-
1Dissertation/ Thesis
المؤلفون: Estupiñan Molina, Cristian David
المساهمون: de Brito Brandão, Pedro Filipe, Calderón Manrique, Dayana, Biotecnología Molecular (CorpoGen), Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051741, https://www.researchgate.net/profile/Cristian-Estupinan
مصطلحات موضوعية: 540 - Química y ciencias afines, 610 - Medicina y salud::616 - Enfermedades, 570 - Biología::572 - Bioquímica, ADN Polimerasa I, Polimerasa Taq, Virus de la Mieloblastosis Aviar, Coronavirus, Prueba de COVID-19, DNA Polymerase I, Taq Polymerase, Avian Myeloblastosis Virus, COVID-19 Testing, Geobacillus stearothermophilus, Polimerasa, ADN Pol I Bst, Pol Bst, LAMP, SARS-CoV-2, Polyerase, Pol I Bst DNA
وصف الملف: xiv, 60 páginas; application/pdf
Relation: Agustriana, E., Nuryana, I., Laksmi, F. A., Dewi, K. S., Wijaya, H., Rahmani, N., Yudiargo, D. R., Ismadara, A., Helbert, Hadi, M. I., Purnawan, A., & Cameliawati Djohan, A. (2023). Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry and Biotechnology, 53(4), 384–393. https://doi.org/10.1080/10826068.2022.2095573; Aidelberg, G., Aronoff, R., Eliseeva, T., Quero, F. J., Vielfaure, H., Codyre, M., Hadasch, K., & Lindner, A. B. (2021). Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 32(3), 89–97. https://doi.org/10.7171/jbt.21-3203-003; Alipoor, S. D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M., & Adcock, I M. (2021). COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.563085; Aschenbrenner, J., & Marx, A. (2017). DNA polymerases and biotechnological applications. Current Opinion in Biotechnology, 48, 187–195. https://doi.org/10.1016/J.COPBIO.2017.04.005; Astatke, M., Grindley, N. D. F., & Joyce, C. M. (1995). Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Journal of Biological Chemistry, 270(4), 1945–1954. https://doi.org/10.1074/jbc.270.4.1945; Bebenek, K. K. T. A. (2004). FUNCTIONS OF DNA POLYMERASES.; Bentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., Sefrioui, H., & Ait Benhassou, H. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infectious Diseases, 16(1), 517. https://doi.org/10.1186/s12879-016-1864-9; Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905. https://doi.org/10.1007/S10096-020-04138-6; Bio-Rad Laboratories. (2012). General Protocol for Western Blotting.; Bruck, I., Goodman, M. F., & O’Donnell, M. (2003). The Essential C Family DnaE Polymerase Is Error-prone and Efficient at Lesion Bypass. Journal of Biological Chemistry, 278(45), 44361–44368. https://doi.org/10.1074/jbc.M308307200; Buger, N. J. (1994). The Bradford Method for Protein Quantitation; Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421/FIGURES/4; Chim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. ELife, 7. https://doi.org/10.7554/ELIFE.40444; Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 1. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045; De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666. https://doi.org/10.1093/BIOINFORMATICS/BTY149; De Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5). https://doi.org/10.1093/BIOINFORMATICS/BTAD311; Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 3(6), 461–467. https://doi.org/10.1093/PROTEIN/3.6.461; Doublié, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4; Dunn, M. R., & Chaput, J. C. (2016). Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem : A European Journal of Chemical Biology, 17(19), 1804–1808. https://doi.org/10.1002/CBIC.201600338; Fijalkowska, J., Schaaper, R. M., Jonczyk, P., Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Molecular Microbiology, 58(1), 61–70. https://doi.org/10.1111/J.1365-2958.2005.04805.X; Garcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Sciences, 26(2), 105. https://doi.org/10.1080/07352680701252817; Graziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase γ in mitochondrial DNA replication and repair. Chemical Reviews, 106(2), 383–405. https://doi.org/10.1021/CR040463D/ASSET/CR040463D.FP.PNG_V03; Greenough, L., Menin, J. F., Desai, N. S., Kelman, Z., & Gardner, A. F. (2014). Characterization of Family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles, 18(4), 653. https://doi.org/10.1007/S00792-014-0646-9; Güixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291. https://doi.org/10.1016/J.BMCL.2015.12.034; Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 929–935. https://doi.org/10.1161/ATVBAHA.109.185546; Hall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14998U1.29; Hamilton, N. H., & Furey, T. S. (2023). ROCCO : A Robust Method for Detection of Open Chromatin via Convex Optimization. Bioinformatics. https://doi.org/10.1093/BIOINFORMATICS/BTAD725; Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915. https://doi.org/10.1073/PNAS.89.22.10915; Hu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses Coronaviruses: Emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/S12985-015-0422-1/FIGURES/1; Huber, L. B., Betz, K., & Marx, A. (2023). Reverse Transcriptases: From Discovery and Applications to Xenobiology. ChemBioChem, 24(5), e202200521. https://doi.org/10.1002/CBIC.202200521; Hurtado, L., Díaz, D., Escorcia, K., Flórez, L., Bello, Y., Díaz, Y., Navarro, E., Pacheco, L. C., Galán, N., Maestre, R., Acosta, A., & Pacheco, L. A. (2022). Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. Biomédica, 42(Suppl 2), 59. https://doi.org/10.7705/BIOMEDICA.6523; INS. (2024). Coronavirus Colombia. Instituto Nacional de Salud. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx; Jackson, L. N., Chim, N., Shi, C., & Chaput, J. C. (2019). Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Research, 47(13), 6973. https://doi.org/10.1093/NAR/GKZ513; Jana, M., Ghosh, A., Santra, A., Kar, R. K., Misra, A. K., & Bhunia, A. (2017). Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 498, 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060; Jeck, W. R., Iafrate, A. J., & Nardi, V. (2021). Nanopore Flongle Sequencing as a Rapid, Single-Specimen Clinical Test for Fusion Detection. The Journal of Molecular Diagnostics, 23(5), 630–636. https://doi.org/10.1016/J.JMOLDX.2021.02.001; Jones, M. D., & Foulkes, N. S. (1989). Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Research, 17(20), 8387–8388. https://doi.org/10.1093/NAR/17.20.8387; Kabir, M. S., Clements, M. O., & Kimmitt, P. T. (2015). RT-Bst: An integrated approach for reverse transcription and enrichment of cDNA from viral RNA. British Journal of Biomedical Science, 72(1), 1–6. https://doi.org/10.1080/09674845.2015.11666788; Karam, J. D., & Konigsberg, W. H. (2000). DNA polymerase of the T4-related bacteriophages. Progress in Nucleic Acid Research and Molecular Biology, 64. https://doi.org/10.1016/S0079-6603(00)64002-3; Kashir, J., & Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/J.MEHY.2020.109786; Kelleher, C., Teixeira, M. T., Förstemann, K., & Lingner, J. (2002). Telomerase: Biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 27(11), 572–579. https://doi.org/10.1016/S0968-0004(02)02206-5; Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997a). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X; Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997b). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X; Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020 17:11, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020-00971-x; Kornberg, A. (1960). Biologic synthesis of deoxyribonucleic acid. Science, 131(3412), 1503–1508. https://doi.org/10.1126/SCIENCE.131.3412.1503/ASSET/970D30A2-F8D7-4244-BA29-796FBAD48625/ASSETS/SCIENCE.131.3412.1503.FP.PNG; Kornberg A y Baker T. (1992). DNA replication. Freeman.; Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60(12 I), 2256–2268. https://doi.org/10.1107/S0907444904026460; Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore Fabrication by Controlled Dielectric Breakdown. PLOS ONE, 9(3), e92880. https://doi.org/10.1371/JOURNAL.PONE.0092880; Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00178-w; Leger, A., & Leonardi, T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34), 1236. https://doi.org/10.21105/joss.01236; Li, J. J., Xiong, C., Liu, Y., Liang, J. S., & Zhou, X. W. (2016). Loop-mediated isothermal amplification (LAMP): Emergence as an alternative technology for herbal medicine identification. Frontiers in Plant Science, 7(DECEMBER2016), 214697. https://doi.org/10.3389/FPLS.2016.01956/BIBTEX; Ling, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102. https://doi.org/10.1016/S0092-8674(01)00515-3; Marangoni, A. G. (2003). Enzyme kinetics : a modern approach. Wiley-Interscience.; Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., … Roper, R. L. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/SCIENCE.1085953/SUPPL_FILE/MARRA.SOM.PDF; Martin, S. K., & Wood, R. D. (2019). DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 47(16), 8348–8361. https://doi.org/10.1093/NAR/GKZ705; Mayanagi, K., Oki, K., Miyazaki, N., Ishino, S., Yamagami, T., Morikawa, K., Iwasaki, K., Kohda, D., Shirai, T., & Ishino, Y. (2020). Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biology, 18(1). https://doi.org/10.1186/S12915-020-00889-Y; McGuffie, M. J., & Barrick, J. E. (2021). pLannotate: engineered plasmid annotation. Nucleic Acids Research, 49(W1), W516–W522. https://doi.org/10.1093/NAR/GKAB374; Minciencias. (2021). resolucion_0665-2021 (2).; Mo, J. Y., & Schaaper, R. M. (1996). Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. Journal of Biological Chemistry, 271(31), 18947–18953. https://doi.org/10.1074/jbc.271.31.18947; Molero, J. M., Arranz-Izquierdo, J., Gutiérrez-Pérez, M. I., & Redondo Sánchez, J. M. (2021). Aspectos básicos de la COVID-19 para el manejo desde atención primaria. Atencion Primaria, 53(6), 101966. https://doi.org/10.1016/J.APRIM.2020.12.007; Morales, F. D., Coronado-Jimenez, L., Gonzalez-Moya, V., Mercedes-Zambrano, M., Sandoval-Herrera, J., & Arturo-Calvache, J. E. (2022). CHEMICAL ENGINEERING TRANSACTIONS Effect of agitation on Taq DNA polymerase production by Escherichia coli in bioreactor. www.cetjournal.it; Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. https://doi.org/10.1006/mcpr.2002.0415; Neagu, M., Constantin, C., & Surcel, M. (2021). Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/IJERPH182413173; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000a). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/NAR/28.12.E63; Ohmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., & Woodgate, R. (2001). The Y-family of DNA Polymerases. Molecular Cell, 8(1), 7–8. https://doi.org/10.1016/S1097-2765(01)00278-7; Oliveira, B. B., Veigas, B., & Baptista, P. V. (2021). Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors, 2, 752600. https://doi.org/10.3389/FSENS.2021.752600; O’Reilly, M., Teichmann, S. A., & Rhodes, D. (1999). Telomerases. Current Opinion in Structural Biology, 9(1), 56–65. https://doi.org/10.1016/S0959-440X(99)80008; Oscorbin, I., & Filipenko, M. (2023). Bst polymerase — a humble relative of Taq polymerase. Computational and Structural Biotechnology Journal, 21, 4519–4535. https://doi.org/10.1016/J.CSBJ.2023.09.008; Palacios, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021). COVID-19, una emergencia de salud pública mundial. Revista Clinica Espanola, 221(1), 55. https://doi.org/10.1016/J.RCE.2020.03.001; Phang, S.-M., Teo, C.-Y., Lo, E., Wong, V., & Wong, T. (1995). Cloning and complete sequence of the DNA polymerase-encoding gene (BstpolI) and characterisation of the Klenow-like fragment from Bacillus stearothermophilus (DNA sequencing; genomic library; homologies; recombinant). In Gene (Vol. 163, Issue 65).; Prakash, S., Johnson, R. E., & Prakash, L. (2005). EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Https://Doi.Org/10.1146/Annurev.Biochem.74.082803.133250, 74, 317–353. https://doi.org/10.1146/ANNUREV.BIOCHEM.74.082803.133250; QIAGEN. (2010). Quick-StartProtocol Sample & Assay Technologies QIAprep ® Spin Miniprep Kit. www.qiagen.com/contact.; Rabe, B. A., & Cepko, C. (2020). SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/PNAS.2011221117/-/DCSUPPLEMENTAL; Ramírez, M., Angulo, M. V., Colciencias, G., Fernando, D., Losada, H., Monroy, S. E., & Subdirectora, V. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la República; Rastgoo, N., Sadeghizadeh, M., Bambaei, B., & Hosseinkhani, S. (2009). Restoring 3′-5′ exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. Journal of Biotechnology, 144(4), 245–252. https://doi.org/10.1016/j.jbiotec.2009.09.006; Rivera, M., Cazaux, S., Cerda, A., Medina, A. A., Núñez, I., Matute, T., Brown, A., Gasulla, J., Federici, F., & Ramirez-Sarmiento, C. A. (2020). Recombinant protein expression and purification of codon-optimized Bst-LF polymerase Reclone.org (The Reagent Collaboration Network). https://doi.org/10.17504/PROTOCOLS.IO.BKSRKW; Robert Novy and Barbara Morri. (2003). Glucose supression. InNovations , 13; Saldanha, R., Chen, B., Wank, H., Matsuura, M., Edwards, J., & Lambowitz, A. M. (1999). RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry, 38(28), 9069–9083. https://doi.org/10.1021/bi982799l; Schrödinger, L. , & D. W. (2020). PyMOL %7C pymol.org. https://pymol.org/2/#page-top; Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381. https://doi.org/10.1093/NAR/GKG52; Sellmann, E., Schroder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174(13), 4350. https://doi.org/10.1128/JB.174.13.4350-4355.1992; Shanbhag, V., Sachdev, S., Flores, J. A., Modak, M. J., & Singh, K. (2018). Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 7(1). https://doi.org/10.3390/BIOLOGY7010005; Shcherbakova, P. V., Pavlov, Y. I., Chilkova, O., Rogozin, I. B., Johansson, E., & Kunkel, T. A. (2003). Unique Error Signature of the Four-subunit Yeast DNA Polymerase ε. Journal of Biological Chemistry, 278(44), 43770–43780. https://doi.org/10.1074/jbc.M306893200; Shi, C., Shen, X., Niu, S., & Ma, C. (2015). Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection. Journal of the American Chemical Society, 137(43), 13804–13806. https://doi.org/10.1021/jacs.5b08144; Singh, K., Srivastava, A., Patel, S. S., & Modak, M. J. (2007). Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Journal of Biological Chemistry, 282(14), 10594–10604. https://doi.org/10.1074/jbc.M611242200; Sluis-Cremer, N. (2021). Retroviral reverse transcriptase: Structure, function and inhibition. The Enzymes, 50, 179–194. https://doi.org/10.1016/BS.ENZ.2021.06.00; Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490. https://doi.org/10.1016/J.TIM.2016.03.003; Tanner, N. A., & Evans, T. C. (2013). Loop-mediated isothermal amplification for detection of nucleic acids. Current Protocols in Molecular Biology, SUPPL.105. https://doi.org/10.1002/0471142727.mb1514s105; Tsai, C. H., Chen, J., & Szostak, J. W. (2007). Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14598–14603. https://doi.org/10.1073/PNAS.0704211104; Uchiyama, Y., Takeuchi, R., Kodera, H., & Sakaguchi, K. (2009). Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie, 91(2), 165–170. https://doi.org/10.1016/J.BIOCHI.2008.07.005; Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2020). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology 2020 19:3, 19(3), 171–183. https://doi.org/10.1038/s41579-020-00461-z; Wang, Y., Ngor, A. K., Nikoomanzar, A., & Chaput, J. C. (2018). Evolution of a General RNA-Cleaving FANA Enzyme. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-07611-1; Wardle, J., Burgers, P. M. J., Cann, I. K. O., Darley, K., Heslop, P., Johansson, E., Lin, L. J., McGlynn, P., Sanvoisin, J., Stith, C. M., & Connolly, B. A. (2008). Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Research, 36(3), 705–711. https://doi.org/10.1093/NAR/GKM1023; Worldometer. (2024). COVID Live - Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/; Yamtich, J., & Sweasy, J. B. (2010). DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochimica et Biophysica Acta, 1804(5), 1136. https://doi.org/10.1016/J.BBAPAP.2009.07.008; Zhao, C., & Pyle, A. M. (2016). Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nature Structural & Molecular Biology, 23(6), 558. https://doi.org/10.1038/NSMB.3224; Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Brief Report: A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727. https://doi.org/10.1056/NEJMOA2001017; https://repositorio.unal.edu.co/handle/unal/86461; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/