يعرض 1 - 20 نتائج من 775 نتيجة بحث عن '"Acería"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Quijorna Kyburz, Natalia

    Thesis Advisors: Andrés Payán, Ana, Universidad de Cantabria. Departamento de Ingeniería Química y Química Inorgánica

    المصدر: TDR (Tesis Doctorales en Red)

    وصف الملف: application/pdf

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: Hemmatzadeh-Khorshidabadi, H., Lotfollahi, P., Mehrvar, A., Shiri, J., de Lillo, E.

    مصطلحات موضوعية: Aceria, Aculu, Ardabil, Caprifoliaceae, Cecidophyopsis

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001033616600004; volume:12; issue:3; firstpage:403; lastpage:415; numberofpages:13; journal:PERSIAN JOURNAL OF ACAROLOGY; https://hdl.handle.net/11586/466956

  9. 9
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 73 No. 349 (2023); e304 ; Materiales de Construcción; Vol. 73 Núm. 349 (2023); e304 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2023.v73.i349

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3492/4204; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3492/4205; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3492/4206; Schneider, M. (2019) The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792; Madlool, N.A.; Saidur, R.; Rahim, N.A.; Kamalisarvestani, M. (2013) An overview of energy savings measures for cement industries. Renew. Sust. Energ. Rev. 19, 18-29. https://doi.org/10.1016/j.rser.2012.10.046; Lothenbach, B.; Scrivener, K.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001; Thomas, M. (2013) Supplementary cementing materials in concrete, 1st ed., CRC Press, Boca Raton. https://doi.org/10.1201/b14493; Pauliuk, S.; Milford, R.L.; Müller, D.B.; Allwood, J.M. (2013) The steel scrap age. Environ. Sci. Technol. 47 [7], 3448-3454. https://doi.org/10.1021/es303149z PMid:23442209; Montenegro-Cooper, J.M.; Celemín-Matachana, M.; Cañizal, J.; González, J.J. (2019) Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils. Constr. Build. Mater. 203, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.040; Adesanya, E.; Sreenivasan, H.; Kantola, A.M.; Telkki, V.V.; Ohenoja, K.; Kinnunen, P.; et. al. (2018) Ladle slag cement - Characterization of hydration and conversion. Constr. Build. Mater. 193, 128-134. https://doi.org/10.1016/j.conbuildmat.2018.10.179; Wang, Y.; Suraneni, P. (2019) Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials. Constr. Build. Mater. 204, 458-467. https://doi.org/10.1016/j.conbuildmat.2019.01.196; Ranfionich, E.V.; Barra, M. (2001) Reactividad y expansión de las escorias de acería de horno de arco eléctrico en relación con sus aplicaciones en la construcción. Mater. Construcc. 51 [263-264], 137-148. https://doi.org/10.3989/mc.2001.v51.i263-264.359; Setién, J.; Hernández, D.; González, J.J. (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 23 [5], 1788-1794. https://doi.org/10.1016/j.conbuildmat.2008.10.003; Yildirim, I.Z.; Prezzi, M. (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv. Civ. Eng. 2011, 463638. https://doi.org/10.1155/2011/463638; Montenegro, J.M.; Celemín-Matachana, M.; Cañizal, J.; Setién, J. (2013) Ladle furnace slag in the construction of embankments: expansive behavior. J. Mater. Civ. Eng. 25 [8], 972-979. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000642; Shi, C. (2004) Steel slag-its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 16 [3], 230-236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230); Papayianni, I.; Anastasiou, E. (2012) Effect of granulometry on cementitious properties of ladle furnace slag. Cem. Concr. Compos. 34 [3], 400-407. https://doi.org/10.1016/j.cemconcomp.2011.11.015; Choi, S.; Kim, J. (2020) Hydration reactivity of calcium-aluminate-based ladle furnace slag powder according to various cooling conditions. Cem. Concr. Compos. 114, 103734. https://doi.org/10.1016/j.cemconcomp.2020.103734; Zhao, J.; Liu, Q.; Fang, K. (2020) Optimization of f-MgO/f-CaO phase in ladle furnace slag by air rapidly cooling. Mater. Lett. 280, 128528. https://doi.org/10.1016/j.matlet.2020.128528; Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. (2007) Characteristics of steel slag under different cooling conditions. Waste Manag. 27 [10], 1335-1344. https://doi.org/10.1016/j.wasman.2006.08.002 PMid:17005388; Adolfsson, D.; Robinson, R.; Engström, F.; Björkman, B. (2011) Influence of mineralogy on the hydraulic properties of ladle slag. Cem. Concr. Res. 41 [8], 865-871. https://doi.org/10.1016/j.cemconres.2011.04.003; Herrero, T.; Vegas, I.J.; Santamaría, A.; San-José, J.T.; Skaf, M. (2016) Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars. Constr. Build. Mater. 