يعرض 1 - 20 نتائج من 185 نتيجة بحث عن '"A. Yu. Demidova"', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 265-273 ; Медицинский Совет; № 16 (2024); 265-273 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8635/7583; Курбанова ММ, Галаева АА, Стефановская ЕВ, Суворкина АА, Алиханов НМ. Современные методы диагностики когнитивных нарушений. Российский семейный врач. 2020;24(1):35–44. https://doi.org/10.17816/RFD18986.; Строков ИА, Захаров ВВ, Строков КИ. Диабетическая энцефалопатия. Неврология, нейропсихиатрия, психосоматика. 2012;4(2 Suppl.):30–40. https://doi.org/10.14412/2074-2711-2012-2506.; Ткачева ОН, Яхно НН, Незнанов НГ, Левин ОС, Гусев ЕИ, Мартынов МЮ и др. Когнитивные расстройства у лиц пожилого и старческого возраста: клинические рекомендации. 2020. Режим доступа: https://psyrus.ru/med_psy/klinicheskie-rekomendatsii/kognitivnie_rasstroistva_pogilie_1204202.pdf.; Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 2023;14(2):92–109. https://doi.org/10.4239/wjd.v14.i2.92.; Annweiler C, Duval GT, Cheng C-Y, Wong T-Y, Lamoureux EL, Milea D, Sabanayagam C. U-Shaped Relationship between Serum Leptin Concentration and Cognitive Performance in Older Asian Adults. Nutrients. 2019;11(3):660. https://doi.org/10.3390/nu11030660.; Johnston JM, Hu WT, Fardo DW, Greco SJ, Perry G, Montine TJ et al.; Alzheimer’s Disease Neuroimaging Initiative. Low plasma leptin in cognitively impaired ADNI subjects: gender differences and diagnostic and therapeutic potential. Curr Alzheimer Res. 2014;11(2):165–174. https://doi.org/10.2174/1567205010666131212114156.; Oania R, McEvoy LK. Plasma leptin levels are not predictive of dementia in patients with mild cognitive impairment. Age Ageing. 2015;44(1):53–58. https://doi.org/10.1093/ageing/afu160.; Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758–766. https://doi.org/10.1016/S1474-4422(20)30231-3.; Ab-Hamid N, Omar N, Ismail CAN, Long I. Diabetes and cognitive decline: Challenges and future direction. World J Diabetes. 2023;14(6):795–807. https://doi.org/10.4239/wjd.v14.i6.795.; Tack RWP, Amboni C, van Nuijs D, Pekna M, Vergouwen MDI, Rinkel GJE, Hol EM. Inflammation, Anti-inflammatory Interventions, and Post-stroke Cognitive Impairment: a Systematic Review and Meta-analysis of Human and Animal Studies. Transl Stroke Res. 2023. https://doi.org/10.1007/s12975-023-01218-5.; Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int J Mol Sci. 2022;23(11):6144. https://doi.org/10.3390/ijms23116144.; Kim WJ, Lee SJ, Lee E, Lee EY, Han K. Risk of Incident Dementia According to Glycemic Status and Comorbidities of Hyperglycemia: A Nationwide Population-Based Cohort Study. Diabetes Care. 2022;45(1):134–141. https://doi.org/10.2337/dc21-0957.; Verhulst CEM, Fabricius TW, Nefs G, Kessels RPC, Pouwer F, Teerenstra S et al. Consistent Effects of Hypoglycemia on Cognitive Function in People With or Without Diabetes. Diabetes Care. 2022;45(9):2103–2110. https://doi.org/10.2337/dc21-2502.; Mu Z, Sun M, Wen L, Li P, Gao J, Liu M et al. Effect of hypoglycemia on cognitive performance in older patients with diabetes: A meta-analysis. Ann Endocrinol. 2024;85(1):56–62. https://doi.org/10.1016/j.ando.2023.10.006.; Cui X, Abduljalil A, Manor BD, Peng CK, Novak V. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS ONE. 2014;9(1):e86284. https://doi.org/10.1371/journal.pone.0086284.; Li ZH, Jiang YY, Long CY, Peng Q, Yue RS. The gut microbiota-astrocyte axis: Implications for type 2 diabetic cognitive dysfunction. CNS Neurosci Ther. 2023;29(Suppl. 1):59–73. https://doi.org/10.1111/cns.14077.; Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: Outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev. 2023;149:105143. https://doi.org/10.1016/j.neubiorev.2023.105143.; Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, Del Marco A. Alzheimer’s Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules. 2021;11(2):262. https://doi.org/10.3390/biom11020262.; Pal K, Mukadam N, Petersen I, Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol. 2018;53(11):1149–1160. https://doi.org/10.1007/s00127-018-1581-3.; Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. Сахарный диабет. 2023;26(2 Suppl.):1–157. https://doi.org/10.14341/DM13042.; Yen FS, Wang SI, Lin SY, Chao YH, Wei JC. The Impact of Alcohol Consumption on Cognitive Impairment in Patients With Diabetes, Hypertension, or Chronic Kidney Disease. Front Med. 2022;9:861145. https://doi.org/10.3389/fmed.2022.861145.; Restifo D, Zhao C, Kamel H, Iadecola C, Parikh NS. Impact of Cigarette Smoking and Its Interaction with Hypertension and Diabetes on Cognitive Function in Older Americans. J Alzheimers Dis. 2022;90(4):1705–1712. https://doi.org/10.3233/JAD-220647.; Ma F, Wu T, Miao R, Xiao YY, Zhang W, Huang G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidence and risk factors with five years of follow-up. J Alzheimers Dis. 2015;43(4):1441–1449. https://doi.org/10.3233/JAD-141566.; Puri S, Shaheen M, Grover B. Nutrition and cognitive health: A life course approach. Front Public Health. 2023;11:1023907. https://doi.org/10.3389/fpubh.2023.1023907.; Azevedo CV, Hashiguchi D, Campos HC, Figueiredo EV, Otaviano SFSD, Penitente AR et al. The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer’s disease. Front Neurosci. 2023;17:1131214. https://doi.org/10.3389/fnins.2023.1131214.; Lin Y, Gong Z, Ma C, Wang Z, Wang K. Relationship between glycemic control and cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci. 2023;15:1126183. https://doi.org/10.3389/fnagi.2023.1126183.; Cukierman-Yaffe T, Anderson C, Teo K, Gao P, Gerstein HC, Yusuf S; ONTARGET/ TRANSCEND Investigators. Dysglycemia and Cognitive Dysfunction and Ill Health in People With High CV Risk: Results From the ONTARGET/TRANSCEND Studies. J Clin Endocrinol Metab. 2015;100(7):2682–2689. https://doi.org/10.1210/jc.2015-1367.; Zhang JH, Zhang XY, Sun YQ, Lv RH, Chen M, Li M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front Neurosci. 2022;16:984559. https://doi.org/10.3389/fnins.2022.984559.; Rosell-Díaz M, Fernández-Real JM. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr Rev. 2024;45(2):210–226. https://doi.org/10.1210/endrev/bnad029.; Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use is associated with reduced risk of dementia in patients with type 2 diabetes mellitus: A retrospective cohort study. J Diabetes. 2023;15(2):97–109. https://doi.org/10.1111/1753-0407.13352.; Seaquist ER, Miller ME, Fonseca V, Ismail-Beigi F, Launer LJ, Punthakee Z, Sood A. Effect of thiazolidinediones and insulin on cognitive outcomes in ACCORD-MIND. J Diabetes Complications. 2013;27(5):485–491. https://doi.org/10.1016/j.jdiacomp.2013.03.005.; Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD et al. Association of sulfonylureas with the risk of dementia: A population-based cohort study. J Am Geriatr Soc. 2023;71(10):3059–3070. https://doi.org/10.1111/jgs.18397; Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–493. https://doi.org/10.3233/JAD-2011-101524.; Rizzo MR, Di Meo I, Polito R, Auriemma MC, Gambardella A, di Mauro G et al. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res. 2022;176:106062. https://doi.org/10.1016/j.phrs.2022.106062.; Groeneveld ON, Kappelle LJ, Biessels GJ. Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Investig. 2016;7(1):5–16. https://doi.org/10.1111/jdi.12420.; Yuan Y, Zhang Y, Lei M, Guo X, Yang X, Ouyang C et al. Effects of DPP4 Inhibitors as Neuroprotective Drug on Cognitive Impairment in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review. Int J Endocrinol. 2024;2024:9294113. https://doi.org/10.1155/2024/9294113.; Zhang M, Wu Y, Gao R, Chen X, Chen R, Chen Z. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer’s disease by suppressing NLRP2 activation in astrocytes. Mol Cell Endocrinol. 2022;542:111529. https://doi.org/10.1016/j.mce.2021.111529.; Strain WD, Frenkel O, James MA, Leiter LA, Rasmussen S, Rothwell PM et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–2757. https://doi.org/10.1161/STROKEAHA.121.037775.; Wang L, Ding J, Zhu C, Guo B, Yang W, He W et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole-kindled mice. Int J Mol Med. 2021;48(6):219. https://doi.org/10.3892/ijmm.2021.5052.; Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA et al. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2020;77(9):1099–1109. https://doi.org/10.1001/jamaneurol.2020.1840.

