يعرض 1 - 20 نتائج من 1,340 نتيجة بحث عن '"ACTH Syndrome"', وقت الاستعلام: 0.77s تنقيح النتائج
  1. 1
    Report

    المصدر: A Phase 1b/2a Open-label Multiple-ascending Dose Exploratory Study of CRN04894 in ACTH-dependent Cushing's Syndrome (Cushing's Disease or Ectopic ACTH Syndrome)

  2. 2
    Report

    المصدر: SPI-62 as a Treatment for Adrenocorticotropic Hormone-dependent Cushing's Syndrome

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 19-27 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 19-27 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/935/618; Трошина Е.А., Бельцевич Д.Г., Молашенко Н.В., Газизова Д.О. Диагностика, дифференциальная диагностика и лечение эндогенного гиперкортицизма // Проблемы эндокринологии. 2010. Т. 56, № 2. С. 53–63. https://doi.org/10.14341/probl201056253-63.; Андреева А.В., Маркина Н.В., Анциферов М.Б. Современные подходы к терапии болезни Иценко–Кушинга // Проблемы эндокринологии. 2016. Т. 62, № 4. С. 50–55. https://doi.org/10.14341/probl201662450-55.; Шевченко Ю.Л., Аблицов Ю.А., Василашко В.И., Аблицов А.Ю., Орлов С.С., Мальцев А.А., Марова Е.И., Рожинская Л.Я., Щепеткова Л.В., Белая Ж.Е., Плотницкий А.В. Трудности диагностики и лечения АКТГ-эктопированных опухолей // Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2013. T. 8, № 3. C. 25–29.https://doi.org/10.14341/probl201662450-55.; Baylin S.B., Mendelsohn G. Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications // Endocr. Rev. 1980. Vol. 1. P. 45–77. https://doi.org/10.1210/edrv-1–1-45.; Кузнецов Н.С., Латкина Н.В., Добрева Е.А. Эктопический АКТГ-синдром: клиника, диагностика, лечение // Эндокринная хирургия. 2012. T. 6, № 1. C. 24–36. https://doi.org/10.14341/2306-3513-2012-1-24-36.; Doppman J.L., Frank J.A., Dwyer A.J., Oldfield E.H., Miller D.L., Nieman L.K., Chrousos G.P., Cutler G.B.Jr., Loriaux D.L. Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland // Journal of Computer Assisted Tomography. 1988. Vol. 12, No. 5. P. 728–735. https://doi.org/10.1097/00004728-198809010-00002.; Tripathi S., Ammini A.C., Bhatia R., Gupta R., Berry M., Sarkar C., Mahajan H. Cushing’s disease: Pituitary imaging // Australas Radiol. 1994. Vol. 38, No. 3. P. 183–186. https://doi.org/10.1111/j.1440-1673.1994.tb00170.x.; Яковлев С.А., Поздняков А.В., Панфиленко А.Ф., Карлова Н.А., Тютин Л.А., Грантынь В.А. Динамическая контрастная МРТ в лучевой диагностике объемных образований головного мозга срединной локализации // Сибирский журнал клинической и экспериментальной медицины. 2008. Т. 23. С. 92–96.; Friedman T.C., Zuckerbraun E., Lee M.L., Kabil M.S., Shahinian H. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing’s syndrome and should be part of the initial workup // Horm Metab Res. 2007. Vol. 39, No. 6. P. 451–456. https://doi.org/10.1055/s-2007-980192.; Potts M.B., Shah J.K., Molinaro A.M., Blevins L.S., Tyrrell J.B., Kunwar S., Dowd C.F., Hetts S.W., Aghi M.K. Cavernous and inferior petrosal sinus sampling and dynamic magnetic resonance imaging in the preoperative evaluation of Cushing’s disease // J Neurooncol. 2014. Vol. 116, No. 3. P. 593–600. https://doi.org/10.1007/s11060-013-1342-9.; Kakite S., Fujii S., Kurosaki M., Kanasaki Y., Matsusue E., Kaminou T., Ogawa T. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T // Eur. J Radiol. 2011. Vol. 79, No. 1. P. 108–112. https://doi.org/10.1016/j.ejrad.2009.12.036.; Kasaliwal R., Sankhe S.S., Lila A.R., Budyal S.R., Jagtap V.S., Sarathi V., Kakade H., Bandgar T., Menon P.S., Shah N.S. Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas // Clin. Endocrinol. (Oxf.). 2013. Vol. 78, No. 6. P. 825–830. https://doi.org/10.1111/cen.12069.; Patronas N., Bulakbasi N., Stratakis C.A., Lafferty A., Oldfield E.H., Doppman J., Nieman L.K. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors // J. Clin. Endocrinol. Metab. 2003. Vol. 88, No. 4. P. 1565–1569. https://doi.org/10.1210/jc.2002-021438.; Kim L.J., Lekovic G.P., White W.L., Karis J. Preliminary Experience with 3-Tesla MRI and Cushing’s Disease // Skull Base. 2007. Vol. 17. P. 273–277. https://doi.org/10.1055/s-2007-985196.; Ono E., Ozawa A., Matoba K., Motoki T., Tajima A., Miyata I., Ito J., Inoshita N., Yamada S., Ida H. Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child // Clin. Pediatr. Endocrinol. 2011. Vol. 20, No. 4. P. 89–93. https://doi.org/10.1297/cpe.20.89.; Stobo D.B., Lindsay R.S., Connell J.M., Dunn L., Forbes K.P. Initial experience of 3 Tesla versus conventional field strength magnetic resonance imaging of small functioning pituitary tumours // Clin. Endocrinol. (Oxf.). 2011. Vol. 75, No. 5. P. 673–677. https://doi.org/10.1111/j.1365-2265.2011.04098.x.; de Rotte A.A., Groenewegen A., Rutgers D.R., Witkamp T., Zelissen P.M., Meijer F.J., van Lindert E.J., Hermus A., Luijten P.R., Hendrikse J. High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing’s disease // Eur. Radiol. 2016. Vol. 26, No. 1. P. 271–277. https://doi.org/10.1007/s00330-015-3809-x.; de Rotte A.A., van der Kolk A.G., Rutgers D., Zelissen P.M., Visser F., Luijten P.R., Hendrikse J. Feasibility of high-resolution pituitary MRI at 7.0 tesla // Eur. Radiol. 2014. Vol. 24, No. 8. P. 2005–2011. https://doi.org/10.1007/s00330-014-3230-x.; Pinker K., Ba-Ssalamah A., Wolfsberger S., Mlynarik V., Knosp E., Trattnig S. The value of high-field MRI (3T) in the assessment of sellar lesions // Eur. J. Radiol. 2005. Vol. 54. P. 327–334. https://doi.org/10.1016/j.ejrad.2004.08.006.; Wolfsberger S., Ba-Ssalamah A., Pinker K., Mlynárik V., Czech T., Knosp E., Trattnig S. Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions // J. Neurosurg. 2004. Vol. 100. P. 278–286. https://doi.org/10.3171/jns.2004.100.2.0278.; Lindsay J.R., Nieman L.K. Differential diagnosis and imaging in Cushing’s syndrome // Endocrinol Metab. Clin. North Am. 2005. Vol. 34. P. 403–421. https://doi.org/10.1016/j.ecl.2005.01.009.; Tang B.N., Levivier M., Heureux M., Wikler D., Massager N., Devriendt D., David P., Dumarey N., Corvilain B., Goldman S. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas // Eur. J. Nucl. Med. Mol. Imaging. 2006. Vol. 33, No. 2. P. 169–178. https://doi.org/10.1007/s00259-005-1882-0.; Buchfelder M., Nistor R., Fahlbusch R., Huk W.J. The accuracy of CT and MR evaluation of the sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease // AJNR Am. J. Neuroradiol. 1993. Vol. 14, No. 5. P. 1183–1190.; Webb S.M., Ruscalleda J., Schwarzstein D., Calaf-Alsina J., Rovira A., Matos G., Puig-Domingo M., de Leiva A. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology // Clin. Endocrinol. 1992. Vol. 36, No. 5. P. 459–465. https://doi.org/10.1111/j.1365-2265.1992.tb02246.x.; Bashari W.A., Senanayake R., Fernández-Pombo A., Gillett D., Koulouri O., Powlson A.S., Matys T., Scoffings D., Cheow H., Mendichovszky I., Gurnell M. Modern imaging of pituitary adenomas // Best Pract. Res. Clin. Endocrinol. Metab. 2019. Vol. 33, No. 2. P. 101278. https://doi.org/10.1016/j.beem.2019.05.002.; Abe T., Izumiyama H., Fujisawa I. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT // Acta Radiol. 2002. Vol. 43, No. 6. P. 556–559. https://doi.org/10.1080/j.1600-0455.2002.430602.x.; Kinoshita M., Tanaka H., Arita H., Goto Y., Oshino S., Watanabe Y., Yoshimine T., Saitoh Y. Pituitary-Targeted Dynamic Contrast-Enhanced Multisection CT for Detecting MR Imaging-Occult Functional Pituitary Microadenoma // AJNR Am.J.Neuroradiol. 2015. Vol. 36, No. 5. P. 904–908. https://doi.org/10.3174/ajnr.A4220.; Голоунина О.О., Слащук К.Ю., Хайриева А.В., Тарбаева Н.В., Дегтярев М.В., Белая Ж.Е. Лучевая и радионуклидная визуализация в диагностике АКТГ-продуцирующих нейроэндокринных опухолей // Медицинская радиология и радиационная безопасность. 2022. Т. 67, № 4. С. 80–88. https://doi.org/10.33266/1024-6177-2022-67-4-80-88.; Isidori A.M., Kaltsas G.A., Pozza C., Frajese V., Newell-Price J., Reznek R.H., Jenkins P.J., Monson J.P., Grossman A.B., Besser G.M. The Ectopic Adrenocorticotropin Syndrome: Clinical Features, Diagnosis, Management, and Long-Term Follow-Up // The Journal of Clinical Endocrinology & Metabolism. 2006. Vol. 91, No. 2. P. 371–377. https://doi.org/10.1210/jc.2005-1542.; Isidori A.M., Sbardella E., Zatelli M.C., Boschetti M., Vitale G., Colao A., Pivonello R. Conventional and Nuclear Medicine Imaging in Ectopic Cushing’s Syndrome: A Systematic Review // J. Clin. Endocrinol. Metab. 2015. Vol. 100, No. 9. P. 3231–3244. https://doi.org/10.1210/JC.2015-1589.; Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокриных опухолей // Сибирский онкологический журнал. 2013. Т. 1. № 6. С. 56–63.; Balon H.R., Goldsmith S.J., Siegel B.A., Silberstein E.B., Krenning E.P., Lang O., Donohoe K.J. Procedure guideline for somatostatin receptor scintigraphy with (111)In-pentetreotide // J. Nucl. Med. 2001. Vol. 42, No. 7. P. 1134–1138.; De Herder W.W., Krenning E.P., Malchoff C.D., Hofland L.J., Reubi J.C., Kwekkeboom D.J., Oei H.Y., Pols H.A., Bruining H.A., Nobels F.R., et al. Somatostatin receptor scintigraphy: its value in tumor localization in patients with Cushing’s syndrome caused by ectopic corticotropin or corticotropin-releasing hormone secretion // Am. J. Med. 1994. Vol. 96, No. 4. P. 305–312. https://doi.org/10.1016/0002-9343(94)90059-0.; Lamberts S.W.J., Holland L.J., de Herder W.W., Kwekkeboom D.J., Reubi J.-C., Krenning E.P. Octreotide and related somatostatin analogs in the diagnosis and treatment of pituitary disease and somatostatin receptor scintigraphy // Front. Neuroendocrinol. 1993. Vol. 14, No. 1. P. 27–55. https://doi.org/10.1006/frne.1993.1002.; Tsagarakis S., Christoforaki M., Giannopoulou H., Rondogianni F., Housianakou I., Malagari C., Rontogianni D., Bellenis I., Thalassinos N. A Reappraisal of the Utility of Somatostatin Receptor Scintigraphy in Patients with Ectopic Adrenocorticotropin Cushing’s Syndrome // The Journal of Clinical Endocrinology & Metabolism. 2003. Vol. 88, No. 10. P. 4754–4758. https://doi.org/10.1210/jc.2003-030525.; Ilias I., Torpy D.J., Pacak K., Mullen N., Wesley R.A., Nieman L.K. Cushing’s Syndrome Due to Ectopic Corticotropin Secretion: Twenty Years’ Experience at the National Institutes of Health // The Journal of Clinical Endocrinology & Metabolism. 2005. Vol. 90, No. 8. P. 4955–4962. https://doi.org/10.1210/jc.2004-2527.; Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) c 99mTc-тектротидом // Медицинская радиология и радиационная безопасность. 2020. Т. 65, № 2. С. 44–49. https://doi.org/10.12737/1024-6177-2020-65-2-44-49.; Каспшик С.М., Артамонова Е.В., Маркович А.