يعرض 1 - 20 نتائج من 2,338 نتيجة بحث عن '"A. V. Pozdnyakov"', وقت الاستعلام: 2.16s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 55-66 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 55-66 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/973/632; Заваденко Н.Н. Нарушения нервно-психического развития у детей с эпилепсией // Эпилепсия и пароксизмальные состояния. 2016. Т. 8 (1). С. 50–54.; Ягунова К.В., Гайнетдинова Д.Д. Речевые нарушения у детей раннего и дошкольного возраста // Российский вестник перинатологии и педиатрии. 2018. Т. 63, № 6. С. 23–30.; Ястребов В.С. Распространенность психических расстройств в населении Российской Федерации в 2011 году: Аналитический обзор. М.: ФГБУ «ФМИЦПН» Министерства здравоохранения Российской Федерации. 2014. 43 с.; Мухин К.Ю. Когнитивная эпилептиформная дезинтеграция: дефиниция, диагностика, терапия // Русский журнал детской неврологии. 2012. Т. 7, № 1. С. 3– 20.; Pagan J.L., Oltmanns T.F., Whitmore M.J., Turkheimer E. Personality disorder not otherwise specified: searching for an empirically based diagnostic threshold // Journal of personality disorders. 2005. Vol. 19, No. 6. Р. 674–689. doi:10.1521/pedi.2005.19.6.674.; Winsper C, Bilgin A, Thompson A, Marwaha S, Chanen AM, Singh SP, Wang A, Furtado V. The prevalence of personality disorders in the community: a global systematic review and meta-analysis // The British journal of psychiatry: the journal of mental science. 2020; Feb; Vol. 216, No. 2. Р. 69–78. doi:10.1192/bjp.2019.166.; Chugani D.C., Sundram B.S., Behen M., Lee M.L., Moore G.J. Evidence of altered energy metabolism in autistic children // Progress in NeuroPsychopharmacology and Biological Psychiatry. 1999. Vol. 23. Р. 635–641. doi:10.1016/s0278-5846(99)00022-6.; Hardan A.Y., Fung L.K., Frazier T., Berquist S.W., Minshew N.J., Keshavan M.S., Stanley J.A. A proton spectroscopy study of white matter in children with autism // Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2016. Vol. 66. Р. 48–53. doi:10.1016/j.pnpbp.2015.11.005.; Fujii E., Mori K., Miyazaki M., Hashimoto T., Harada M., Kagami S. Function of the frontal lobe in autistic individuals: a proton magnetic resonance spectroscopic study // The Journal of Medical Investigation. 2010. Vol. 57. Р. 35–44. doi:10.2152/jmi.57.35.; Kubas B., Kułak W., Sobaniec W., Tarasow E., Lebkowska U., Walecki J. Metabolite alterations in autistic children: a 1H MR spectroscopy study // Advances in Medical Sciences. 2012. Vol. 57. Р. 152–156. doi:10.2478/v10039-012-0014-x.; DeVito T.J., Drost D.J., Neufeld R.W., Rajakumar N., Pavlosky W., Williamson P., Nicolson R. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study // Biological psychiatry. 2007. Feb 15; Vol. 61, No. 4. Р. 465–473. doi:10.1016/j.biopsych.2006.07.022.; Yeo R.A., Hill D., Campbell R., Vigil J., Brooks W.M. Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation // Developmental neuropsychology. 2000. Vol. 17, No. 2. Р. 143–159. doi:10.1207/S15326942DN1702_01.; Rae C.D. A guide to the metabolic pathways and function of metabolites observed in human brain 1h magnetic resonance spectra // Neurochemical research. 2014. Vol. 39. Р. 1–36. doi:10.1007/s11064-013-1199-5.; Margari L., De Giacomo A., Craig F., Palumbi R., Peschechera A., Margari M., Picardi F., Caldarola M., Maghenzani MA., Dicuonzo F. Frontal lobe metabolic alterations in autism spectrum disorder: a 1H-magnetic resonance spectroscopy study // Neuropsychiatric disease and treatment. 2018. Vol. 14. Р. 1871–1876. doi:10.2147/NDT.S165375.; Ford T.C., Crewther D.P. A comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder // Frontiers in Molecular Neuroscience. 2016. Vol. 9. Р. 14. doi:10.3389/fnmol.2016.00014.; Ozonoff S., Pennington B.F., Rogers S.J. Executive function deficits in high-functioning autistic individuals: relationship to theory of mind // The Journal of Child Psychology and Psychiatry. 1991. Vol. 32, No. 7. Р. 1081–1105. doi:10.1111/j.1469-7610.1991.tb00351.x.; Garcia P.A., Laxer K.D., van der Grond J., Hugg J.W., Matson G.B., Weiner M.W. Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy // Annals of neurology. 1995. Feb. Vol. 37, No. 2. Р. 279–281. doi:10.1002/ana.410370222.; Hugg J.W., Laxer K.D., Matson G.B., Maudsley A.A., Weiner M.W. Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging // Annals of neurology. 1993. Dec; Vol. 34, No. 6. Р. 788–794. doi:10.1002/ana.410340606.; Lin K, Carrete H.Jr., Lin J., Peruchi M.M., de Araújo Filho G.M., Guaranha M.S., Guilhoto L.M., Sakamoto A.C., Yacubian E.M. Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy // Epilepsia. 2009. May; Vol. 50, No. 5. Р. 1191–1200. doi:10.1111/j.1528-1167.2008.01948.x.; Azab S.F., Sherief L.M., Saleh S.H. Elshafeiy M.M., Siam A.G., Elsaeed W.F., Arafa M.A., Bendary E.A., Sherbiny H.S., Elbehedy R.M., Aziz K.A. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study // Italian Journal of Pediatrics. 2015. Vol. 41. Р. 32. doi:10.1186/s13052-015-0138-2.; Aydin H., Oktay N. A., Kizilgoz V., Altin E., Tatar I. G., Hekimoglu B. Value of Proton-MR-Spectroscopy in the Diagnosis of Temporal Lobe Epilepsy; Correlation of Metabolite Alterations With Electroencephalography // Iranian journal of radiology: a quarterly journal published by the Iranian Radiological Society. 2012. Vol. 9, No 1. Р. 1–11. doi:10.5812/iranjradiol.6686.; Parker A., Ferrie C., Keevil S., Newbold M., Cox T., Maisey M., Robinson R. Neuroimaging and spectroscopy in children with epileptic encephalopathies // Archives of Disease in Childhood. 1998. Vol. 79, No. 1. Р. 39–43. doi:10.1136/adc.79.1.39.; Critchley H.D., Simmons A., Daly E.M., Russell A., van Amelsvoort T., Robertson D.M., Glover A., Murphy D.G. Prefrontal and medial temporal correlates of repetitive violence to self and others // Biological Psychiatry. 2000. May 15. Vol. 47, No. 10. Р. 928–934. doi:10.1016/s0006-3223(00)00231-6.; https://radiag.bmoc-spb.ru/jour/article/view/973

  4. 4
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 73-81 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 73-81 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/941/624; Lee J.H., Koh J., Jeon Y.K. et al. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia // Radiology. 2023. Vol. 306, No. 2. P. e222600. doi:10.1148/radiol.222600.; Kwee T.C., Kwee R.M. Chest CT in COVID-19: What the Radiologist Needs to Know // RadioGraphics. 2020. Vol. 40, No. 7. P. 1848–1865. doi:10.1148/rg.2020200159.; Rubin G.D., Ryerson C.J., Haramati L.B. et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society // Radiology. 2020. Vol. 296, No. 1. P. 172–180. doi:10.1148/radiol.2020201365.; Simpson S., Kay F.U., Abbara S. et al. Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200152. doi:10.1148/ryct.2020200152.; Ai T., Yang Z., Hou H. et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases // Radiology. 2020. Vol. 296, No. 2. P. E32–E40. doi:10.1148/radiol.2020200642.; Suh Y.J., Hong H., Ohana M. et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis // Radiology. 2021. Vol. 298, No. 2. P. E70–E80. doi:10.1148/radiol.2020203557.; Yang R., Li X., Liu H. et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19 // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200047. doi:10.1148/ryct.2020200047.; Revzin M.V., Raza S, Warshawsky R. et al. Multisystem Imaging Manifestations of COVID-19, Part 1: Viral Pathogenesis and Pulmonary and Vascular System Complications // RadioGraphics. 2020. Vol. 40, No. 6. P. 1574–1599. doi:10.1148/rg.2020200149.; Carfì A., Bernabei R, Landi F. et al. Persistent Symptoms in Patients After Acute COVID-19 // JAMA. 2020. Vol. 324, No. 6. P. 603. doi:10.1001/jama.2020.12603.; Liu J., Zheng X, Tong Q. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV // J. Med. Virol. 2020. Vol. 92, No. 5. P. 491–494. doi:10.1002/jmv.25709.; John A.E., Joseph C, Jenkins G. et al. COVID‐19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts // Immunological Reviews. 2021. Vol. 302, No. 1. P. 228–240. doi:10.1111/imr.12977.; Mohammadi A., Balan I, Yadav S. et al. Post-COVID-19 Pulmonary Fibrosis // Cureus. 2022. doi:10.7759/cureus.22770.; Sgalla G., Iovene B., Calvello M. et al. Idiopathic pulmonary fibrosis: pathogenesis and management // Respir. Res. 2018. Vol. 19, No. 1. P. 32. doi:10.1186/s12931-018-0730-2.; Tanni S.E., Fabro A.T., De Albuquerque A. et al. Pulmonary fibrosis secondary to COVID-19: a narrative review // Expert Review of Respiratory Medicine. 2021. Vol. 15, No. 6. P. 791–803. doi:10.1080/17476348.2021.1916472.; Groff D., Sun A., Ssentongo A.E. et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review // JAMA Netw Open. 2021. Vol. 4, No. 10. P. e2128568. doi:10.1001/jamanetworkopen.2021.28568.; Liu X., Zhou H, Zhou Y. et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients // Journal of Infection. 2020. Vol. 81, No. 1. P. e95–e97. doi:10.1016/j.jinf.2020.04.008.; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis // The Lancet. 2017. Vol. 389, No. 10082. P. 1941–1952. doi:10.1016/S0140-6736(17)30866-8.; Liu F., Mih J.D., Shea B.S. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression // Journal of Cell Biology. 2010. Vol. 190, No. 4. P. 693–706. doi:10.1083/jcb.201004082.; Martinez F.J. Pulmonary Function Testing in Idiopathic Interstitial Pneumonias // Proceedings of the American Thoracic Society. 2006. Vol. 3, No. 4. P. 315–321. doi:10.1513/pats.200602–022TK.; Huang C., Huang L., Wang Y. et al. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // The Lancet. 2021. Vol. 397, No. 10270. P. 220–232. doi:10.1016/S0140-6736(20)32656-8.; Mylvaganam R.J., Bailey J.I., Sznajder J.I. et al. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection // Eur. Respir. Rev. 2021. Vol. 30, No. 162. P. 210194. doi:10.1183/16000617.0194-2021.; Nalbandian A., Sehgal K, Gupta A. et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, No. 4. P. 601–615. doi:10.1038/s41591-021-01283-z.; Rai D.K., Sharma P., Kumar R. Post COVID-19 pulmonary fibrosis. Is it real threat? // Indian J Tuberc. 2021. Vol. 68, No. 3. P. 330–333. doi:10.1016/j.ijtb.2020.11.003.; Mongelli A., Barbi V., Gottardi Zamperla M. et al. Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors // Int. J. Mol. Sci. 2021. Vol. 22, No. 11. P. 6151. doi:10.3390/ijms22116151.; D’Ettorre G., Gentilini Cacciola E., Santinelli L. et al. COVID-19 sequelae in working age patients: A systematic review // J. Med. Virol. 2022. Vol. 94, No. 3. P. 858–868. doi:10.1002/jmv.27399.; Lee J.H., Yim J.-J., Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis // Respir Res. 2022. Vol. 23, No. 1. P. 233. doi:10.1186/s12931-022-02163-x.; Testa L.C., Jule Y, Lundh L. et al. Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens // Front. Med. 2021. Vol. 8. P. 607720. doi:10.3389/fmed.2021.607720.; Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale // Journal of Clinical Pathology. 1988. Vol. 41, No. 4. P. 467–470. doi:10.1136/jcp.41.4.467.; Cicko S., Grimm M., Ayata K. et al. Uridine supplementation exerts anti-inflammatory and anti-fibrotic effects in an animal model of pulmonary fibrosis // Respir Res. 2015. Vol. 16, No. 1. P. 105. doi:10.3390/biom10111585.; De Rudder M., Bouzin C., Nachit M. et al. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH // Laboratory Investigation. 2020. Vol. 100, No. 1. P. 147–160. doi:10.1038/s41374-019-0315-9.; Barisoni L., Lafata K.J., Hewitt S.M. et al. Digital pathology and computational image analysis in nephropathology // Nat. Rev. Nephrol. 2020. Vol. 16, No. 11. P. 669–685. doi:10.1038/s41581-020-0321-6.; Courtoy G.E., Leclercq I, Froidure A. et al. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization // Biomolecules. 2020. Vol. 10, No. 11. P. 1585. doi:10.3390/biom10111585.; Kinoshita Y., Watanabe K, Ishii H. et al. Proliferation of elastic fibres in idiopathic pulmonary fibrosis: a whole‐slide image analysis and comparison with pleuroparenchymal fibroelastosis // Histopathology. 2017. Vol. 71, No. 6. P. 934–942. doi:10.1111/his.13312.; Inui S., Fujikawa A, Jitsu M. et al. Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19) // Radiol. Cardiothorac Imaging. 2020. Vol. 2, No. 2. P. e200110. doi:10.1148/ryct.2020200110.; Zakharova A.V. Correlation of MR pulmonary perfusion in patients with COVID-19 with quantitative assessment of acute phase CT images // Diagnostic radiology and radiotherapy. 2023. Vol. 14. No 3. P. 61-66. https://doi.org/10.22328/2079-5343-2023-14-3-61-66.; Cressoni M., Gallazzi E, Chiurazzi C. et al. Limits of normality of quantitative thoracic CT analysis // Crit Care. 2013. Vol. 17, No. 3. P. R93. doi:10.1186/cc12738.; Gattinoni L., Chiumello D., Cressoni M. et al. Pulmonary computed tomography and adult respiratory distress syndrome // Swiss Med Wkly. 2005. doi:10.4414/smw.2005.10936.; Weller H.I., Van Belleghem S.M., Hiller A.E. et al. Flexible color segmentation of biological images with the R package recolorize: preprint // Bioinformatics. 2022. doi:10.1101/2022.04.03.486906.; Wood S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models // Journal of the Royal Statistical Society Series B: Statistical Methodology. 2011. Vol. 73, No. 1. P. 3–36. doi:10.1111/j.1467-9868.2010.00749.x.; Toussie D., Voutsinas N., Finkelstein M. et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19 // Radiology. 2020. Vol. 297, No. 1. P. E197–E206. doi:10.1148/radiol.2020201754.; Shen C., Yu N., Cai S. et al. Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019 // Journal of Pharmaceutical Analysis. 2020. Vol. 10, No. 2. P. 123–129. doi:10.1016/j.jpha.2020.03.004.; Caruso D., Zerunian M., Polici M. et al. Diagnostic performance of CT lung severity score and quantitative chest CT for stratification of COVID-19 patients // Radiol. med. 2022. Vol. 127, No. 3. P. 309–317. doi:10.1007/s11547-022-01458-9.; Shalmon T., Zerunian M., Polici M. et al. Predefined and data driven CT densitometric features predict critical illness and hospital length of stay in COVID-19 patients // Sci Rep. 2022. Vol. 12, No. 1. P. 8143. doi:10.1038/s41598-022-12311-4.; Trias-Sabrià P., Dorca Duch E., Molina-Molina M. et al. Radio-Histological Correlation of Lung Features in Severe COVID-19 Through CT-Scan and Lung Ultrasound Evaluation // Front. Med. 2022. Vol. 9. P. 820661. doi:10.3389/fmed.2022.820661.; Henkel M. et al. Lethal COVID-19: Radiologic-Pathologic Correlation of the Lungs // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, № 6. P. e200406. doi:10.1148/ryct.2020200406.; Kianzad A., Meijboom L.J., Nossent E.J. et al. COVID‐19: Histopathological correlates of imaging patterns on chest computed tomography // Respirology. 