  5. 5
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 223-229 ; Медицинский Совет; № 16 (2024); 223-229 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8630/7579; Адамян ЛВ, Андреева ЕН, Абсатарова ЮС, Григорян ОР, Дедов ИИ, Мельниченко ГА и др. Клинические рекомендации «Синдром поликистозных яичников». Проблемы эндокринологии. 2022;68(2):112–127. https://doi.org/10.14341/probl12874.; Григорян ОР, Михеев РК, Куринова АН, Чернова МО, Сазонова ДВ, Ахматова РР и др. Сравнительный анализ влияния факторов риска на течение и исходы беременности при гестационном сахарном диабете. Проблемы эндокринологии. 2021;67(3):78–86. https://doi.org/10.14341/probl12756.; American Diabetes Association Professional Practice Committee. 15. Management of diabetes in pregnancy: Standards of medical care in diabetes – 2022. Diabetes Care. 2022;45(Suppl. 1):S232–S243. https://doi.org/10.2337/dc22-S015.; Feig DS, Berger H, Donovan L, Godbout A, Kader T et al. Diabetes and pregnancy. Can J Diabetes. 2018;42(1 Suppl.):S255–S282. https://doi.org/10.1016/j.jcjd.2017.10.038.; Sciacca L, Bianchi C, Burlina S, Formoso G, Manicardi E, Sculli MA et al. Position paper of the Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), and the Italian Study Group of Diabetes in pregnancy: metformin use in pregnancy. Acta Diabetol. 2023;60(10):1421–1437. https://doi.org/10.1007/s00592-023-02137-5.; Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией ИИ Дедова, МВ Шестаковой, АЮ Майорова. 11-й выпуск. Сахарный диабет. 2023;26(2S):1–157. https://doi.org/10.14341/DM13042.; Espnes KA, Hønnås A, Løvvik TS, Gundersen POM, Naavik A, Skogvoll E et al. Metformin serum concentrations during pregnancy and post partum – a clinical study in patients with polycystic ovary syndrome. Basic Clin Pharmacol Toxicol. 2022;130(3):415–422. https://doi.org/10.1111/bcpt.13703.; Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of Metformin With Pregnancy Outcomes in Women With Polycystic Ovarian Syndrome Undergoing In Vitro Fertilization: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(8):e2011995. https://doi.org/10.1001/jamanetworkopen.2020.11995.; Abu Hashim H. Twenty years of ovulation induction with metformin for PCOS; what is the best available evidence? Reprod Biomed Online. 2016;32(1):44–53. https://doi.org/10.1016/j.rbmo.2015.09.015.; Attia GM, Almouteri MM, Alnakhli FT. Role of Metformin in Polycystic Ovary Syndrome (PCOS)-Related Infertility. Cureus. 2023;15(8):e44493. https://doi.org/10.7759/cureus.44493.; Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org; Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril. 2017;108(3):426–441. https://doi.org/10.1016/j.fertnstert.2017.06.026.; Notaro ALG, Neto FTL. The use of metformin in women with polycystic ovary syndrome: an updated review. J Assist Reprod Genet. 2022;39(3):573–579. https://doi.org/10.1007/s10815-022-02429-9.; Tso LO, Costello MF, Albuquerque LET, Andriolo RB, Macedo CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2020;12(12):CD006105. https://doi.org/10.1002/14651858.CD006105.pub4.; Моргунов ЛЮ. Применение метформина у беременных с сахарным диабетом. Лечение и профилактика. 2019;9(4):63–71. Режим доступа: https://www.elibrary.ru/iticmn.; Kautzky-Willer A, Harreiter J, Winhofer-Stöckl Y, Weitgasser R, Lechleitner M. Clinical practice recommendations for diabetes in pregnancy (Update 2019). Wien Klin Wochenschr. 2019;131(Suppl. 1):103–109. (In German) https://doi.org/10.1007/s00508-019-1456-y.; Mitric C, Desilets J, Brown RN. Recent advances in the antepartum management of diabetes. F1000Res. 2019;8(F1000 Faculty Rev):622. https://doi.org/10.12688/f1000research.15795.1.; Coetzee EJ, Jackson WP. Pregnancy in established non-insulin-dependent diabetics. A five-and-a-half year study at Groote Schuur Hospital. S Afr Med J. 1980;58(20):795–802. Available at: https://www.researchgate.net/publication/16420890_Pregnancy_in_established_non-insulin-dependent_diabetics_A_five-and-a-half_year_study_at_Groote_Schuur_Hospital.; Nguyen L, Chan SY, Teo AKK. Metformin from mother to unborn child – Are there unwarranted effects? EBioMedicine. 2018;35:394–404. https://doi.org/10.1016/j.ebiom.2018.08.047.; Bao LX, Shi WT, Han YX. Metformin versus insulin for gestational diabetes: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2021;34(16):2741–2753. https://doi.org/10.1080/14767058.2019.1670804.; Butalia S, Gutierrez L, Lodha A, Aitken E, Zakariasen A, Donovan L. Shortand long-term outcomes of metformin compared with insulin alone in pregnancy: a systematic review and meta-analysis. Diabet Med. 2017;34(1):27–36. https://doi.org/10.1111/dme.13150.; Løvvik TS, Carlsen SM, Salvesen Ø, Steffensen B, Bixo M, Gómez-Real F et al. Use of metformin to treat pregnant women with polycystic ovary syndrome (PregMet2): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(4):256–266. https://doi.org/10.1016/S2213-8587(19)30002-6.; Gonzalez CD, Alvariñas J, Bagnes MFG, Di Girolamo G. Metformin and Pregnancy Outcomes: Evidence Gaps and Unanswered Questions. Curr Clin Pharmacol. 2019;14(1):54–60. https://doi.org/10.2174/1574884714666181224151116.; Glueck CJ, Wang P. Metformin before and during pregnancy and lactation in polycystic ovary syndrome. Expert Opin Drug Saf. 2007;6(2):191–198. https://doi.org/10.1517/14740338.6.2.191.; Chiswick C, Reynolds RM, Denison F, Drake AJ, Forbes S, Newby DE et al. Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(10):778–786. https://doi.org/10.1016/S2213-8587(15)00219-3.; do Nascimento IB, Sales WB, Dienstmann G, de Souza MLR, Fleig R, Silva JC. Metformin for prevention of cesarean delivery and large-for-gestational-age newborns in non-diabetic obese pregnant women: a randomized clinical trial. Arch Endocrinol Metab. 2020;64(3):290–297. https://doi.org/10.20945/2359-3997000000251.; Dienstmann G, Nascimento IBD, Sales WB, Leite Ramos de Souza M, Silva GDD, de Oliveira LC, Silva JC. No effect of a low dose of metformin on the lipid profile, body mass index and weight gain in pregnant women with obesity: A randomized trial. Obes Res Clin Pract. 2020;14(6):561–565. https://doi.org/10.1016/j.orcp.2020.09.005.; Nommsen-Rivers LA, Chantry CJ, Peerson JM, Cohen RJ, Dewey KG. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr. 2010;92(3):574–584. https://doi.org/10.3945/ajcn.2010.29192.; Nommsen-Rivers L, Thompson A, Riddle S, Ward L, Wagner E, King E. Feasibility and acceptability of metformin to augment low milk supply: a pilot randomized controlled trial. J Hum Lact. 2019;35(2):261–271. https://doi.org/10.1177/0890334418819465

  6. 6
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 16 (2024); 172-182 ; Медицинский Совет; № 16 (2024); 172-182 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8625/7574; Ndumele CE, Rangaswami J, Chow SL, Neeland IJ, Tuttle KR, Khan SS et al.; American Heart Association. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation. 2023;148(20):1606–1635. https://doi.org/10.1161/CIR.0000000000001184.; Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6(10):2364–2373. https://doi.org/10.2215/CJN.02180311.; Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185–1200. https://doi.org/10.7150/ijms.10001.; Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102.; Khunti K, Jabbour S, Cos X, Mudaliar S, Mende C, Bonaca M, Fioretto P. Sodium-glucose co-transporter-2 inhibitors in patients with type 2 diabetes: Barriers and solutions for improving uptake in routine clinical practice. Diabetes Obes Metab. 2022;24(7):1187–1196. https://doi.org/10.1111/dom.14684.; Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720.; Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691–704. https://doi.org/10.1016/S2213-8587(18)30141-4.; Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N et al.; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644–657. https://doi.org/10.1056/NEJMoa1611925.; Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM et al.; CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295–2306. https://doi.org/10.1056/NEJMoa1811744.; Dave CV, Schneeweiss S, Kim D, Fralick M, Tong A, Patorno E. Sodium-Glucose Cotransporter-2 Inhibitors and the Risk for Severe Urinary Tract Infections: A Population-Based Cohort Study. Ann Intern Med. 2019;171(4):248–256. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989379/.; McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM et al.; DAPA-HF Committees and Investigators. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur J Heart Fail. 2019;21(5):665–675. https://doi.org/10.1002/ejhf.1432.; Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation. 2021;143(4):326–336. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834905/.; Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–1461. https://doi.org/10.1056/NEJMoa2107038.; Peikert A, Martinez FA, Vaduganathan M, Claggett BL, Kulac IJ, Desai AS et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Mildly Reduced or Preserved Ejection Fraction According to Age: The DELIVER Trial. Circ Heart Fail. 2022;15(10):e010080. Available at: https://pure.rug.nl/ws/portalfiles/portal/259654593/CIRCHEARTFAILURE.122.010080.pdf.; Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K et al. Writing Committee Members. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J Card Fail. 2023;29(10):1412–1451. https://doi.org/10.1016/j.cardfail.2023.07.006.; Heidenreich P. Heart failure management guidelines: New recommendations and implementation. J Cardiol. 2024;83(2):67–73. https://doi.org/10.1016/j.jjcc.2023.10.009.; Adamo M, Chioncel O, Pagnesi M, Bayes-Genis A, Abdelhamid M, Anker SD et al. Epidemiology, pathophysiology, diagnosis and management of chronic right-sided heart failure and tricuspid regurgitation. A clinical consensus statement of the Heart Failure Association (HFA) and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the ESC. Eur J Heart Fail. 2024;26(1):18–33. https://doi.org/10.1002/ejhf.3106.; Mascolo A, Di Napoli R, Balzano N, Cappetta D, Urbanek K, De Angelis A et al. Safety profile of sodium glucose co-transporter 2 (SGLT2) inhibitors: A brief summary. Front Cardiovasc Med. 2022;9:1010693. https://doi.org/10.3389/fcvm.2022.1010693.; Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol. 2011;300(1):C14–С21. https://doi.org/10.1152/ajpcell.00388.2010.; Hirji I, Andersson SW, Guo Z, Hammar N, Gomez-Caminero A. Incidence of genital infection among patients with type 2 diabetes in the UK General Practice Research Database. J Diabetes Complications. 2012;26(6):501–505. https://doi.org/10.1016/j.jdiacomp.2012.06.012.; Alkabbani W, Zongo A, Minhas-Sandhu JK, Eurich DT, Shah BR, Alsabbagh MW, Gamble JM. Sodium-Glucose Cotransporter-2 Inhibitors and Urinary Tract Infections: A Propensity Score-matched Population-based Cohort Study. Can J Diabetes. 2022;46(4):392–403.e13. https://doi.org/10.1016/j.jcjd.2021.12.005.; Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, Pfister M. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009;85(5):520–526. https://doi.org/10.1038/clpt.2008.251.; Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357–365. https://doi.org/10.1111/j.1463-1326.2011.01359.x.; Pozzi A, Cirelli C, Merlo A, Rea F, Scangiuzzi C, Tavano E et al. Adverse effects of sodium-glucose cotransporter-2 inhibitors in patients with heart failure: a systematic review and meta-analysis. Heart Fail Rev. 2024;29(1):207–217. https://doi.org/10.1007/s10741-023-10363-w.; Wolf P, Fellinger P, Pfleger L, Beiglböck H, Krumpolec P, Barbieri C et al; Gluconeogenesis, But Not Glycogenolysis, Contributes to the Increase in Endogenous Glucose Production by SGLT-2 Inhibition. Diabetes Care. 2021;44(2):541–548. https://doi.org/10.2337/dc20-1983.; Перепеч НБ, Михайлова ИЕ. Ингибиторы натрий-глюкозного котранспортера 2 типа: успешная погоня за двумя зайцами. Российский кардиологический журнал. 2021;26(2S):4534. https://doi.org/10.15829/1560-4071-2021-4534.; Hung CC, Lin HY, Lee JJ, Lim LM, Chiu YW, Chiang HP et al. Glycosuria and Renal Outcomes in Patients with Nondiabetic Advanced Chronic Kidney Disease. Sci Rep. 2016;6:39372. https://doi.org/10.1038/srep39372.; Gong S, Guo J, Han X, Li M, Zhou L, Cai X et al. Clinical and Genetic Features of Patients With Type 2 Diabetes and Renal Glycosuria. J Clin Endocrinol Metab. 2017;102(5):1548–1556. https://doi.org/10.1210/jc.2016-2332.; Ferrannini E, Solini A, Baldi S, Scozzaro T, Polidori D, Natali A, Hansen MK. Role of Glycosuria in SGLT2 Inhibitor-Induced Cardiorenal Protection: A Mechanistic Analysis of the CREDENCE Trial. Diabetes. 2024;73(2):250–259. https://doi.org/10.2337/db23-0448.

