يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"ARN Polimerasa III"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Barrera-Torres, Herman Fredy

    المساهمون: Arboleda Bustos, Gonzalo Humberto, Muerte Celular

    وصف الملف: 88 páginas; application/pdf

    Relation: Anton, L., Brown, A. G., Bartolomei, M. S., & Elovitz, M. A. (2014). Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas. PLOS ONE, 9(6), 100148. https://doi.org/10.1371/journal.pone.0100148; Aquino, E. M., Benton, M. C., Haupt, L. M., Sutherland, H. G., riffiths, L. R. G., & Lea, R. A. (2018). Current Understanding of DNA Methylation and Age-related Disease. OBM Genetics, 2(2), 1–1. https://doi.org/10.21926/obm.genet.1802016; Arboleda, G., Morales, L. C., Quintero, L., & Arboleda, H. (2011). Neonatal progeroid syndrome (Wiedemann-Rautenstrauch syndrome): Report of three affected sibs. American Journal of Medical Genetics, Part A, 155(7), 1712–1715. https://doi.org/10.1002/ajmg.a.34019; Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020a). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms of Ageing and Development, 192. https://doi.org/10.1016/j.mad.2020.111360; Báez-Becerra, C. T., Valencia-Rincón, E., Velásquez-Méndez, K., Ramírez-Suárez, N. J., Guevara, C., Sandoval-Hernandez, A., Arboleda-Bustos, C. E., Olivos-Cisneros, L., Gutiérrez-Ospina, G., Arboleda, H., & Arboleda, G. (2020b). Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mechanisms Http://Www.Bases.Unal.Edu.Co/Subjects/Databases.Php?Letter=Allof Ageing and Development, 192(September). https://doi.org/10.1016/j.mad.2020.111360; Bergsma, T., & Rogaeva, E. (2020). DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 15, 263310552094222. https://doi.org/10.1177/2633105520942221; Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2), 297–309. https://doi.org/10.1042/BST20110766; Bezprozvanny, I. (2019). Calcium hypothesis of neurodegeneration – an update. Biochemical and Biophysical Research Communications, 520(4), 667. https://doi.org/10.1016/J.BBRC.2019.10.016; Borsig, L., & Läubli, H. (2019). Cell Adhesion During Tumorigenesis and Metastasis. Encyclopedia of Cancer, 307–314. https://doi.org/10.1016/B978-0-12-801238-3.64991-7; Calvanese, V., Lara, E., Kahn, A., & Fraga, M. F. (2009). The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 8(4), 268–276. https://doi.org/10.1016/j.arr.2009.03.004; Carvalho, T. S., & Lussi, A. (2017). Age‐related morphological, histological and functional changes in teeth. Journal of Oral Rehabilitation, 44(4), 291–298. https://doi.org/10.1111/joor.12474; Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P.-C., Roetker, N. S., Just, A. C., Demerath, E. W., Guan, W., Bressler, J., Fornage, M., Studenski, S., Vandiver, A. R., Moore, A. Z., Tanaka, T., Kiel, D. P., Liang, L., Vokonas, P., … Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging, 8(9), 1844–1865. https://doi.org/10.18632/aging.101020; Chen, M., Fang, Y., Liang, M., Zhang, N., Zhang, X., Xu, L., Ren, X., Zhang, Q., Zhou, Y., Peng, S., Yu, J., Zeng, J., & Li, X. (2023). The activation of mTOR signalling modulates DNA methylation by enhancing DNMT1 translation in hepatocellular carcinoma. Journal of Translational Medicine, 21(1), 1–17. https://doi.org/10.1186/S12967-023-04103-9/FIGURES/8; Choukrallah, M. A., & Matthias, P. (2014). The interplay between chromatin and transcription factor networks during B cell development: Who pulls the trigger first? Frontiers in Immunology, 5(APR), 1–11. https://doi.org/10.3389/fimmu.2014.00156; Daniel, F. I., Cherubini, K., Yurgel, L. S., De Figueiredo, M. A. Z., & Salum, F. G. (2011). The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer, 117(4), 677–687. https://doi.org/10.1002/cncr.25482; Dutta, S., Goodrich, J. M., Dolinoy, D. C., & Ruden, D. M. (2023). Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes 2024, Vol. 15, Page 16, 15(1), 16. https://doi.org/10.3390/GENES15010016; Fennell, L., Dumenil, T., Wockner, L., Hartel, G., Nones, K., Bond, C., Borowsky, J., Liu, C., McKeone, D., Bowdler, L., Montgomery, G., Klein, K., Hoffmann, I., Patch, A. M., Kazakoff, S., Pearson, J., Waddell, N., Wirapati, P., Lochhead, P., … Whitehall, V. (2019). Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cmgh, 8(2), 269–290. https://doi.org/10.1016/j.jcmgh.2019.04.002; Funes, S. C., Fernández-Fierro, A., Rebolledo-Zelada, D., Mackern-Oberti, J. P., & Kalergis, A. M. (2021). Contribution of Dysregulated DNA Methylation to Autoimmunity. International Journal of Molecular Sciences, 22(21), 11892. https://doi.org/10.3390/ijms222111892; Gilbert, H. T. J., & Swift, J. (2019). The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Experimental Cell Research, 378(1), 98–103. https://doi.org/10.1016/j.yexcr.2019.03.002; Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: a premature aging disease caused by LMNA gene mutations. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.arr.2016.06.007.Hutchinson-Gilford; Guastafierro, T., Bacalini, M. G., Marcoccia, A., Gentilini, D., Pisoni, S., Di Blasio, A. M., Corsi, A., Franceschi, C., Raimondo, D., Spanò, A., Garagnani, P., & Bondanini, F. (2017). Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clinical Epigenetics, 9(1), 1–10. https://doi.org/10.1186/s13148-017-0389-4; Han, Y., Yan, C., Fishbain, S., Ivanov, I., & He, Y. (2018). Structural visualization of RNA polymerase III transcription machineries. Cell Discovery, 4(1), 40. https://doi.org/10.1038/s41421-018-0044-z; Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016; Hennekam, R. C. M. (2020). Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. European Journal of Medical Genetics, 63(11), 104028. https://doi.org/10.1016/j.ejmg.2020.104028; Hiraide, T., Nakashima, M., Ikeda, T., Tanaka, D., Osaka, H., & Saitsu, H. (2020). Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. Journal of Human Genetics, 65(10), 921–925. https://doi.org/10.1038/s10038-020-0786-y; Hodjat, M., Khan, F., & Saadat, K. A. S. M. (2020). Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Research Reviews, 63(July), 101140. https://doi.org/10.1016/j.arr.2020.101140; Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115; Hu, S., Wu, J., Chen, L., & Shan, G. (2012). Signals from noncoding RNAs: Unconventional roles for conventional pol III transcripts. International Journal of Biochemistry and Cell Biology, 44(11), 1847–1851. https://doi.org/10.1016/j.biocel.2012.07.013; Huidobro, C., Fernandez, A. F., & Fraga, M. F. (2013). Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 34(4), 765–781. https://doi.org/10.1016/j.mam.2012.06.006; Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., & Webster, M. (2009). Genome-wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178. https://doi.org/10.1038/ng.298.Genome-wide; Illumina. (2021). MethylationEPIC v1.0 LIMS Product Descriptor File (p. 50).; Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133. https://doi.org/10.1038/nature09303; Ito, T., Kubiura-Ichimaru, M., Murakami, Y., Bogutz, A. B., Lefebvre, L., Suetake, I., Tajima, S., & Tada, M. (2022). DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLOS ONE, 17(1), e0262277. https://doi.org/10.1371/journal.pone.0262277; Jay, A. M., Conway, R. L., Thiffault, I., Saunders, C., Farrow, E., Adams, J., & Toriello, H. V. (2016). Neonatal progeriod syndrome associated with biallelic truncating variants in POLR3A. American Journal of Medical Genetics, Part A, 170(12), 3343–3346. https://doi.org/10.1002/ajmg.a.37960; Jeltsch, A., Ehrenhofer-Murray, A., Jurkowski, T. P., Lyko, F., Reuter, G., Ankri, S., Nellen, W., Schaefer, M., & Helm, M. (2017). Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biology, 14(9), 1108–1123. https://doi.org/10.1080/15476286.2016.1191737; Ji, Y., Xie, Y., Zhang, M., Zhou, J., Peng, L., Zheng, Y., & Shu, S. (2023). Role of SATB2 5’ Untranslated Region Promoter Methylation in Formation of Non-syndromic Cleft Palate Only. Eurasian Journal of Medicine and Oncology, 7(2), 165–173. https://doi.org/10.14744/ejmo.2023.41377; Jin, B., & Robertson, K. D. (2013). DNA methyltransferases, DNA damage repair, and cancer. Advances in Experimental Medicine and Biology, 754, 3–29. https://doi.org/10.1007/978-1-4419-9967-2_1; Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S.-L., Whiteman, C., Corsi, S., Cohen, H., Felton, S., Bali, R., Horvath, S., & Raj, K. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nature Aging, 2(6), 484–493. https://doi.org/10.1038/s43587-022-00220-0; Kipling, D., Davis, T., Ostler, E. L., & Faragher, R. G. A. (2004). What Can Progeroid Syndromes Tell Us About Human Aging? Science, 305(5689), 1426–1431. https://doi.org/10.1126/science.1102587; Kling, T., & Carén, H. (2019). Methylation Analysis Using Microarrays: Analysis and Interpretation. In Methods in Molecular Biology (Vol. 1908, Issue July, pp. 205–217). Humana Press. https://doi.org/10.1007/978-1-4939-9004-7_14; Koval, A. P., Veniaminova, N. A., & Kramerov, D. A. (2011). Additional box B of RNA polymerase III promoter in SINE B1 can be functional. Gene, 487(2), 113–117. https://doi.org/10.1016/j.gene.2011.08.001; Kuzmina, N. S., Lapteva, N. S., & Rubanovich, A. V. (2016). Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure. Environmental Research, 146, 10–17. https://doi.org/10.1016/j.envres.2015.12.008; Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., Levine, R., McEwan, P., … Chen, Y. J. (2001). Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium (Nature (2001) 409 (860-921)). Nature, 412(6846), 565–566. https://doi.org/10.1038/35087627; Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A., & Robbins, P. D. (2022). Immune Senescence, Immunosenescence and Aging. Frontiers in Aging, 3. https://doi.org/10.3389/fragi.2022.900028; Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. AGING, 10(4). www.aging-us.com; Liu, N., Yang, R., Shi, Y., Chen, L., Liu, Y., Wang, Z., Liu, S., Ouyang, L., Wang, H., Lai, W., Mao, C., Wang, M., Cheng, Y., Liu, S., Wang, X., Zhou, H., Cao, Y., Xiao, D., & Tao, Y. (2020). The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduction and Targeted Therapy 2020 5:1, 5(1), 1–14. https://doi.org/10.1038/s41392-020-00249-w; Liu, Z., Leung, D., Thrush, K., Zhao, W., Ratliff, S., Tanaka, T., Schmitz, L. L., Smith, J. A., Ferrucci, L., & Levine, M. E. (2020). Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell, 19(10). https://doi.org/10.1111/acel.13229; Loaeza-Loaeza, J., Beltran, A. S., & Hernández-Sotelo, D. (2020). Dnmts and impact of cpg content, transcription factors, consensus motifs, lncrnas, and histone marks on dna methylation. In Genes (Vol. 11, Issue 11, pp. 1–19). MDPI AG. https://doi.org/10.3390/genes11111336; López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039; Luo, R., Bai, C., Yang, L., Zheng, Z., Su, G., Gao, G., Wei, Z., Zuo, Y., & Li, G. (2018). Correction to: DNA methylation subpatterns at distinct regulatory regions in human early embryos (Open Biology (2018) 8 (180131) DOI:10.1098/rsob.180131). Open Biology, 8(12), 1–9. https://doi.org/10.1098/rsob.180215; Magalingam, K. B., Somanath, S. D., & Radhakrishnan, A. K. (2023). A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson’s Disease. Experimental Neurobiology, 32(3), 119–132. https://doi.org/10.5607/en22035; Melo dos Santos, L. S., Trombetta-Lima, M., Eggen, B. J. L., & Demaria, M. (2024). Cellular senescence in brain aging and neurodegeneration. In Ageing Research Reviews (Vol. 93). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2023.102141; Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380; Minnerop, M., Kurzwelly, D., Wagner, H., Soehn, A. S., Reichbauer, J., Tao, F., Rattay, T. W., Peitz, M., Rehbach, K., Giorgetti, A., Pyle, A., Thiele, H., Altmüller, J., Timmann, D., Karaca, I., Lennarz, M., Baets, J., Hengel, H., Synofzik, M., … Schüle, R. (2017). Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 140(6), 1561–1578. https://doi.org/10.1093/brain/awx095; Moore, L. D., Le, T., & Fan, G. (2013). DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38(1), 23–38. https://doi.org/10.1038/npp.2012.112; Morris, T., Stirling, L., Feber, A., & Teschendorff, A. (2024). Package ‘ ChAMP .’; Muse, M. E., Titus, A. J., Salas, L. A., Wilkins, O. M., Mullen, C., Gregory, K. J., Schneider, S. S., Crisi, G. M., Jawale, R. M., Otis, C. N., Christensen, B. C., & Arcaro, K. F. (2020). Enrichment of CpG island shore region hypermethylation in epigenetic breast field cancerization. Epigenetics, 15(10), 1093–1106. https://doi.org/10.1080/15592294.2020.1747748; Nelson, R. (2019). POLR3A Identified as Major Locus for Autosomal Recessive Wiedemann-Rautenstrauch Syndrome: New findings show “compelling evidence” that POLR3A mutations underlie the etiology of autosomal-recessive WRS. American Journal of Medical Genetics, Part A, 179(2), 146–147. https://doi.org/10.1002/ajmg.a.61040; Panja, S., Hayati, S., Epsi, N. J., Parrott, J. S., & Mitrofanova, A. (2018). Integrative (epi) Genomic Analysis to Predict Response to Androgen-Deprivation Therapy in Prostate Cancer. EBioMedicine, 31, 110–121. https://doi.org/10.1016/j.ebiom.2018.04.007; Paolacci, S., Bertola, D., Franco, J., Mohammed, S., Tartaglia, M., Wollnik, B., & Hennekam, R. C. (2017). Wiedemann–Rautenstrauch syndrome: A phenotype analysis. American Journal of Medical Genetics, Part A, 173(7), 1763–1772. https://doi.org/10.1002/ajmg.a.38246; Paolacci, S., Li, Y., Agolini, E., Bellacchio, E., Arboleda-Bustos, C. E., Carrero, D., Bertola, D., Al-Gazali, L., Alders, M., Altmuller, J., Arboleda, G., Beleggia, F., Bruselles, A., Ciolfi, A., Gillessen-Kaesbach, G., Krieg, T., Mohammed, S., Muller, C., Novelli, A., … Hennekam, R. C. (2018). Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. Journal of Medical Genetics, 55(12), 837–846. https://doi.org/10.1136/jmedgenet-2018-105528; Park, J. L., Lee, Y. S., Kunkeaw, N., Kim, S. Y., Kim, I. H., & Lee, Y. S. (2017). Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics, 9(2), 171–187. https://doi.org/10.2217/epi-2016-0108; Proud, C. G. (2019). Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harbor Perspectives in Biology, 11(7). https://doi.org/10.1101/CSHPERSPECT.A033050; Puig, N., & Agrelo, R. (2012). From aging to cancer: a DNA methylation journey. Ageing Research, 3(1), 4. https://doi.org/10.4081/ar.2012.e4; Rautenstrauch, T., Snigula, F., Krieg, T., Gay, S., & Müller, P. K. (1977). Progeria: A cell culture study and clinical report of familial incidence. European Journal of Pediatrics, 124(2), 101–111. https://doi.org/10.1007/BF00477545; Reale, A., Tagliatesta, S., Zardo, G., & Zampieri, M. (2022). Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mechanisms of Ageing and Development, 206(June), 111695. https://doi.org/10.1016/j.mad.2022.111695; Sakaki, M., Ebihara, Y., Okamura, K., Nakabayashi, K., Igarashi, A., Matsumoto, K., Hata, K., Kobayashi, Y., & Maehara, K. (2017). Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171431; Saneyasu, T., Fukuzo, S., Kitashiro, A., Nagata, K., Honda, K., & Kamisoyama, H. (2019). Central administration of insulin and refeeding lead to the phosphorylation of AKT, but not FOXO1, in the hypothalamus of broiler chicks. Physiology and Behavior, 210(August), 112644. https://doi.org/10.1016/j.physbeh.2019.112644; Schmauck-Medina, T., Molière, A., Lautrup, S., Zhang, J., Chlopicki, S., Madsen, H. B., Cao, S., Soendenbroe, C., Mansell, E., Vestergaard, M. B., Li, Z., Shiloh, Y., Opresko, P. L., Egly, J. M., Kirkwood, T., Verdin, E., Bohr, V. A., Cox, L. S., Stevnsner, T., … Fang, E. F. (2022). New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging, 14(16), 6829–6839. https://doi.org/10.18632/AGING.204248; Silver, B. B., & Nelson, C. M. (2018). The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, 6. https://doi.org/10.3389/fcell.2018.00021; Spangle, J. M., Roberts, T. M., & Zhao, J. J. (2017). The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochimica et Biophysica Acta, 1868(1), 123. https://doi.org/10.1016/J.BBCAN.2017.03.002; Stasenko, D. V., Tatosyan, K. A., Borodulina, O. R., & Kramerov, D. A. (2023). Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes, 14(4), 802. https://doi.org/10.3390/genes14040802; Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., & Rao, A. (2009). Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 324(5929), 930–935. https://doi.org/10.1126/science.1170116; Temel, S. G., Ergoren, M. C., Manara, E., Paolacci, S., Tuncel, G., Gul, S., & Bertelli, M. (2020). Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann–Rautenstrauch syndrome. European Journal of Human Genetics, 28(12), 1675–1680. https://doi.org/10.1038/s41431-020-0673-1; Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019a). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153; Visone, R., Bacalini, M. G., Franco, S. Di, Ferracin, M., Colorito, M. L., Pagotto, S., Laprovitera, N., Licastro, D., Marco, M. Di, Scavo, E., Bassi, C., Saccenti, E., Nicotra, A., Grzes, M., Garagnani, P., Laurenzi, V. De, Valeri, N., Mariani-Costantini, R., Negrini, M., … Veronese, A. (2019b). DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 11(6), 587–604. https://doi.org/10.2217/epi-2018-0153; Wambach, J. A., Wegner, D. J., Patni, N., Kircher, M., Willing, M. C., Baldridge, D., Xing, C., Agarwal, A. K., Vergano, S. A. S., Patel, C., Grange, D. K., Kenney, A., Najaf, T., Nickerson, D. A., Bamshad, M. J., Cole, F. S., & Garg, A. (2018). Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. American Journal of Human Genetics, 103(6), 968–975. https://doi.org/10.1016/j.ajhg.2018.10.010; Wan, R., Srikaram, P., Guntupalli, V., Hu, C., Chen, Q., & Gao, P. (2023). Cellular senescence in asthma: from pathogenesis to therapeutic challenges. www.thelancet.com; Wang, Q., Xiong, F., Wu, G., Liu, W., Chen, J., Wang, B., & Chen, Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clinical Epigenetics, 14(1), 1–14. https://doi.org/10.1186/s13148-022-01382-9; Wang, Y., Huang, W., Zheng, S., Wang, L., Zhang, L., & Pei, X. (2024). Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Scientific Reports, 14(1), 1422. https://doi.org/10.1038/s41598-024-52087-3; Weidner, C., Lin, Q., Koch, C., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D., Jöckel, K.-H., Erbel, R., Mühleisen, T., Zenke, M., Brümmendorf, T., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24; Welsh, H., Batalha, C. M. P. F., Li, W., Mpye, K. L., Souza-Pinto, N. C., Naslavsky, M. S., & Parra, E. J. (2023). A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clinical Epigenetics, 15(1), 41. https://doi.org/10.1186/s13148-023-01459-z; Wu, X., Chen, W., Lin, F., Huang, Q., Zhong, J., Gao, H., Song, Y., & Liang, H. (2019). DNA methylation profile is a quantitative measure of biological aging in children. Aging, 11(22), 10031–10051. https://doi.org/10.18632/aging.102399; Xiao, F.-H., Wang, H.-T., & Kong, Q.-P. (2019). Dynamic DNA Methylation During Aging: A “Prophet” of Age-Related Outcomes. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00107; Xie, W., Baylin, S. B., & Easwaran, H. (2019). DNA methylation in senescence, aging and cancer Origin of cancer epigenome from cycling aging cells (Vol. 6, Issue 2). www.impactjournals.com/oncoscience/; Yadav, M. L., & Mohapatra, B. (2018). Intergenic. Encyclopedia of Animal Cognition and Behavior, 1–5. https://doi.org/10.1007/978-3-319-47829-6_64-1; Yen, B. L., Hwa, H. L., Hsu, P. J., Chen, P. M., Wang, L. T., Jiang, S. S., Liu, K. J., Sytwu, H. K., & Yen, M. L. (2020). Hla-g expression in human mesenchymal stem cells (Mscs) is related to unique methylation pattern in the proximal promoter as well as gene body dna. International Journal of Molecular Sciences, 21(14), 1–14. https://doi.org/10.3390/ijms21145075; Yuan, T., Jiao, Y., de Jong, S., Ophoff, R. A., Beck, S., & Teschendorff, A. E. (2015). An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging. PLoS Genetics, 11(2), 1–21. https://doi.org/10.1371/journal.pgen.1004996; Yukawa, Y. (2023). Plant Molecular Biology Lab. https://www.nsc.nagoya-cu.ac.jp/~yyuk/e-index.html; Zane, L., Sharma, V., & Misteli, T. (2014). Common features of chromatin in aging and cancer: cause or coincidence? Trends in Cell Biology, 24(11), 686–694. https://doi.org/10.1016/j.tcb.2014.07.001; Zhang, Y., Wang, Y., Luo, M., Xu, F., Lu, Y., Zhou, X., Cui, W., & Miao, L. (2019). Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides, 114(February), 29–37. https://doi.org/10.1016/j.peptides.2019.04.005; Zouali, M. (2021). DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clinical Immunology, 222, 108622. https://doi.org/10.1016/j.clim.2020.108622; Zuo, S., Shi, G., Fan, J., Fan, B., Zhang, X., Liu, S., Hao, Y., Wei, Z., Zhou, X., & Feng, S. (2021). Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Experimental and Therapeutic Medicine, 21(1). https://doi.org/10.3892/ETM.2020.9479; https://repositorio.unal.edu.co/handle/unal/86512; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  2. 2
    Academic Journal