2021. Vol. 26, No. 9. P. 869–877. doi:10.1111/resp.14101.; Duong-Quy S. et al. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review // Pulm Ther. 2023. P. 1–13. doi:10.1007/s41030-023-00226-y.; https://radiag.bmoc-spb.ru/jour/article/view/941

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: G. Aad, B. Abbott, J. Abdallah, O. Abdinov, R. Aben, M. Abolins, O. S. AbouZeid, H. Abramowicz, H. Abreu, R. Abreu, Y. Abulaiti, B. S. Acharya, L. Adamczyk, D. L. Adams, J. Adelman, S. Adomeit, T. Adye, A. A. Affolder, T. Agatonovic-Jovin, J. Agricola, J. A. Aguilar-Saavedra, S. P. Ahlen, F. Ahmadov, G. Aielli, H. Akerstedt, T. P. A. Åkesson, A. V. Akimov, G. L. Alberghi, J. Albert, S. Albrand, M. J. Alconada Verzini, M. Aleksa, I. N. Aleksandrov, C. Alexa, G. Alexander, T. Alexopoulos, M. Alhroob, G. Alimonti, L. Alio, J. Alison, S. P. Alkire, B. M. M. Allbrooke, P. P. Allport, A. Aloisio, A. Alonso, F. Alonso, C. Alpigiani, A. Altheimer, B. Alvarez Gonzalez, D. Álvarez Piqueras, M. G. Alviggi, B. T. Amadio, K. Amako, Y. Amaral Coutinho, C. Amelung, D. Amidei, S. P. Amor Dos Santos, A. Amorim, S. Amoroso, N. Amram, G. Amundsen, C. Anastopoulos, L. S. Ancu, N. Andari, T. Andeen, C. F. Anders, G. Anders, J. K. Anders, K. J. Anderson, A. Andreazza, V. Andrei, S. Angelidakis, I. Angelozzi, P. Anger, A. Angerami, F. Anghinolfi, A. V. Anisenkov, N. Anjos, A. Annovi, M. Antonelli, A. Antonov, J. Antos, F. Anulli, M. Aoki, L. Aperio Bella, G. Arabidze, Y. Arai, J. P. Araque, A. T. H. Arce, F. A. Arduh, J-F. Arguin, S. Argyropoulos, M. Arik, A. J. Armbruster, O. Arnaez, V. Arnal, H. Arnold, M. Arratia, O. Arslan, A. Artamonov, G. Artoni, S. Asai, N. Asbah, A. Ashkenazi, B. Åsman, L. Asquith, K. Assamagan, R. Astalos, M. Atkinson, N. B. Atlay, K. Augsten, M. Aurousseau, G. Avolio, B. Axen, M. K. Ayoub, G. Azuelos, M. A. Baak, A. E. Baas, M. J. Baca, C. Bacci, H. Bachacou, K. Bachas, M. Backes, M. Backhaus, P. Bagiacchi, P. Bagnaia, Y. Bai, T. Bain, J. T. Baines, O. K. Baker, E. M. Baldin, P. Balek, T. Balestri, F. Balli, E. Banas, Sw. Banerjee, A. A. E. Bannoura, H. S. Bansil, L. Barak, E. L. Barberio, D. Barberis, M. Barbero, T. Barillari, M. Barisonzi, T. Barklow, N. Barlow, S. L. Barnes, B. M. Barnett, R. M. Barnett, Z. Barnovska, A. Baroncelli, G. Barone, A. J. Barr, F. Barreiro, J. Barreiro Guimarães da Costa, R. Bartoldus, A. E. Barton, P. Bartos, A. Basalaev, A. Bassalat, A. Basye, R. L. Bates, S. J. Batista, J. R. Batley, M. Battaglia, M. Bauce, F. Bauer, H. S. Bawa, J. B. Beacham, M. D. Beattie, T. Beau, P. H. Beauchemin, R. Beccherle, P. Bechtle, H. P. Beck, K. Becker, M. Becker, M. Beckingham, C. Becot, A. J. Beddall, A. Beddall, V. A. Bednyakov, C. P. Bee, L. J. Beemster, T. A. Beermann, M. Begel, J. K. Behr, C. Belanger-Champagne, W. H. Bell, G. Bella, L. Bellagamba, A. Bellerive, M. Bellomo, K. Belotskiy, O. Beltramello, O. Benary, D. Benchekroun, M. Bender, K. Bendtz, N. Benekos, Y. Benhammou, E. Benhar Noccioli, J. A. Benitez Garcia, D. P. Benjamin, J. R. Bensinger, S. Bentvelsen, L. