يعرض 1 - 20 نتائج من 76 نتيجة بحث عن '"Absorption co-efficient"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Zhejiang University, LY16E020003, Natural Science Foundation of Zhejiang Province, IRT13R54, 2016FZA4007

    المصدر: ISSN: 2050-7526.

  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المصدر: Materials Science in Semiconductor Processing

    Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077330152&doi=10.1016%2fj.mssp.2019.104906&partnerID=40&md5=578787255333f5f7bed14d0c24068be8; 108; Beattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomi?, S., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells (2017) ACS Photonics, 4, p. 2745; Luque, A., Marti, A., Stanley, C., Understanding intermediate-band solar cells (2012) Nature Photon., 6, p. 146; Kim, Y., Cho, I.-W., Ryu, M.-Y., Kim, J.O., Lee, S.J., Ban, K.-Y., Honsberg, C.B., Stranski Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells (2017) Appl. Phys. Lett., 111, p. 073103; Dhomkar, S., Ji, H., Roy, B., Deligiannakis, V., Wang, A., Tamargo, M.C., Kuskovsky, I.L., Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy (2015) J. Cryst. Growth, 422, p. 8; Kagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Building devices from colloidal quantum dots (2016) Science, 353, p. 6302; Tronco-Jurado, U., Saucedo-Flores, E., Ruelas, R., López, R., Alvarez-Ramos, M.E., Ayón, A.A., Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance (2017) Microsyst. Technol., 23, p. 3945; Leontiadou, M.A., Tyrrell, E.J., Smith, C.T., Espinobarro-Velazquez, D., Page, R., O'Brien, P., Miloszewski, J., Tomi?, S., Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells (2017) Sol. Energy Mater. Sol. Cells, 159, p. 657; Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Pernas-Salomón, R., Multi-shell spherical quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels (2017) Physica E, 88, p. 142; Zhukova, E.S., Gorshunov, B.P., Yuryev, V.A., Arapkina, L.V., Chizh, K.V., Chapnin, V.A., Kalinushkin, V.P., Mikhailova, G.N., Absorption of terahertz radiation in Ge/Si(001) heterostructures with quantum dots (2010) JETP Lett., 92, p. 793; Presto, J.M.M., Prieto, E.A.P., Omambac, K.M., Afalla, J.P.C., Lumantas, D.A.O., Salvador, A.A., Somintac, A.S., Tani, M., Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy (2015) Opt. Express, 23, p. 14532; Stephan, D., Bhattacharyya, J., Huo, Y.H., Schmidt, O.G., Rastelli, A., Helm, M., Schneider, H., Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation (2016) Appl. Phys. Lett., 108, p. 082107; Sabaeian, M., Riyahi, M., Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption (2017) Physica E, 89, p. 105; Liu, W.H., Qu, Y., Ban, S.L., Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots (2017) Superlattices Microstruct., 102, p. 373; Ghazi, H.E., Jorio, A., Zorkani, I., Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure (2014) Opt. Commun., 331, pp. 73-76; Aouami, A.E., Feddi, E., Talbi, A., Dujardin, F., Duque, C.A., Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure (2018) Appl. Phys. A, 124, p. 442; M'zerd, S., Haouari, M.E., Talbi, A., Feddi, E., Mora-Ramos, M.E., Impact of electron-LO-phonon correction and donor impurity localization on the linear and nonlinear optical properties in spherical core/shell semiconductor quantum dots (2018) J. Alloys Compd., 753, p. 68; Rodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Intra-miniband absorption coefficient in GaAs/AlxGa1?xAs core/shell spherical quantum dot (2018) J. Alloys Compd., 736, p. 211; Pavlovi?, V., u njar, M., Petrovi?, K., Stevanovi?, L., Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity (2018) Opt. Mater., 78, p. 191; Talbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field (2015) Superlattices Microstruct., 85, p. 581; Feddi, E., Talbi, A., Mora-Ramos, M.E., Haouari, M.E., Dujardin, F., Duque, C.A., Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot (2017) Physica B., 524, p. 64; Imran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Shah, Z.H., Optical properties of InAs/GaAs quantum dot superlattice structures (2018) Results. Phys., 9, p. 297; Surrente, A., Felici, M., Gallo, P., Rudra, A., Dwir, B., Kapon, E., Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties (2017) Appl. Phys. Lett., 111, p. 221102; Wolford, D.J., Kuech, T.F., Bradley, J.A., Gell, M.A., Ninno, D., Jaros, M., Pressure dependence of GaAs/AlxGa1?xAs quantum-well bound states: The determination of valence-band offsets (1986) J. Vac. Sci. Technol. B, 4, p. 1043; Leburton, J.P., Kahen, K., GaAs-AlGaAs superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation (1985) Superlattices Microstruct., 1, p. 49; Elabsy, A.M., Band mixing dependence of the lowest energy states in uncoupled quantum wells (1993) Superlattices Microstruct., 14, p. 65; Elabsy, A.M., Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures (1993) Phys. Scr., 48, p. 376; Elabsy, A.M., Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1?xAs quantum-well microstructures (1994) J. Phys.: Condens. Matter., 6, p. 10025; Burnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., ??X mixing in AlxGa1?xAs coupled double quantum wells under hydrostatic pressure (1993) Phys. Rev. B, 47, p. 1991; Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1?xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration (2014) J. Lumin., 145, p. 676; Bouzaiene, L., Alamri, H., Sfaxi, L., Maaref, H., Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot (2016) J. Alloys Compd., 655, p. 172; Ortakaya, S., Kirak, M., Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement (2016) Chin. Phys. B, 25, p. 127302; Karimi, M.J., Rezaei, G., Nazari, M., Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature (2014) J. Lumin., 145, p. 55; BenDaniel, D.J., Duke, C.B., Space-charge effects on electron tunneling (1966) Phys. Rev., 152, p. 683; Ospina, D.A., Mora-Ramos, M.E., Duque, C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well (2017) J. Nanosci. Nanotechno., 17, p. 1247; Samara, G.A., Temperature and pressure dependences of the dielectric constants of semiconductors (1983) Phys. Rev. B, 27, p. 3494; Reyes-Gómez, E., Raigoza, N., Oliveira, L.E., Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields (2008) Phys. Rev. B, 77, p. 115308; Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), ninth Dover printing, tenth GPO printing Dover New York; Chuang, S.L., Physics of Optoelectronic Devices (2005), first ed. Wiley; Hosseini, M., Tailoring the terahertz absorption in the quantum wells (2016) Optik, 127, p. 4554; Williams, B.S., Terahertz quantum-cascade lasers (2007) Nat. Photonics, 1, p. 517; http://hdl.handle.net/11407/5802

  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    المساهمون: Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Zhejiang University, LY16E020003, Natural Science Foundation of Zhejiang Province, IRT13R54, 2016FZA4007, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)

    المصدر: Journal of Materials Chemistry C
    Journal of Materials Chemistry C, 2018, 6 (24), pp.6465-6470. ⟨10.1039/c8tc01683f⟩
    Journal of Materials Chemistry C, Royal Society of Chemistry, 2018, 6 (24), pp.6465-6470. ⟨10.1039/c8tc01683f⟩

  18. 18
  19. 19
  20. 20