123, 404-413. https://doi.org/10.1016/j.conbuildmat.2016.07.014; Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansion of cement mortars manufactured with Ladle Furnace Slag LFS. Mater. Construcc. 69 [334], e183. https://doi.org/10.3989/mc.2019.06018; Sideris, K.K.; Tassos, C.; Chatzopoulos, A.; Manita, P. (2018) Mechanical characteristics and durability of self compacting concretes produced with ladle furnace slag. Constr. Build. Mater. 170, 660-667. https://doi.org/10.1016/j.conbuildmat.2018.03.091; Anastasiou, E.K.; Papayianni, I.; Papachristoforou, M. (2014) Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Des. 59, 454-460. https://doi.org/10.1016/j.matdes.2014.03.030; Papayianni, I.; Anastasiou, E. (2010) Production of high-strength concrete using high volume of industrial by-products. Constr. Build. Mater. 24 [8], 1412-1417. https://doi.org/10.1016/j.conbuildmat.2010.01.016; Sadiqul Islam, G.M.; Akter, S.; Reza, T.B. (2022) Sustainable high-performance, self-compacting concrete using ladle slag. Clean. Eng. Technol. 7, 100439. https://doi.org/10.1016/j.clet.2022.100439; Santamaría, A.; González, J.J.; Losáñez, M.M.; Scaf, M.; Ortega-López, V. (2020) The design of self-compacting structural mortar containing steelmaking slag as aggregate. Cem. Concr. Compos. 111, 103627. https://doi.org/10.1016/j.cemconcomp.2020.103627; Ortega-López, V.; García-Llona, A.; Revilla-Cuesta, V.; Santamaría, A.; San-Jose, J.T. (2021) Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. J. Build. Eng. 43, 102548. https://doi.org/10.1016/j.jobe.2021.102548; UNE-EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements. AENOR, Madrid, 2011.; UNE-EN 933-1, Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. AENOR, Madrid, 2012.; UNE 80103, Test methods of cements. Physical analysis. Actual density determination. AENOR, Madrid, 2013.; Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. (2013) An overview of utilization of steel slag. Procedia Environ. Sci. 16, 791-801. https://doi.org/10.1016/j.proenv.2012.10.108; Adolfsson, D.; Engström, F.; Robinson, R.; Björkman, B. (2010) Cementitious phases in ladle slag. Steel Res. Int. 82 [4], 398-403. https://doi.org/10.1002/srin.201000176; Saez-de-Guinoa Vilaplana, A.; Ferreira, V.J.; López-Sabirón, A.M.; Aranda-Usón, A.; Lausín-González, C.; Berganza-Conde, C.; et al. (2015) Utilization of ladle furnace slag from a steelwork for laboratory scale production of portland cement. Constr. Build. Mater. 94, 837-843. https://doi.org/10.1016/j.conbuildmat.2015.07.075; UNE-EN 12350-2. (2020) Testing fresh concrete - Part 2: Slump test. AENOR, Madrid.; UNE-EN 12350-7. (2020) Testing fresh concrete - Part 7: Air content - pressure methods. AENOR, Madrid.; UNE-EN 12390-3. (2020) Testing hardened concrete - Part 3: Compressive strength of test specimens. AENOR, Madrid.; ASTM C490 / C490M-17 (2017) Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM International, West Conshohocken, PA.; ASTM C1038 / C1038M-19. (2019) Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International, West Conshohocken, PA.; Rađenović, A.; Malina, J.; Sofilić, T. (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013, 1-6. https://doi.org/10.1155/2013/198240; Hughes, T.L.; Methven, C.M.; Jones, T.G.J.; Pelham, S.E.; Fletcher, P.; Hall, C. (1995) Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Based Mater. 2 [3], 91-104. https://doi.org/10.1016/1065-7355(94)00031-X; Horgnies, M.; Chen, J.J.; Bouillon, C. (2013) Overview about the use of fourier transform infrared spectroscopy to study cementitious materials. in: Mc13, WIT Press, Southampton, UK, 251-262. https://doi.org/10.2495/MC130221; Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Malfliet, A.; Dijkmans, J.; Sels, B.; et al. (2014) Hydraulic Behavior of mechanically and chemically activated synthetic merwinite. J. Am. Ceram. Soc. 97 [12], 3973-3981. https://doi.org/10.1111/jace.13221; Li, J.; Yu, Q.; Wei, J.; Zhang, T. (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 41 [3], 324-329. https://doi.org/10.1016/j.cemconres.2010.11.018; Fernández-Carrasco, L.; Torrens-Martín, D.; Morales, L.M.; Martínez-Ramírez, S. (2012) Infrared spectroscopy in the analysis of building and construction materials. T. Theophanides (Ed.), Infrared spectroscopy - materials science, engineering and technology, InTech. 369-382. https://doi.org/10.5772/36186; Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Mertens, G.; Veulemans, W.; Geysen, D.; et al. (2012) Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 42 [6], 778-788. https://doi.org/10.1016/j.cemconres.2012.02.016; Kuenzel, C.; Zhang, F.; Ferrándiz-Mas, V.; Cheeseman, C.R.; Gartner, E.M. (2018) The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3492

  10. 10
    Conference

    المصدر: XVII Jornadas Fitosanitarias Argentinas, Pergamino, 19 al 21 de octubre de 2022

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/2019-PD-E4-I090-001/2019-PD-E4-I090-001/AR./Análisis de patosistemas en cultivos agrícolas y especies forestales. Caracterización de sus componentes; info:eu-repograntAgreement/INTA/2019-62.PL333-001/2019-62.PL333-001/AR./Alerta Temprana de la enfermedad Mal de Río Cuarto (MRC) en la zona endémica; http://hdl.handle.net/20.500.12123/13291; https://jfa2022.unnoba.edu.ar/

  11. 11
    Academic Journal

    المساهمون: Bragard, Claude, Baptista, Paula, Chatzivassiliou, Elisavet, Di Serio, Francesco, Gonthier, Paolo, Jaques Miret, Josep Anton, Justesen, Annemarie Fejer, MacLeod, Alan, Magnusson, Christer Sven, Milonas, Panagioti, Navas-Cortes, Juan A, Parnell, Stephen, Potting, Roel, Reignault, Philippe Lucien, Stefani, Emilio, Thulke, Hans-Hermann, Van der Werf, Wopke, Vicent Civera, Antonio, Yuen, Jonathan, Zappalà, Lucia, Dehnen-Schmutz, Katharina, Migheli, Quirico, Vloutoglou, Irene, Streissl, Franz, Chiumenti, Michela, Rubino, Luisa

    Relation: info:eu-repo/semantics/altIdentifier/pmid/35592019; info:eu-repo/semantics/altIdentifier/wos/WOS:000793193400001; volume:20; issue:5; firstpage:1; lastpage:24; numberofpages:24; journal:EFSA JOURNAL; https://hdl.handle.net/2318/1881166; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85131561793

  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal