lwt.2014.10.022; Rehaiem, A., Belgacem, Z. Ben, Edalatian, M. R., Martínez, B., Rodríguez, A., Manai, M., & Guerra, N. P. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, 343–350. https://doi.org/10.1016/j.foodcont.2013.09.044; Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/JDS.2019-17092; Ringot-Destrez, B., Kalach, N., Mihalache, A., Gosset, P., Michalski, J. C., Léonard, R., & Robbe-Masselot, C. (2017). How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochemical Society Transactions, 45(2), 389–399. https://doi.org/10.1042/BST20160167; Rohith, H. S., & Halami, P. M. (2021). In vitro validation studies for adhesion factor and adhesion efficiency of probiotic Bacillus licheniformis MCC 2514 and Bifidobacterium breve NCIM 5671 on HT-29 cell lines. Archives of Microbiology, 203(6), 2989–2998. https://doi.org/10.1007/S00203-021-02257-Y; Rubio, A. P. D., Martínez, J. H., Casillas, D. C. M., Leskow, F. C., Piuri, M., & Pérez, O. E. (2017). Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in Microbiology, 8(SEP), 1–12. https://doi.org/10.3389/fmicb.2017.01783; Ruiz, A. G., González De Llano, D., Fernández, A. E., Rolanía, T. R., Sualdea, B. B., & Moreno Arribas, M. V. (2014). Evaluación de las propiedades probióticas de bacterias lácticas de origen enológico. Alimentación, Nutrición y Salud, 21(2), 28–34.; Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396. https://doi.org/10.3389/fmicb.2013.00396; Safika, S., Wardinal, W., Ismail, Y. S., Nisa, K., & Sari, W. N. (2019). Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans (Pongo abelii). Veterinary World, 12(7), 1060–1065. https://doi.org/10.14202/vetworld.2019.1060-1065; Sánchez, B., Salazar Garzo, N., & Margolles, A. (2018). La microbiota intestinal.; Sánchez, J. F. (2019). Caracterización molecular de bacterias ácido lácticas aisladas de frutos procedentes de la Región Loreto. 124. https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/10767/Sanchez_dj.pdf?sequence=1&isAllowed=y; Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127; Segers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microbial Cell Factories, 13 Suppl 1, S7. https://doi.org/10.1186/1475-2859-13-S1-S7; Serna-Cock, L., Pabón-Rodríguez, O. V., & Giraldo-Gómez, G. I. (2019). Adhesion Capacity of Weissella cibaria to Bovine Mammary Tissue and the Effect of Bio-Sealant Topical Application on Physicochemical Properties of Milk. Probiotics and Antimicrobial Proteins, 11(4), 1293–1299. https://doi.org/10.1007/s12602-018-9481-0; Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1), 53. https://doi.org/10.1007/s13205-017-0682-0; Sharma, L., & Riva, A. (2020). Intestinal barrier function in health and disease—any role of sars‐cov‐2? Microorganisms, 8(11), 1–27. https://doi.org/10.3390/microorganisms8111744; Sharma, R. (2021, May 18). Kirby Bauer Disc Diffusion Method For Antibiotic Susceptibility Testing. https://microbenotes.com/kirby-bauer-disc-diffusion/; Sharma, S., & Kanwar, S. S. (2017). Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. Journal of Food Science and Technology, 54(11), 3504–3511. https://doi.org/10.1007/s13197-017-2807-1; Shin, M., Ban, O. H., Jung, Y. H., Yang, J., & Kim, Y. (2021). Genomic characterization and probiotic potential of Lactobacillus casei IDCC 3451 isolated from infant faeces. Letters in Applied Microbiology, 72(5), 578–588. https://doi.org/10.1111/LAM.13449; Sica, M. G. (2013). Bacterias lácticas del estuario de Bahía Blanca : evaluación de sus propiedades probióticas para su potencial uso en el cultivo de trucha arcoíris (Oncorhynchus mykiss). Universidad Nacional del Sur Bahía Blanca.; Sigma-Aldrich. (2021a). SW 620 Cell Line human. https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87051203; Sigma-Aldrich. (2021b). SW480 Cell Line human 87092801 . https://www.sigmaaldrich.com/CO/es/product/sigma/cb_87092801; Singh, B., Fleury, C., Jalalvand, F., & Riesbeck, K. (2012). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiology Reviews, 36(6), 1122–1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x; Singh, K. S., Kumar, S., Mohanty, A. K., Grover, S., & Kaushik, J. K. (2018). Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum. Scientific Reports 2018 8:1, 8(1), 1–10. https://doi.org/10.1038/s41598-018-32417-y; Singh, T. P., Malik, R. K., & Kaur, G. (2016). Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. Nutrire, 41(1), 1–10. https://doi.org/10.1186/s41110-016-0007-9; Singla, V., Mandal, S., Sharma, P., Anand, S., & Tomar, S. K. (2018). Antibiotic susceptibility profile of Pediococcus spp. from diverse sources. 3 Biotech, 8(12), 489. https://doi.org/10.1007/S13205-018-1514-6; Sireswar, S., Biswas, S., & Dey, G. (2020). Adhesion and anti-inflammatory potential of: Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food and Function, 11(3), 2555–2572. https://doi.org/10.1039/C9FO02249J; Slater, C., De La Mare, J. A., & Edkins, A. L. (2018). In vitro analysis of putative cancer stem cell populations and chemosensitivity in the SW480 and SW620 colon cancer metastasis model. Oncology Letters, 15(6), 8516–8526. https://doi.org/10.3892/ol.2018.8431; Smith, A. C., & Hussey, M. A. (2019). Gram Stain Protocols. https://asm.org/Protocols/Gram-Stain-Protocols; Song, X., Xiong, Z., Kong, L., Wang, G., & Ai, L. (2018). Relationship between putative eps genes and production of exopolysaccharide in lactobacillus casei LC2W. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01882; Song, Y. R., Lee, C. M., Lee, S. H., & Baik, S. H. (2021). Evaluation of probiotic properties of pediococcus acidilactici m76 producing functional exopolysaccharides and its lactic acid fermentation of black raspberry extract. Microorganisms, 9(7). https://doi.org/10.3390/microorganisms9071364; Srimahaeak, T., Bianchi, F., Chlumsky, O., Larsen, N., & Jespersen, L. (2021). In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. Journal of Functional Foods, 79, 104395. https://doi.org/10.1016/j.jff.2021.104395; Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology / Edited by John E. Coligan . [et al.], 111, A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111; Subramaniyan, V., & Gurumurthy, K. (2019). Diversity of probiotic adhesion genes in the gastrointestinal tract of goats. Journal of Cellular Biochemistry, 120(8), 12422–12428. https://doi.org/10.1002/jcb.28508; Suhonen, A. (2019). Antibiotic Susceptibility of Lactic Acid Bacteria [University of Helsinki]. http://www.helsinki.fi/kirjasto/fi/avuksi/yliopiston-julkaisut/e-thesis/; Suissa, R., Oved, R., Jankelowitz, G., Turjeman, S., Koren, O., & Kolodkin-Gal, I. (2022). Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. In Trends in Microbiology (Vol. 30, Issue 3, pp. 293–306). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2021.07.007; Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Frontiers in Microbiology, 9(SEP), 2066. https://doi.org/10.3389/FMICB.2018.02066/BIBTEX; Surat, P. (2018, August 24). pH in the Human Body. News Medical Life Sciences. https://www.news-medical.net/health/pH-in-the-Human-Body.aspx; Suwannaphan, S. (2021). Isolation, identification and potential probiotic characterization of lactic acid bacteria from thai traditional fermented food. AIMS Microbiology, 7(4), 431–446. https://doi.org/10.3934/MICROBIOL.2021026; Tankeshwar, A. (2013, October 7). Catalase test: Principle, Procedure, Results and Applications. Learn Microbiology Online. https://microbeonline.com/catalase-test-principle-uses-procedure-results/; Tarrah, A., da Silva Duarte, V., de Castilhos, J., Pakroo, S., Lemos Junior, W. J. F., Luchese, R. H., Fioravante Guerra, A., Rossi, R. C., Righetto Ziegler, D., Corich, V., & Giacomini, A. (2019). Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces. Journal of Functional Foods, 54, 489–497. https://doi.org/10.1016/J.JFF.2019.02.004; Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R. E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Frontiers in Nutrition, 7, 191. https://doi.org/10.3389/FNUT.2020.570344/BIBTEX; Teixeira, C. G., Silva, R. R. da, Fusieger, A., Martins, E., Freitas, R. de, & Carvalho, A. F. de. (2021). O gênero Weissella na indústria de alimentos: Uma revisão. Research, Society and Development, 10(5), e8310514557. https://doi.org/10.33448/rsd-v10i5.14557; Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7). https://doi.org/10.3390/NU11071591; Thao, T. T. P., Thoa, L. T. K., Ngoc, L. M. T., Lan, T. T. P., Phuong, T. V., Truong, H. T. H., Khoo, K. S., Manickam, S., Hoa, T. T., Tram, N. D. Q., Show, P. L., & Huy, N. D. (2021). Characterization halotolerant lactic acid bacteria Pediococcus pentosaceus HN10 and in vivo evaluation for bacterial pathogens inhibition. Chemical Engineering and Processing - Process Intensification, 168(January), 108576. https://doi.org/10.1016/j.cep.2021.108576; Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510; Tidjani Alou, M., Lagier, J.-C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Human Microbiome Journal, 1, 3–11. https://doi.org/10.1016/J.HUMIC.2016.09.001; Todhanakasem, T., Triwattana, K., Pom, J., Havanapan, P., Koombhongse, P., & Thitisak, P. (2021). Physiological studies of the Pediococcus pentosaceus biofilm. Letters in Applied Microbiology, 72(2), 178–186. https://doi.org/10.1111/LAM.13351; Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., & Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7), 4252–4257. https://doi.org/10.3168/jds.2013-6547; Turnbull, P. C. B. (1996). Bacillus. In Medical Microbiology (4th ed.). University of Texas Medical Branch at Galveston. http://www.ncbi.nlm.nih.gov/pubmed/21413260; Turoverova, L. V., Khotin, M. G., Yudintseva, N. M., Magnusson, K. E., Blinova, M. I., Pinaev, G. P., & Tentler, D. G. (2009). Analysis of extracellular matrix proteins produced by cultured cells. Cell and Tissue Biology, 3(5), 497–502. https://doi.org/10.1134/S1990519X09050137; Uniprot. (2022). UniProtKB - Q03EH8 (Q03EH8_PEDPA). Uniprot.Org. https://www.uniprot.org/uniprot/Q03EH8; Universidad EAFIT, Biointropic, & Silo. (2018). Estudio sobre Bioeconomía como fuente de nuevas industrias basadas en el capital natural de Colombia. Fase II.; Vanegas, M. F., Londoño Zapata, A., Durango Zuleta, M., Gutiérrez Buriticá, M., Ochoa Agudelo, S., & Sepúlveda Valencia, J. (2017). Capacidad Antimicrobiana de Bacterias Ácido Lácticas autóctonas aisladas de queso doble crema y quesillo colombiano. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(1), 45. https://doi.org/10.18684/BSAA(15)45-55; Vasiee, A., Falah, F., Behbahani, B. A., & Tabatabaee-yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479. https://doi.org/10.1016/j.jbiosc.2020.07.002; Vélez Zea, J., Gutiérrez Díez, A., & Montoya, O. (2015). Molecular identification and evaluation of the probiotic ability of lacticacid bacteria from sow colostrum. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 141–149.; Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5(1), 235–243. https://doi.org/10.1016/J.JFF.2012.10.012; Vinderola, G., Reinheimer, J., & Salminen, S. (2019). The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? International Dairy Journal, 96, 58–65. https://doi.org/10.1016/j.idairyj.2019.04.010; Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., De Vos, W. M., & Palva, A. (2010). Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology, 76(7), 2049–2057. https://doi.org/10.1128/AEM.01958-09; Wang, J., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., Fan, M., Wang, J., Yang, K., Liu, M., Zhang, J., Wei, X., & Fan, M. (2018). Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Annals of Microbiology, 68(12), 803–813. https://doi.org/10.1007/s13213-018-1386-3; Wang, T., Sun, H., Chen, J., Luo, L., Gu, Y., Wang, X., Shan, Y., Yi, Y., Liu, B., Zhou, Y., & Lü, X. (2021). Anti-Adhesion Effects of Lactobacillus Strains on Caco-2 Cells Against Escherichia Coli and Their Application in Ameliorating the Symptoms of Dextran Sulfate Sodium-Induced Colitis in Mice. Probiotics and Antimicrobial Proteins, 13(6), 1632–1643. https://doi.org/10.1007/S12602-021-09774-8; Wendel, U. (2022). Assessing Viability and Stress Tolerance of Probiotics—A Review. Frontiers in Microbiology, 12, 4351. https://doi.org/10.3389/FMICB.2021.818468/BIBTEX; Wu, J. W. F. W., Redondo-Solano, M., Uribe, L., Ching-Jones, R. W., Usaga, J., & Barboza, N. (2021). First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ, 9. https://doi.org/10.7717/peerj.12437; Xiong, L., Ni, X., Niu, L., Zhou, Y., Wang, Q., Khalique, A., Liu, Q., Zeng, Y., Shu, G., Pan, K., Jing, B., & Zeng, D. (2019). Isolation and Preliminary Screening of a Weissella confusa Strain from Giant Panda (Ailuropoda melanoleuca). Probiotics and Antimicrobial Proteins, 11(2), 535–544. https://doi.org/10.1007/S12602-018-9402-2; Xu, D., Liao, C., Zhang, B., Tolbert, W. D., He, W., Dai, Z., Zhang, W., Yuan, W., Pazgier, M., Liu, J., Yu, J., Sansonetti, P. J., Bevins, C. L., Shao, Y., & Lu, W. (2018). Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity, 48(6), 1233-1244.e7. https://doi.org/10.1016/J.IMMUNI.2018.04.014; Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Dia, V. P., Qiao, Y., & Shi, B. (2020). Antibacterial potential of a novel: Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food and Function, 11(5), 4697–4706. https://doi.org/10.1039/d0fo00905a; Xue, H. B., Liu, C., Liu, Y., Wang, W. N., & Xu, B. (2021). Roles of surface layer proteins in the regulation of Pediococcus pentosaceus on growth performance, intestinal microbiota, and resistance to Aeromonas hydrophila in the freshwater prawn Macrobrachium rosenbergii. Aquaculture International, 29(3), 1373–1391. https://doi.org/10.1007/s10499-021-00704-7; Yamashita, M. M., Ferrarezi, J. V., Pereira, G. do V., Bandeira, G., Côrrea da Silva, B., Pereira, S. A., Martins, M. L., & Pedreira Mouriño, J. L. (2020). Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis, 139, 103897. https://doi.org/10.1016/J.MICPATH.2019.103897; Yao, Y., Cai, X., Ye, Y., Wang, F., Chen, F., & Zheng, C. (2021). The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 12, 4114. https://doi.org/10.3389/FIMMU.2021.708472/BIBTEX; Ye, K., Liu, J., Liu, M., Huang, Y., Wang, K., & Zhou, G. (2018). Effects of two Weissella viridescens strains on Listeria monocytogenes growth at different initial inoculum proportions. CYTA - Journal of Food, 16(1), 299–305. https://doi.org/10.1080/19476337.2017.1401667; Yin, H., Ye, P., Lei, Q., Cheng, Y., Yu, H., Du, J., Pan, H., & Cao, Z. (2020). In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis, 144(December 2019), 104163. https://doi.org/10.1016/j.micpath.2020.104163; Yu, H. S., Jang, H. J., Lee, N. K., & Paik, H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. Lwt, 112(March), 108229. https://doi.org/10.1016/j.lwt.2019.05.127; Zhang, Y., Xiang, X., Lu, Q., Zhang, L., Ma, F., & Wang, L. (2016). Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L. Journal of Dairy Science, 99(2), 1011–1018. https://doi.org/10.3168/jds.2015-10020; Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018a). In vitro Assessment of the Probiotic Properties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated From Artisanal Tunisian Meat “Dried Ossban.” In Frontiers in Microbiology (Vol. 9). https://www.frontiersin.org/article/10.3389/fmicb.2018.02607; Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N., & Ferchichi, M. (2018b). In vitroassessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceusMZF16 isolated from artisanal tunisian meat "dried ossban. Frontiers in Microbiology, 9(NOV), 2607. https://doi.org/10.3389/fmicb.2018.02607; https://repositorio.unal.edu.co/handle/unal/82661; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
5Academic Journal
المؤلفون: Fisher, Benjamin A, Cartwright, Alison J, Quirke, Anne-Marie, de Pablo, Paola, Romaguera, Dora, Panico, Salvatore, Mattiello, Amalia, Gavrila, Diana, Navarro, Carmen, Sacerdote, Carlotta, Vineis, Paolo, Tumino, Rosario, Lappin, David F, Apazidou, Danae, Culshaw, Shauna, Potempa, Jan, Michaud, Dominique S, Riboli, Elio, Venables, Patrick J
مصطلحات موضوعية: Smoking, Rheumatoid arthritis (RA), Anti-citrullinated protein antibodies (ACPA), Porphyromonas gingivalis, Citrullination, Autoantigens, Case-Control Studies, Cysteine Endopeptidases, Adult, Periodontitis, Humans, Hydrolases, Middle Aged, Protein-Arginine Deiminases, Adhesins, Bacterial, Male, Peptides, Cyclic, Prospective Studies, Arthritis, Rheumatoid, Europe, Female, Adhesinas Bacterianas, Femenino, Europa (Continente), Artritis Reumatoide, Masculino, Fumar
Relation: https://dx.doi.org/10.1186/s12891-015-0792-y; Fisher Benjamin A, Cartwright AJ, Quirke AM, De Pablo P, Romaguera D, Panico S, et al. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study. BMC Musculoskelet Disord. 2015 Nov 04;16:331.; http://hdl.handle.net/20.500.13003/10617; http://hdl.handle.net/20.500.12105/20158; BMC Musculoskeletal Disorders; 2-s2.0-84946232867; 364118000001; L606719034
-
6Academic Journal
المؤلفون: Del Real, Javier Alonso, Ibeas, José Ignacio
المصدر: Biosaia: Revista de los másteres de Biotecnología Sanitaria y Biotecnología Ambiental, Industrial y Alimentaria; Núm. 2 (2013) ; 2254-3821
مصطلحات موضوعية: levadura de flor, adhesinas, álcalis
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: Eduardo Ruiz Bustos, Arturo Pedro Sierra Beltrán, María de Jesús Romero Geraldo, Felipe Ascencio
المصدر: Revista Mexicana de Ciencias Pecuarias, Vol 2, Iss 3 (2012)
مصطلحات موضوعية: Inmunidad de mucosas, Aeromonas veronii, Adhesinas, Proteínas de membrana externa, Vacunas, Animal culture, SF1-1100, Veterinary medicine, SF600-1100
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Ruiz Bustos, Eduardo, Sierra Beltrán, Arturo Pedro, Romero Geraldo, María de Jesús, Ascencio, Felipe
المصدر: Revista Mexicana de Ciencias Pecuarias; Vol. 2, Núm. 3 (2011): Julio-Septiembre ; 2448-6698 ; 2007-1124
مصطلحات موضوعية: Mucosal immunity, Aeromonas veronii, Adhesins, Outer membrane proteins, Vaccines, Inmunidad de mucosas, Adhesinas, Proteínas de membrana externa, Vacunas
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: EDUARDO RUIZ BUSTOS, ARTURO PEDRO SIERRA BELTRAN, MARIA DE JESUS ROMERO GERALDO, FELIPE DE JESUS ASCENCIO VALLE
المصدر: Revista Mexicana de Ciencias Pecuarias
مصطلحات موضوعية: info:eu-repo/classification/AUTOR/Inmunidad de mucosas, Aeromonas veronii, Adhesinas, Proteínas de membrana externa, Vacunas, info:eu-repo/classification/AUTOR/Mucosal immunity, Adhesins, Outer membrane proteins, Vaccines, info:eu-repo/classification/cti/2, info:eu-repo/classification/cti/24, info:eu-repo/classification/cti/2412, info:eu-repo/classification/cti/241206
وصف الملف: application/pdf
Relation: info:eu-repo/semantics/reference/ISSN/ISSN: 2448-6698; info:eu-repo/semantics/reference/URL/URL: http://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1432; http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/1387
-
10
المؤلفون: Bialer, Magali Graciela, Pettinari, María Julia
المساهمون: Zorreguieta, Ángeles
المصدر: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICETمصطلحات موضوعية: Ciencias Biológicas, purl.org/becyt/ford/1 [https], Adhesinas, Biología Celular, Microbiología, Envoltura Celular, Autotransportadores, purl.org/becyt/ford/1.6 [https], Brucella, CIENCIAS NATURALES Y EXACTAS
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Pichel, Mariana, Binsztein, Norma, Gutkind, Gabriel, Viboud, Gloria I.
المصدر: Journal of Clinical Microbiology, 2001, 39(2), 782–786.
مصطلحات موضوعية: Escherichia coli, Proteínas de Escherichia coli, Infecciones por Escherichia coli, Análisis por Conglomerados, Adhesinas de Escherichia coli, Electroforesis en Gel de Campo Pulsado, Variación Genética, Serotipificación
وصف الملف: application/pdf
Relation: http://sgc.anlis.gob.ar/handle/123456789/288; http://jcm.asm.org/content/39/2/782.full.pdf+html
-
12Report
المؤلفون: Ruiz-Bustos,Eduardo, Sierra-Beltrán,Arturo Pedro, Romero-Geraldo,María de Jesús, Ascencio,Felipe
المصدر: Revista mexicana de ciencias pecuarias v.2 n.3 2011
مصطلحات موضوعية: Inmunidad de mucosas, Aeromonas veronii, Adhesinas, Proteínas de membrana externa, Vacunas
وصف الملف: text/html
-
13
المؤلفون: LUIS MEDINA SANCHEZ
المساهمون: Castaño Navarro, Irene Beatriz, IRENE BEATRIZ CASTAÑO NAVARRO
المصدر: Instituto Potosino de Investigación Científica y Tecnológica
IPICYT
Repositorio Institucional del IPICYTمصطلحات موضوعية: Heterodimero Ku, Candidad glabrata, Adhesinas, 2415 [cti], 24 [cti], Silenciamiento subtelomérico, Silenciamiento subtelomérico [Autor], Adhesinas [Autor], Epitopos, Epitopos [Autor], Candidad glabrata [Autor], 2 [cti], Heterodimero Ku [Autor]
وصف الملف: application/pdf
-
14
المؤلفون: GUILLERMO JUAREZ VEGA
المساهمون: De Las Peñas Nava, Alejandro, ALEJANDRO DE LAS PEÑAS NAVA
المصدر: Instituto Potosino de Investigación Científica y Tecnológica
IPICYT
Repositorio Institucional del IPICYTمصطلحات موضوعية: Complejo Sir, 2415 [cti], Silenciamiento subtelomérico, Candida glabrata, Estrés oxidativo, NAD+ [Autor], Silenciamiento subtelomérico [Autor], Complejo Sir [Autor], Adhesinas, Epitopes, Epitopes [Autor], NAD+, Candida glabrata [Autor], 24 [cti], Adhesinas [Autor], 2 [cti], estrés oxidativo [Autor]
وصف الملف: application/pdf
-
15
المؤلفون: MAYRA CUELLAR CRUZ
المساهمون: De Las Peñas Nava, Alejandro, Alejandro de las Peñas Nava
المصدر: Instituto Potosino de Investigación Científica y Tecnológica
IPICYT
Repositorio Institucional del IPICYTمصطلحات موضوعية: Estrés oxidativo [Autor], BIOLOGÍA MOLECULAR, Adhesinas, 2415 [cti], Candida glabrata [Autor], 24 [cti], Métodos de diagnóstico, Candida glabrata, Estrés oxidativo, Adhesinas [Autor], 2 [cti], Métodos de diagnóstico [Autor]
وصف الملف: application/pdf
-
16
المصدر: Journal of Clinical Microbiology, 2001, 39(2), 782–786.
Sistema de Gestión del Conocimiento ANLIS MALBRÁN
Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"
instacron:ANLISمصطلحات موضوعية: Diarrhea, Microbiology (medical), Serotype, Bacterial Toxins, Argentina, medicine.disease_cause, Variación Genética, Microbiology, Proteínas de Escherichia coli, Electroforesis en Gel de Campo Pulsado, Enterotoxins, Species Specificity, Enterotoxigenic Escherichia coli, Genotype, Escherichia coli, Tumor Cells, Cultured, medicine, Cluster Analysis, Humans, Typing, Serotyping, Child, Escherichia coli Infections, Phylogeny, Genetics, Adhesins, Escherichia coli, Adhesinas de Escherichia coli, biology, Escherichia coli Proteins, Serotipificación, Genetic Variation, Bacteriology, Infecciones por Escherichia coli, biology.organism_classification, Análisis por Conglomerados, Enterobacteriaceae, Electrophoresis, Gel, Pulsed-Field, Random Amplified Polymorphic DNA Technique, Bacterial adhesin, Phenotype, Restriction fragment length polymorphism
وصف الملف: application/pdf
-
17
المؤلفون: Lucía Galli
المساهمون: Leotta, Gerardo Aníbal, Rivas, Marta
المصدر: SEDICI (UNLP)
Universidad Nacional de La Plata
instacron:UNLPمصطلحات موضوعية: STEC LEE-negativas, Adhesinas de Escherichia coli, Ciencias Veterinarias, Toxina Shiga, Factores de Virulencia, patogénesis, Biology, adherencia
وصف الملف: application/pdf
-
18Academic Journal
المصدر: Investigación y Ciencia: de la Universidad Autónoma de Aguascalientes, ISSN 1665-4412, Nº. 43, 2009, pags. 21-25
مصطلحات موضوعية: Sporothrix schenckii, esporotricosis, glicoproteínas y adhesinas, sporotrichosis, glycoproteins and adhesins
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=6104483; (Revista) ISSN 1665-4412
-
19
المؤلفون: Alvarez, Lucía Paula
المساهمون: Buzzola, Fernanda
المصدر: Biblioteca Digital (UBA-FCEN)
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCENمصطلحات موضوعية: ADHESINS, POLISACARIDO CAPSULAR, education, parasitic diseases, ADHESINAS, VIRULENCE, VIRULENCIA, STAPHYLOCOCCUS AUREUS, SALICYLIC ACID, CAPSULAR POLYSACCHARIDE, ACIDO SALICILICO
وصف الملف: application/pdf
-
20
المؤلفون: Balli García, Jimena
المساهمون: López Vidal, Yolanda
المصدر: Universidad Nacional Autónoma de México
UNAM
Repositorio de Tesis DGBSDI, Dirección General de Bibliotecas y Servicios Digitales de Información, UNAMمصطلحات موضوعية: Genomas bacterianos, Ciencias Biológicas, Químicas y de la Salud, Salmonella enteritidis, Salmonelosis en avicultura, Adhesinas fimbirales, Fimbrias, Cría de animales, Manejo de animales, Veterinaria, Mutación microbiana, Genética, Animales domésticos
وصف الملف: application/pdf