  7. 7
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 45-52 ; Медицинский Совет; № 6 (2024); 45-52 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8269/7292; Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759.; Ye X, Kong W, Zafar MI, Chen LL. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Cardiovasc Diabetol. 2019;18(1):48. https://doi.org/10.1186/s12933-019-0851-z.; Жернакова ЮВ, Чазова ИЕ, Ощепкова ЕВ, Шальнова СА, Конради АО, Ротарь ОП и др. Распространенность сахарного диабета в популяции больных артериальной гипертонией. По данным исследования ЭССЕ-РФ. Системные гипертензии. 2018;15(1):56–62. https://doi.org/10.26442/2075-082X_15.1.56-62.; Ощепкова ЕВ, Лазарева НВ, Чазова ИЕ. Оценка качества обследования больных артериальной гипертонией в первичном звене здравоохранения (по данным российского Регистра артериальной гипертонии). Системные гипертензии. 2017;14(2):29–34. Режим доступа: https://journals.eco-vector.com/2075-082X/article/view/29179.; Метельская ВА, Шальнова СА, Деев АД, Перова НВ, Гомыранова НВ, Литинская ОА и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016;19(1):15–23. https://doi.org/10.17116/profmed201619115-23.; Haile K, Timerga A. Dyslipidemia and Its Associated Risk Factors Among Adult Type-2 Diabetic Patients at Jimma University Medical Center, Jimma, Southwest Ethiopia. Diabetes Metab Syndr Obes. 2020;13:4589–4597. https://doi.org/10.2147/DMSO.S283171.; Luo Y, Peng D. Residual Atherosclerotic Cardiovascular Disease Risk: Focus on Non-High-Density Lipoprotein Cholesterol. J Cardiovasc Pharmacol Ther. 2023;28:10742484231189597. https://doi.org/10.1177/10742484231189597.; Su X, Kong Y, Peng D. Evidence for changing lipid management strategy to focus on non-high density lipoprotein cholesterol. Lipids Health Dis. 2019;18(1):134. https://doi.org/10.1186/s12944-019-1080-x.; Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109c. https://doi.org/10.1093/eurheartj/ehz785.; Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross-sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. https://doi.org/10.1186/s12933-015-0268-2.; Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Residual Hypertriglyceridemia and Estimated Atherosclerotic Cardiovascular Disease Risk by Statin Use in U.S. Adults With Diabetes: National Health and Nutrition Examination Survey 2007–2014. Diabetes Care. 2019;42(12):2307–2314. https://doi.org/10.2337/dc19-0501.; Kristensen FPB, Christensen DH, Mortensen MB, Maeng M, Kahlert J, Sørensen HT, Thomsen RW. Triglycerides and risk of cardiovascular events in statin-treated patients with newly diagnosed type 2 diabetes: a Danish cohort study. Cardiovasc Diabetol. 2023;22(1):187. https://doi.org/10.1186/s12933-023-01921-5.; Wang Y, Fang Y, Magliano DJ, Charchar FJ, Sobey CG, Drummond GR, Golledge J. Fasting triglycerides are positively associated with cardiovascular mortality risk in people with diabetes. Cardiovasc Res. 2023;119(3):826–834. https://doi.org/10.1093/cvr/cvac124.; Elam M, Lovato L, Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus. Clin Lipidol. 2011;6(1):9–20. https://doi.org/10.2217/clp.10.84.; Pirillo A, Norata GD, Catapano AL. Production and Metabolism of TriglycerideRich Lipoproteins: Impact of Diabetes. In: Jenkins AJ, Toth PP (eds). Lipoproteins in Diabetes Mellitus. Humana, Cham; 2023, pp. 169–194. https://doi.org/10.1007/978-3-031-26681-2_7.; Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–4806. https://doi.org/10.1093/eurheartj/ehab551.; Sokooti S, Flores-Guerrero JL, Heerspink HJL, Connelly MA, Bakker SJL, Dullaart RPF. Triglyceride-rich lipoprotein and LDL particle subfractions and their association with incident type 2 diabetes: the PREVEND study. Cardiovasc Diabetol. 2021;20(1):156. https://doi.org/10.1186/s12933-021-01348-w.; Huh JH, Roh E, Lee SJ, Ihm SH, Han KD, Kang JG. Remnant Cholesterol Is an Independent Predictor of Type 2 Diabetes: A Nationwide Population-Based Cohort Study. Diabetes Care. 2023;46(2):305–312. https://doi.org/10.2337/dc22-1550.; Bharti RK, Koshewara P, Negi PS, Kaundal PK. Is fixed dose combination of rosuvastatin with fenofibrate more effective than high dose Rosuvastatin inpatients with stable coronary artery disease with mixed dyslipidemia? A study. Panacea J Med Sci. 2023;13(2):504–512. https://10.18231/j.pjms.2023.095; Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–1697. https://doi.org/10.1016/S0140-6736(07)61607-9.; ACCORD Study Group; Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–1574. https://doi.org/10.1056/NEJMoa1001282.; Kim NH, Choi J, Kim YH, Lee H, Kim SG. Addition of fenofibrate to statins is associated with risk reduction of diabetic retinopathy progression in patients with type 2 diabetes and metabolic syndrome: A propensitymatched cohort study. Diabetes Metab. 2023;49(3):101428. https://doi.org/10.1016/j.diabet.2023.101428.; Jo SH, Nam H, Lee J, Park S, Lee J, Kyoung DS. Fenofibrate Use Is Associated With Lower Mortality and Fewer Cardiovascular Events in Patients With Diabetes: Results of 10,114 Patients From the Korean National Health Insurance Service Cohort. Diabetes Care. 2021;44(8):1868–1876. https://doi.org/10.2337/dc20-1533.; Демидова ТЮ, Плахотняя ВМ. Предиабет: фактор риска сердечно-сосудистых заболеваний и «окно возможностей» для их профилактики. FOCUS Эндокринология. 2023;4(2):6–11. https://doi.org/10.15829/1560-4071-2023-24.; Samson SL, Vellanki P, Blonde L, Christofides EA, Galindo RJ, Hirsch IB et al. American Association of Clinical Endocrinology Consensus Statement: Comprehensive Type 2 Diabetes Management Algorithm – 2023 Update. Endocr Pract. 2023;29(5):305–340. https://doi.org/10.1016/j.eprac.2023.02.001.; Ежов МВ, Кухарчук ВВ, Сергиенко ИВ, Алиева АС, Анциферов МБ, Аншелес АА и др. Нарушения липидного обмена. Клинические рекомендации 2023. Российский кардиологический журнал. 2023;28(5):5471. https://doi.org/10.15829/1560-4071-2023-5471.; Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375(9729):1875–1884. https://doi.org/10.1016/S0140-6736(10)60656-3.; Das Pradhan A, Glynn RJ, Fruchart JC, MacFadyen JG, Zaharris ES, Everett BM et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N Engl J Med. 2022;387(21):1923–1934. https://doi.org/10.1056/ NEJMoa2210645.; Бойцов СА, Погосова НВ, Аншелес АА, Бадтиева ВА, Балахонова ТВ, Барбараш ОЛ и др. Кардиоваскулярная профилактика 2022. Российские национальные рекомендации. Российский кардиологический журнал. 2023;28(5):5452. https://doi.org/10.15829/1560-4071-2023-5452.; https://www.med-sovet.pro/jour/article/view/8269

  8. 8
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 6 (2024); 81-88 ; Медицинский Совет; № 6 (2024); 81-88 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8272/7294; McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2022;24(1):4–131. https://doi.org/10.1002/ejhf.2333.; Behnoush AH, Khalaji A, Naderi N, Ashraf H, von Haehling S. ACC/AHA/ HFSA 2022 and ESC 2021 guidelines on heart failure comparison. ESC Heart Fail. 2023 Jun;10(3):1531-1544. https://doi.org/10.1002/ehf2.14255. Epub 2022 Dec 2.; Giugliano D, Bellastella G, Longo M, Scappaticcio L, Maiorino MI, Chiodini P, Esposito K. Relationship between improvement of glycaemic control and reduction of major cardiovascular events in 15 cardiovascular outcome trials: A meta-analysis with meta-regression. Diabetes Obes Metab. 2020;22(8):1397–1405. https://doi.org/10.1111/dom.14047.; Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36(27):1718–1727. https://doi.org/10.1093/eurheartj/ehv134.; Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021;23(3):352–380. https://doi.org/10.1002/ejhf.2115.; Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(5):853–872. https://doi.org/10.1002/ejhf.1170.; Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092; Bouthoorn S, Valstar GB, Gohar A, den Ruijter HM, Reitsma HB, Hoes AW, Rutten FH. The prevalence of left ventricular diastolic dysfunction and heart failure with preserved ejection fraction in men and women with type 2 diabetes: A systematic review and meta-analysis. Diab Vasc Dis Res. 2018;15(6):477–493. https://doi.org/10.1177/1479164118787415.; Fan W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol. 2017;6(1):8–16. https://doi.org/10.1097/XCE.0000000000000116.; Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R et al. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation. 2020;141(12):1001–1026. https://doi.org/10.1161/CIRCULATIONAHA.119.041886.; Murphy SP, Ibrahim NE, Januzzi JL Jr. Heart Failure With Reduced Ejection Fraction: A Review. JAMA. 2020;324(5):488–504. https://doi.org/10.1001/jama.2020.10262.; Boulet J, Sridhar VS, Bouabdallaoui N, Tardif JC, White M. Inflammation in heart failure: pathophysiology and therapeutic strategies. Inflamm Res. 2024;73(5):709–723. https://doi.org/10.1007/s00011-023-01845-6.; Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus – Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459–2502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.; Dei Cas A, Khan SS, Butler J, Mentz RJ, Bonow RO, Avogaro A et al. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail. 2015;3(2):136–145. https://doi.org/10.1016/j.jchf.2014.08.004.; Park JJ. Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure in Diabetes. Diabetes Metab J. 2021;45(2):146–157. https://doi.org/10.4093/dmj.2020.0282.; Hoek AG, Dal Canto E, Wenker E, Bindraban N, Handoko ML, Elders PJM, Beulens JWJ. Epidemiology of heart failure in diabetes: a disease in disguise. Diabetologia. 2024;67(4):574–601. https://doi.org/10.1007/s00125-023-06068-2.; Avery CL, Loehr LR, Baggett C, Chang PP, Kucharska-Newton AM, Matsushita K et al. The population burden of heart failure attributable to modifiable risk factors: the ARIC (Atherosclerosis Risk in Communities) study. J Am Coll Cardiol. 2012;60(17):1640–1646. https://doi.org/10.1016/j.jacc.2012.07.022.; Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1884. https://doi.org/10.2337/diacare.27.8.1879.; Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–113. https://doi.org/10.1016/S2213-8587(14)70219-0.; Birkeland KI, Bodegard J, Eriksson JW, Norhammar A, Haller H, Linssen GCM et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study. Diabetes Obes Metab. 2020;22(9):1607–1618. https://doi.org/10.1111/dom.14074.; Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–259. https://doi.org/10.1056/NEJMoa052256.; Salazar J, Bermúdez V, Calvo M, Olivar LC, Luzardo E, Navarro C et al. Optimal cutoff for the evaluation of insulin resistance through triglycerideglucose index: A cross-sectional study in a Venezuelan population. F1000Res. 2017;6:1337. https://doi.org/10.12688/f1000research.12170.3.; Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140(7):e294–e324. https://doi.org/10.1161/CIR.0000000000000691.; Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation. 2021;143(4):326–336. https://doi.org/10.1161/CIRCULATIONAHA.120.051783.; Borlaug BA, Sharma K, Shah SJ, Ho JE. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J Am Coll Cardiol. 2023;81(18):1810–1834. https://doi.org/10.1016/j.jacc.2023.01.049.; https://www.med-sovet.pro/jour/article/view/8272

  9. 9
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 209-216 ; Медицинский Совет; № 23 (2023); 209-216 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8020/7112; Zang E, Lynch SM, West J. Regional differences in the impact of diabetes on population health in the USA. J Epidemiol Community Health. 2021;75(1):56–61. https://doi.org/10.1136/jech-2020-214267.; Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK581934.; GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–234. https://doi.org/10.1016/S0140-6736(23)01301-6.; Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА, Сазонова ДВ, Мокрышева НГ. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. Сахарный диабет. 2023;26(2):104–123. https://doi.org/10.14341/DM13035.; Демидова ТЮ, Титова ВВ. Инсулинотерапия – персонализированный подход к управлению гликемией при сахарном диабете. Терапевтический архив. 2020;92(12):201–206. https://doi.org/10.26442/00403660.2020.12.200449.; Дедов ИИ. Современные базальные инсулины: продолжение истории или начало новой эры? Сахарный диабет. 2015;18(4):5–11.https://doi.org/10.14341/DM7693.; Rosenstock J, Park G, Zimmerman J. Basal insulin glargine (HOE 901) versus NPH insulin in patients with type 1 diabetes on multiple daily insulin regimens. U.S. Insulin Glargine (HOE 901) Type 1 Diabetes Investigator Group. Diabetes Care. 2000;23(8):1137–1142. https://doi.org/10.2337/diacare.23.8.1137.; Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Викулова ОК, Галстян ГР и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Сахарный диабет. 2021;24(Прил. 1):1–148. https://doi.org/10.14341/DM12802.; ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown, FM, Bruemmer D et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl. 1):140–157. https://doi.org/10.2337/dc23-S009.; Davies MJ, Aroda VR, Collins B, Gabbay RA, Green J, Maruthur NM et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–2786. https://doi.org/10.2337/dci22-0034.; Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2006;29(7):1486–1490. https://doi.org/10.2337/dc06-0293.; Lachin JM, Bebu I, Bergenstal RM, Pop-Busui R, Service FJ, Zinman B et al. Association of Glycemic Variability in Type 1 Diabetes With Progression of Microvascular Outcomes in the Diabetes Control and Complications Trial. Diabetes Care. 2017;40(6):777–783. https://doi.org/10.2337/dc16-2426.; Park JY, Hwang JH, Kang MJ, Sim HE, Kim JS, Ko KS. Effects of glycemic variability on the progression of diabetic retinopathy among patients with type 2 diabetes. Retina. 2021;41(7):1487–1495. https://doi.org/10.1097/IAE.0000000000003049.; Low S, Lim SC, Yeoh LY, Liu YL, Liu JJ, Fun S et al. Effect of long-term glycemic variability on estimated glomerular filtration rate decline among patients with type 2 diabetes mellitus: Insights from the Diabetic Nephropathy Cohort in Singapore. J Diabetes. 2017;9(10):908–919. https://doi.org/10.1111/1753-0407.12512.; Martinez M, Santamarina J, Pavesi A, Musso C, Umpierrez GE. Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e002032. https://doi.org/10.1136/bmjdrc-2020-002032.; Ceriello A, Lucisano G, Prattichizzo F, La Grotta R, Franzén S, Svensson AM et al. HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target. Cardiovasc Diabetol. 2022;21(1):13–21. https://doi.org/10.1186/s12933-022-01445-4.; Berard L, Antonishyn N, Arcudi K, Blunden S, Cheng A, Goldenberg R et al. Insulin Matters: A Practical Approach to Basal Insulin Management in Type 2 Diabetes. Diabetes Ther. 2018;9(2):501–519. https://doi.org/10.1007/s13300-018-0375-7.; Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–2701. https://doi.org/10.2337/dci18-0033.; Hanefeld M, Fleischmann H, Siegmund T, Seufert J. Rationale for Timely Insulin Therapy in Type 2 Diabetes Within the Framework of Individualised Treatment: 2020 Update. Diabetes Ther. 2020;11(8):1645–1666. https://doi.org/10.1007/s13300-020-00855-5.; Генделека ГФ, Генделека АН. Инсулинотерапия сахарного диабета второго типа. Международный эндокринологический журнал. 2020;16(1):63–68. https://doi.org/10.22141/2224-0721.16.1.2020.199130.; Калягин АН, Максикова ТМ, Казакова РВ, Шистеева НП. Актуальные возможности фармакотерапии сахарного диабета 2 типа. Альманах сестринского дела. 2018;11(1):17–24. Режим доступа: https://www.ismu.baikal.ru/ismu/common.php?page_doc&doc=139239.; Mashitisho M, Mashitisho B. Early insulin therapy in patients with type 2 diabetes mellitus. J Endocrinol, Metab Diabetes South Africa. 