А., Билик М.Е., Емельянова Г.С., Рыжков А.Д. Мифы о нецелесообразности проведения пептид-рецепторной радионуклидной диагностики у пациентов с нейроэндокринными опухолями // Медицинский алфавит. 2021. Т. 19. C. 18–22. https://doi.org/10.33667/2078-5631-2021-19-18-22.; Cavicchioli M., Bitencourt A.G.V., Lima E.N.P. 68Ga-DOTATATE PET/CT versus 111In-octreotide scintigraphy in patients with neuroendocrine tumors: a prospective study // Radiol. Bras. 2022. Vol. 55, No. 1. P. 13–18. https://doi.org/10.1590/0100-3984.2021.0038.; Buchmann I., Henze M., Engelbrecht S., Eisenhut M., Runz A., Schäfer M., Schilling T., Haufe S., Herrmann T., Haberkorn U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours // Eur. J. Nucl. Med. Mol. Imaging. 2007. Vol. 34, No. 10. P. 1617–1626. https://doi.org/10.1007/s00259-007-0450-1.; Kowalski J., Henze M., Schuhmacher J., Mäcke H.R., Hofmann M., Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors // Mol. Imaging. Biol. 2003. Vol. 5, No. 1. P. 42–48. https://doi.org/10.1016/s1536-1632(03)00038-6.; Novruzov F., Aliyev A., Wan M.Y.S., Syed R., Mehdi E., Aliyeva I., Giammarile F., Bomanji J.B., Kayani I. The value of [68Ga]Ga-DOTA-TATE PET/CT in diagnosis and management of suspected pituitary tumors // Eur. J. Hybrid Imaging. 2021. Vol. 5, No. 1. P. 10. https://doi.org/10.1186/s41824-021-00104-3.; Kuyumcu S., Özkan Z.G., Sanli Y., Yilmaz E., Mudun A., Adalet I., Unal S. Physiological and tumoral uptake of (68)Ga-DOTATATE: standardized uptake values and challenges in interpretation // Ann. Nucl. Med. 2013. Vol. 27, No. 6. P. 538–545. https://doi.org/10.1007/s12149-013-0718-4.; Zhao X., Xiao J., Xing B., Wang R., Zhu Z., Li F. Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy // Clin. Nucl. Med. 2014. Vol. 39, No. 7. P. 605–608. https://doi.org/10.1097/RLU.0000000000000457.; Wang H., Hou B., Lu L., Feng M., Zang J., Yao S., Feng F., Wang R., Li F., Zhu Z. PET/MRI in the Diagnosis of Hormone-Producing Pituitary Microadenoma: A Prospective Pilot Study // J. Nucl. Med. 2018. Vol. 59, No. 3. P. 523–528. https://doi.org/10.2967/jnumed.117.191916.; Seok H., Lee E.Y., Choe E.Y., Yang W.I., Kim J.Y., Shin D.Y., Cho H.J., Kim T.S., Yun M.J., Lee J.D., Lee E.J., Lim S.K., Rhee Y. Analysis of 18F-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions // Korean J. Intern. Med. 2013. Vol. 28, No. 1. P. 81–88. https://doi.org/10.3904/kjim.2013.28.1.81.; Chittiboina P., Montgomery B.K., Millo C., Herscovitch P., Lonser R.R. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease // J. Neurosurg. 2015. Vol. 122, No. 4. P. 791–797. https://doi.org/10.3171/2014.10.JNS14911.; Цой У.А., Рыжкова Д.В., Черебилло В.Ю. и др. Далматова А.Б., Белоусова Л.В., Курицына Н.В., Пальцев А.А., Рыжков А.В., Гринева Е.Н. Способ диагностики МРТ-негативных АКТГ-продуцирующих аденом гипофиза. Патент по заявке № 2699218 от 03.09.2019 г.; Tsoy U., Kuritsyna N., Savello A., Cherebillo V., Ryzhkov A., Grineva E., Ryzhkova D. A method for evaluating the results of brain 18F-FDG PET/CT in the diagnosis of MRI-negative ACTH-producing pituitary adenomas // EJEA. 2022. Vol. 81. P. EP640. https://doi.org/10.1530/endoabs.81.EP640.; Zisser L., Kulterer O.C., Itariu B., Fueger B., Weber M., Mazal P., Vraka C., Pichler V., Kautzky-Willer A., Hacker M., Karanikas G., Rasul S. Diagnostic Role of PET/CT Tracers in the Detection and Localization of Tumours Responsible for Ectopic Cushing’s Syndrome // Anticancer Res. 2021. Vol. 41, No. 5. P. 2477–2484. https://doi.org/10.21873/anticanres.15024.; Nomura C., Nakano Y., Tanaka T., Shima K.R., Kometani M., Kanamori T., Ikeda H., Takeshita Y., Yoneda T., Takamura T. Somatostatin Receptor-negative and Fluorodeoxyglucose-positron Emission Tomography-positive Lung Neuroendocrine Tumor G1 Exhibiting Cyclic Cushing’s Syndrome // Intern Med. 2022. Vol. 61, No. 24. P. 3693–3698. https://doi.org/10.2169/internalmedicine.9238-21.; Serban A.L., Rosso L., Mendogni P., Cremaschi A., Indirli R., Mantovani B., Rumi M., Castellani M., Chiti A., Croci G.A., Mantovani G., Nosotti M., Ferrante E., Arosio M. Case Report: A Challenging Localization of a Pulmonary Ectopic ACTH-Secreting Tumor in a Patient With Severe Cushing’s Syndrome // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 687539. https://doi.org/10.3389/fendo.2021.687539.; Ryzhkova D., Mitrofanova L., Tsoy U., Grineva E., Schlyakhto E. Dual-tracer PET/CT imaging to determine tumor heterogeneity in a patient with metastatic ACTH-secreting neuroendocrine neoplasm: A case report and literature review // Front Endocrinol. (Lausanne). 2022. Vol. 13. P. 958442. https://doi.org/10.3389/fendo.2022.958442.; Ikeda H., Abe T., Watanabe K. Usefulness of composite methionine–positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma: Clinical article // JNS. 2010. Vol. 112. P. 750–755. https://doi.org/10.3171/2009.7.JNS09285.; Feng Z., He D., Mao Z., Wang Z., Zhu Y., Zhang X., Wang H. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients With Functioning Pituitary Adenomas // Clin. Nucl. Med. 2016. Vol. 41, No. 3. P. 130–134. https://doi.org/10.1097/RLU.0000000000001085.; Koulouri O., Steuwe A., Gillett D., Hoole A.C., Powlson A.S., Donnelly N.A., Burnet N.G., Antoun N.M., Cheow H., Mannion R.J., Pickard J.D., Gurnell M. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome // Eur. J. Endocrinol. 2015. Vol. 173, No. 4. P. 107–120. https://doi.org/10.1530/EJE-15-0616.; Maffione A.M., Mandoliti G., Pasini F., Colletti P.M., Rubello D. Pituitary Non-Functioning Adenoma Disclosed at 18F-Choline PET/CT to Investigate a Prostate Cancer Relapse // Clin. Nucl. Med. 2016. Vol. 41. P. 460–461. https://doi.org/10.1097/RLU.0000000000001328.; Sindoni A., Bodanza V., Tatta R., Baresic T., Borsatti E. Ectopic Adrenocorticotropic Hormone-Secreting Pituitary Adenoma Localized by 18F-Choline PET/CT // Clin. Nucl. Med. 2018. Vol. 43. P. 25–26. https://doi.org/10.1097/RLU.0000000000001889.; https://radiag.bmoc-spb.ru/jour/article/view/935

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Report

    المصدر: A Phase II, Open-label, Dose Titration, Multi-center Study to Assess the Safety/Tolerability and Efficacy of Osilodrostat in Patients With All Types of Endogenous Cushing's Syndrome Except Cushing's Disease

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المصدر: British Journal of Medical and Health Research, 10(04), 54-58, (2023-04-25)

    مصطلحات موضوعية: ACTH Syndrome, Ectopic Adrenocorticotropic hormone

  19. 19
    Academic Journal

    المساهمون: UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - SSS/IREC/EDIN - Pôle d'endocrinologie, diabète et nutrition, UCL - (SLuc) Service de radiologie, UCL - (SLuc) Service d'endocrinologie et de nutrition, UCL - (SLuc) Service d'anatomie pathologique, UCL - (SLuc) Service de neurochirurgie

    المصدر: BMC endocrine disorders, Vol. 23, no.1, p. 43 [1-6] (2023)

    Relation: boreal:276755; http://hdl.handle.net/2078.1/276755; info:pmid/36797716; urn:EISSN:1472-6823

  20. 20
    Academic Journal