2016;21(1):13–15. https://doi.org/10.1080/16089677.2016.1160539.; Polonsky WH, Arsenault J, Fisher L, Kushner P, Miller EM, Pearson TL et al. Initiating insulin: How to help people with type 2 diabetes start and continue insulin successfully. Int J Clin Pract. 2017;71(8):e12973. https://doi.org/10.1111/ijcp.12973.; Inotai A, Csanadi M, Petrova G, Dimitrova M, Bochenek T, Tesar T et al. Patient Access, Unmet Medical Need, Expected Benefits, and Concerns Related to the Utilisation of Biosimilars in Eastern European Countries: A Survey of Experts. Biomed Res Int. 2018;2018:9597362. https://doi.org/10.1155/2018/9597362.; Gough S. Biosimilar insulins: opportunities and challenges. Practical Diabetes. 2013;30(4):146–147a. https://doi.org/10.1002/pdi.1763.; Вербовой АФ, Долгих ЮА, Шаронова ЛА. Биосимиляры инсулинов в клинической практике. Медицинский совет. 2021;(21-1):131–138. https://doi.org/10.21518/2079-701X-2021-21-1-131-138.; Булгакова СВ, Саверская ЕН, Шаронова ЛА, Долгих ЮА, Косарева ОВ. Биосимиляр аналога инсулина гларгин: доказанная безопасность, эффективность, взаимозаменяемость. Медицинский совет. 2022;16(23):207–214. https://doi.org/10.21518/2079-701X-2022-16-23-207-214.; Майоров АЮ, Драй РВ, Каронова ТЛ, Авдеева ОИ, Макаренко ИЕ, Кокшарова ЕО и др. Оценка биоподобия препаратов РинГлар® (ООО «Герофарм», Россия) и Лантус® («Санофи-Авентис Дойчланд ГмбХ», Германия) с использованием метода эугликемического гиперинсулинемического клэмпа у пациентов с сахарным диабетом 1 типа: двой ное слепое рандомизированное клиническое исследование. Сахарный диабет. 2020;23(4):304–315. https://doi.org/10.14341/DM10095.; Karonova TL, Mosikian AA, Mayorov AY, Makarenko IE, Zyangirova ST, Afonkina OA et al. Safety and efficacy of GP40061 compared with originator insulin glargine (Lantus®): a randomized open-label clinical trial. J Comp Eff Res. 2020;9(4):263–273. https://doi.org/10.2217/cer-2019-0136.; Платонов ВВ, Дубинина ТА, Патракеева ЕМ, Резвых АМ, Казаченко НВ. Оценка эффективности применения отечественных биосимиляров инсулина для лечения сахарного диабета 1 типа у подростков. РМЖ. Мать и дитя. 2022;5(2):164–168. https://doi.org/10.32364/2618-84302022-5-2-165-168.; https://www.med-sovet.pro/jour/article/view/8020

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2023); 47-57 ; Медицинский Совет; № 9 (2023); 47-57 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7605/6754; Silva J.A., Souza E.C.F., Echazú Böschemeier A.G., Costa C.C.M.D., Bezerra H.S., Feitosa E.E.L.C. Diagnosis of diabetes mellitus and living with a chronic condition: participatory study. BMC Public Health. 2018;18(1):699. https://doi.org/10.1186/s12889-018-5637-9.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск. Сахарный диабет. 2021;24(Suppl. 1):1–148. https://doi.org/10.14341/ DM12802. Dedov I.I., Shestakova M.V., Mayorov A.Yu. (eds.). Standards of specialized diabetes care. 10th ed. Diabetes Mellitus. 2021;24(1 Suppl.):1–148. (In Russ.) https://doi.org/10.14341/DM12802.; Balakumar P., Maung U.K., Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113(Pt. A):600–609. https://doi.org/10.1016/j.phrs.2016.09.040.; Liu X., Tan Z., Huang Y., Zhao H., Liu M., Yu P. et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124. https://doi.org/10.1186/s12933- 022-01546-0.; Davis T.M., Coleman R.L., Holman R.R. Prognostic significance of silent myocardial infarction in newly diagnosed type 2 diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS) 79. Circulation. 2013;127(9):980–987. https://doi.org/10.1161/CIRCULATIONAHA.112.000908.; Шумаков Д.В., Шехян Г.Г., Зыбин Д.И., Ялымов А.А., Веденикин Т.Ю., Попов М.А. Рестеноз стента: клиника, гемодинамические проявления, механизмы развития и возможности коррекции. Кардиологический вестник. 2021;16(1):20–27. https://doi.org/10.17116/Cardiobulletin20211601120. Shumakov D.V., Shekhyan G.G., Zybin D.I., Yalymov A.A., Vedenikin T.Yu., Popov M.A. In-stent restenosis: symptoms, hemodynamic signs, pathogenesis and treatment. Russian Cardiology Bulletin. 2021;16(1):20–27. (In Russ.) https://doi.org/10.17116/Cardiobulletin20211601120.; Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977.; Gaede P., Vedel P., Parving H.H., Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353(9153):617–622. https://doi.org/10.1016/S0140-6736(98)07368-1.; Patterson C.C., Dahlquist G.G., Gyürüs E., Green A., Soltész G.; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–2033. https://doi.org/10.1016/S0140-6736(09)60568-7.; DECODE Study Group, on behalf of the European Diabetes Epidemiology Study Group. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. BMJ. 1998;317(7155):371–375. https://doi.org/10.1136/ bmj.317.7155.371.; Дедов И.И., Ткачук В.А., Гусев Н.Б., Ширинский В.П., Воротников А.В., Кочегура Т.Н. и др. Сахарный диабет 2 типа и метаболический синдром: молекулярные механизмы, ключевые сигнальные пути и определение биомишеней для новых лекарственных средств. Сахарный диабет. 2018;21(5):364–375. https://doi.org/10.14341/DM9730. Dedov I.I., Tkachuk V.A., Gusev N.B., Shirinsky V.P., Vorotnikov A.V., Kochegura T.N. et al. Type 2 diabetes and metabolic syndrome: identification of the molecular mechanisms, key signaling pathways and transcription factors aimed to reveal new therapeutical targets. Diabetes Mellitus. 2018;21(5):364–375. (In Russ.) https://doi.org/10.14341/DM9730.; Tao L.C., Xu J.N., Wang T.T., Hua F., Li J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68. https://doi.org/10.1186/s12933-022-01511-x.; Langlois M.R., Nordestgaard B.G., Langsted A., Chapman M.J., Aakre K.M., Baum H. et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clin Chem Lab Med. 2020;58(4):496–517. https://doi.org/10.1515/cclm-2019-1253.; Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–188. https://doi.org/10.1093/eurheartj/ehz455.; Khan S.U., Khan M.U., Valavoor S., Khan M.S., Okunrintemi V., Mamas M.A. et al. Association of lowering apolipoprotein B with cardiovascular outcomes across various lipid-lowering therapies: Systematic review and meta-analysis of trials. Eur J Prev Cardiol. 2020;27(12):1255–1268. https://doi.org/10.1177/2047487319871733.; Hu H., Fukunaga A., Yokoya T., Nakagawa T., Honda T., Yamamoto S. et al. Non-High-Density Lipoprotein Cholesterol and Risk of Cardiovascular Disease: The Japan Epidemiology Collaboration on Occupational Health Study. J Atheroscler Thromb. 2022;29(9):1295–1306. https://doi.org/10.5551/ jat.63118.; Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886–899. https://doi.org/10.1007/s00125-015-3525-8.; B Li Y., Teng D., Shi X., Qin G., Qin Y., Quan H. et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. https://doi.org/10.1136/bmj.m997.; Elam M., Lovato L., Ginsberg H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus. Clin Lipidol. 2011;6(1):9–20. https://doi.org/10.2217/clp.10.84.; Bhatt D.L., Miller M., Brinton E.A., Jacobson T.A., Steg P.G., Ketchum S.B. et al. REDUCE-IT USA: Results From the 3146 Patients Randomized in the United States. Circulation. 2020;141(5):367–375. https://doi.org/10.1161/ CIRCULATIONAHA.119.044440.; Bonilha I., Zimetti F., Zanotti I., Papotti B., Sposito A.C. Dysfunctional high-density lipoproteins in type 2 diabetes mellitus: molecular mechanisms and therapeutic implications J Clin Med. 2021;10(11):2233. https://doi.org/10.3390/jcm10112233.; Taskinen M.R., Borén J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239:483–495. https://doi.org/10.1016/j.atherosclerosis.2015.01.039.; He L., Zheng W., Li Z., Kong W., Zeng T. Association of four lipid-derived indicators with the risk of developing type 2 diabetes: a Chinese populationbased cohort study. Lipids Health Dis. 2023;22(1); https://doi.org/10.1186/ s12944-023-01790-7. 24. Tahapary D.L., Pratisthita L.B., Fitri N.A., Marcella C., Wafa S., Kurniawan F. et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. https://doi.org/10.1016/j.dsx.2022.102581.; Xu W., Zhao H., Gao L., Guo L., Liu J., Li H. et.al. Association of long-term triglyceride-glucose index level and change with the risk of cardiometabolic diseases. Front Endocrinol (Lausanne). 2023;14:1148203. https://doi.org/10.3389/fendo.2023.1148203.; Kaplan N.M. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989;149(7):1514–1520. https://doi.org/10.1001/archinte.149.7.1514.; Zeng X., Han D., Zhou H., Xue Y., Wang X., Zhan Q. et al. Triglyceride-Glucose Index and Homeostasis Model Assessment-Insulin Resistance in Young Adulthood and Risk of Incident Congestive Heart Failure in Midlife: The Coronary Artery Risk Development in Young Adults Study. Front Cardiovasc Med. 2022;9:944258. https://doi.org/10.3389/fcvm.2022.944258.; Yu B., Mo Y., Hu X., Wang W., Liu J., Jin J. et al. Triglyceride-glucose index is associated with quantitative flow ratio in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Front Cardiovasc Med. 2022;9:1002030. https://doi.org/10.3389/fcvm.2022.1002030.; Sánchez-García A., Rodríguez-Gutiérrez R., Mancillas-Adame L., GonzálezNava V., Díaz González-Colmenero A., Solis R.C. et al. Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. Int J Endocrinol. 2020;2020:4678526. https://doi.org/10.1155/ 2020/4678526.; Vaidya R.A., Desai S., Moitra P., Salis S., Agashe S., Battalwar R. Et al. Hyperinsulinemia: an early biomarker of metabolic dysfunction. Front Clin Diabetes Healthc. 2023;4:1159664. https://doi.org/10.3389/fcdhc.2023.1159664.; Simental-Mendía L.E., Rodríguez-Morán M., Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. https://doi.org/10.1089/met.2008.0034.; Guerrero-Romero F., Simental-Mendía L.E., González-Ortiz M., Martínez- Abundis E., Ramos-Zavala M.G., Hernández-González S.O. et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–3351. https://doi.org/10.1210/jc.2010-0288.; Lee S.H., Kwon H.S., Park Y.M., Ha H.S., Jeong S.H., Yang H.K. et al. Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE. 2014;9(2):e90430. https://doi.org/10.1371/journal.pone.0090430.; Lopez-Jaramillo P., Gomez-Arbelaez D., Martinez-Bello D., Abat M.E.M., Alhabib K.F., Avezum Á. et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. Lancet Healthy Longev. 2023;4(1):e23–e33. https://doi.org/ 10.1016/S2666-7568(22)00247-1.; Hong S., Han K., Park C.Y. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: a population-based study. BMC Med. 2020;18(1):361. https://doi.org/10.1186/ s12916-020-01824-2.; Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/ eurheartj/ehz486.; Alkandari A., Gujral U.P., Bennakhi A., Qabazard S., Al-Wotayan R., Al Duwairi Q. et al. HbA1c, blood pressure, and cholesterol control in adults with diabetes: A report card for Kuwait. J Diabetes Investig. 2022;13(10):1732–1739. https://doi.org/10.1111/jdi.13832.; Banach M., Surma S., Reiner Z., Katsiki N., Penson P.E., Fras Z. et al. Personalized management of dyslipidemias in patients with diabetes-it is time for a new approach (2022). Cardiovasc Diabetol. 2022;21(1):263. https://doi.org/10.1186/s12933-022-01684-5.; Taylor F., Huffman M.D., Macedo A.F., Moore T.H., Burke M., Davey Smith G. et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;2013(1):CD004816. https://doi.org/10.1002/14651858. CD004816.pub5.; Sabatine M.S., Giugliano R.P., Keech A.C., Honarpour N., Wiviott S.D., Murphy S.A. et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713–1722. https://doi.org/10.1056/NEJMoa1615664.; Jukema J.W., Szarek M., Zijlstra L.E., de Silva H.A., Bhatt D.L., Bittner V.A. et al. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2019;74(9):1167–1176. https://doi.org/10.1016/j.jacc.2019.03.013.; Ray K.K., Wright R.S., Kallend D., Koenig W., Leiter L.A., Raal F.J. et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507–1519. https://doi.org/10.1056/NEJMoa1912387.; Khan S.A., Naz A., Qamar Masood M., Shah R. Meta-Analysis of Inclisiran for the Treatment of Hypercholesterolemia. Am J Cardiol. 2020;134:69–73. https://doi.org/10.1016/j.amjcard.2020.08.018.; Blonde L., Umpierrez G.E., Reddy S.S., McGill J.B., Berga S.L., Bush M. et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract. 2022;28(10):923–1049. https://doi.org/10.1016/j.eprac.2022.08.002.; Maki K.C., Guyton J.R., Orringer C.E., Hamilton-Craig I., Alexander D.D., Davidson M.H. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol. 2016;10(4):905–914. https://doi.org/10.1016/j.jacl.2016.03.008.; Zhu L., Hayen A., Bell K.J.L. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study. Cardiovasc Diabetol. 2020;19(1):28. https://doi.org/10.1186/s12933-020-01002-x.; Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B. et al.; REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. https://doi.org/10.1056/NEJMoa1812792.; Zinman B., Lachin J.M., Inzucchi S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2016;374(11):1094. https://doi.org/10.1056/NEJMc1600827.; Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., Fulcher G., Erondu N. et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644–657. https://doi.org/10.1056/NEJMoa1611925.; Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056/NEJMoa1603827.; Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter L.A. et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834–1844. https://doi.org/10.1056/ NEJMoa1607141.; https://www.med-sovet.pro/jour/article/view/7605

  19. 19
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 192-198 ; Медицинский Совет; № 23 (2022); 192-198 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7326/6548; Ардатская М.Д. Роль пищевых волокон в коррекции нарушений микробиоты и поддержании иммунитета. РМЖ. 2020;(12):24–29. Режим доступа: https://www.rusmedreview.com/upload/iblock/48d/24-29.pdf.; Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как эндокринный орган. Ожирение и метаболизм. 2020;17(3):299–306. https://doi.org/10.14341/omet12457.; Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020;92(10): 97–104. https://doi.org/10.26442/00403660.2020.10.000778.; Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Филометаболическое ядро микробиоты кишечника. Альманах клинической медицины. 2015;(40):12–34. https://doi.org/10.18786/2072-0505-2015-40-12-34.; Kolodny O., Schulenburg H. Microbiome-mediated plasticity directs host evolution along several distinct time scales. Philos Trans R Soc Lond B Biol Sci. 2020;375(1808):20190589. https://doi.org/10.1098/rstb.2019.0589.; Покровская Е.В., Шамхалова М.Ш., Шестакова М.В. Новые взгляды на состояние кишечной микробиоты при ожирении и сахарном диабете 2 типа. Обзор литературы. Сахарный диабет. 2019;22(3):253–262. https://doi.org/10.14341/DM10194.; Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. https://doi.org/10.4161/gmic.19897.; Ардатская М.Д. Клиническое применение пищевых волокон. М.: 4ТЕ Арт; 2010. 48 с. Режим доступа: http://www.medbiopharm.ru/sp/Ardatskaya-pv-metodichka.pdf.; Тлюстангелова Р.К., Долинный С.В., Пшеничная Н.Ю. Роль короткоцепочечных жирных кислот в патогенезе острых кишечных инфекций и постинфекционных синдромов. РМЖ. 2019;(10):31–35. Режим доступа: https://www.rmj.ru/articles/infektsionnye_bolezni/Roly_korotkocepochechnyh_ghirnyh_kislot_v_patogeneze_ostryh_kishechnyh_infekciy_i_postinfekcionnyh_sindromov.; Ардатская М.Д. Масляная кислота и инулин в клинической практике: теоретические аспекты и возможности клинического применения. М.: Форте принт; 2014. 64 с. Режим доступа: http://www.drfalkpharma.ru/Zacofalk_2014.pdf.; Егшатян Л.В., Кушханашхова Д.А., Ермилова Е.С., Аскерханов Р.Г. Микробиота кишечника у пациентов с ожирением и после бариатрических операций. Эндокринная хирургия. 2019;13(1):5–16. https://doi.org/10.14341/serg10112.; Fuller R., Perdigon G. Gut Flora, Nutrition, Immunity and Health. Blackwell Publishing; 2003. 290 p. https://doi.org/10.1002/9780470774595.; Midtvedt A.C., Midtvedt T. Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life. J Pediatr Gastroenterol Nutr. 1992;15(4):395–403. https://doi.org/10.1097/00005176-199211000-00005.; Charney A.N., Micic L., Egnor R.W. Nonionic diffusion of short-chain fatty acids across rat colon. Am J Physiol. 1998;274(3):G518–24. https://doi.org/10.1152/ajpgi.1998.274.3.G518.; Harig J.M., Soergel K.H., Barry J.A., Ramaswamy K. Transport of propionate by human ileal brush-border membrane vesicles. Am J Physiol. 1991;260(5Pt1):G776–82. https://doi.org/10.1152/ajpgi.1991.260.5.G776.; Nedjadi T., Moran A.W., Al-Rammahi M.A., Shirazi-Beechey S.P. Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp Physiol. 2014;99(10):1335–1347. https://doi.org/10.1113/expphysiol.2014.077982.; Yoshikawa T., Hill T.E., Yoshikawa N., Popov V.L., Galindo C.L., Garner H.R. et al. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS ONE. 2010;5(1):e8729. https://doi.org/10.1371/journal.pone.0008729.; Hu J., Lin S., Zheng B., Cheung P. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2018;58(8):1243–1249. https://doi.org/10.1080/10408398.2016.1245650.; Stumpff F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch. 2018;470(4):571–598. https://doi.org/10.1007/s00424-017-2105-9.; Boets E., Deroover L., Houben E., Vermeulen K., Gomand S.V., Delcour J.A., Verbeke K. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients. 2015;7(11):8916–8929. https://doi.org/10.3390/nu7115440.; Priyadarshini M., Wicksteed B., Schiltz G.E., Gilchrist A., Layden B.T. SCFA Receptors in Pancreatic β Cells: Novel Diabetes Targets? Trends Endocrinol Metab. 2016;27(9):653–664. https://doi.org/10.1016/j.tem.2016.03.011.; Hamer H.M., Jonkers D., Venema H., Vanhoutvin S., Troost F.J., Brummer R-J. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.x.; Boets E., Gomand S.V., Deroover L., Preston T., Vermuelen K., De Pretr V. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study. J Physiol. 2017;595(2):541–555. https://doi.org/10.1113/JP272613.; Lê K-A., Li Y., Xu X., Yang W., Liu T., Zhao X. et al. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population. Front Physiol. 2013;(3):496. https://doi.org/10.3389/fphys.2012.00496.; Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110.; Harbison J.E., Roth-Schulze A., Giles L.C., Tran C.D., Ngui K.M., Penno M.A. et al. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatr Diabetes. 2019;20(5):574–583. https://doi.org/10.1111/pedi.12865.; Zhao L., Zhang F., Ding X., Wu G., Lam Y.Y., Wang X. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–1156. https://doi.org/10.1126/science.aao5774.; Adachi K., Sugiyama T., Yamaguchi Y., Tamura Y., Izawa S., Hijikata Y. et al. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects. J Clin Biochem Nutr. 2019;64(3):231–238. https://doi.org/10.3164/jcbn.18-101.; Cani P.D., Everard A., Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13(6):935–940. https://doi.org/10.1016/j.coph.2013.09.008.; Forslund K., Hildebrand F., Nielsen T., Falony G., Chatelier E.L., Sunagawa S. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. https://doi.org/10.1038/nature15766.; Sohail M., Althani A., Anwar H., Rizzi R., Marey H.E. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res. 2017;9631435. https://doi.org/10.1155/2017/9631435.; Tilg H., Moschen A. Microbiota and diabetes: An evolving relationship. Gut. 2014;63(9):1513–1521. https://doi.org/10.1136/gutjnl-2014-306928.; Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58(7):1509–1517 https://doi.org/10.2337/db08-1637.; Zhang L., Du J., Yano N., Wang H., Zhao Y.T., Dubielecka P.M. et al. Sodium Butyrate Protects-Against High Fat Diet-Induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice. J Cell Biochem. 2017;118(8):2395–2408. https://doi.org/10.1002/jcb.25902.; Li Z., Yi C.X., Katiraei S., Kooijman S., Zhou E., Chung C.K. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–1279. http://dx.doi.org/10.1136/gutjnl-2017-314050.; Koh A., De Vadder F., Kovatcheva-Dachary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–1345.https://doi.org/10.1016/j.cell.2016.05.041.; Silva Y.P., Bernardi A., Frozza R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol. 2020;(11):25. https://doi.org/10.3389/fendo.2020.00025.; Marino E., Richards J., McLeod K.H., Stanley D., Yap Y. A., Knight J. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552–562. https://doi.org/10.1038/ni.3713.; Danobeitia J.S., Chlebeck P.J., Shokolenko I., Ma X., Wilson G., Fernandez L.A. Novel fusion protein targeting mitochondrial DNA improves pancreatic islet functional potency and islet transplantation outcomes. Cell Transpl. 2017;26(11):1742–1754. https://doi.org/10.1177/0963689717727542.; Modak A.M., Datar S.P., Bhonde R.R., Ghaskadbi S.S. Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J Comp Physiol B. 2007;177(2):247–257. https://doi.org/10.1007/s00360-006-0126-3.; Hu S., Kuwabara R., de Haan B. J., Smink A. M., de Vos P. Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int J Mol Sci. 2020;21(4):1542. https://doi.org/10.3390/ijms21041542.; Vetrani C., Costabile G., Luongo D., Naviglio D., Rivellese A.A., Riccardi G., Giacco R. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition. 2016;32(2):217–221. https://doi.org/10.1016/j.nut.2015.08.006.; Chambers E., Viardot A., Psichas A., Morrison D.J., Murphy K.G., Zac-Varghese S.E.K. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2014;64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913.; Yoshida H., Ishii M., Akagawa M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch Biochem Biophys. 2019;(672):108057. https://doi.org/10.1016/j.abb.2019.07.022.; Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizabra B., Cerdan S., Brody L. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;(5):3611. https://doi.org/10.1038/ncomms4611.; Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L. et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–217. https://doi.org/10.1038/nature18309.; Yamashita H., Fujisawa K., Ito E., Idei S., Kawaguchi N., Kimoto M. et al. Improvement of Obesity and Glucose Tolerance by Acetate in Type 2 Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Biosci Biotechnol Biochem. 2007;71(5):1236–1243. https://doi.org/10.1271/bbb.60668.; Kootte R.S., Levin E., Salojärvi J., Smits L.P., Hartstra A.V., Udayappan S.D. et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611–619. https://doi.org/10.1016/j.cmet.2017.09.008.; Fushimi T., Tayama K., Fukaya M., Kitakoshi K., Nakai N., Tsukamoto Y., Sato Y. The efficacy of acetic acid for glycogen repletion in rat skeletal muscle after exercise. Int J Sports Med. 2002;23(3):218–222. https://doi.org/10.1055/s-2002-23172.; Velazquez M., Davies C., Marett R., Slavin J.L., Feirtag J.M. Effect of oligossaccharides and fibre substitutes on short-chain fatty acid production by human faecal microflora. Anaerobe. 2000;6(2):87–92. https://doi.org/10.1006/anae.1999.0318.; Takagi T., Naito Y., Higashimura Y., Ushiroda C., Mizushima K., Ohashi Y. et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br J Nutr. 2016;116(7):1199–1205. https://doi.org/10.1017/S0007114516003068.; https://www.med-sovet.pro/jour/article/view/7326

  20. 20
    Academic Journal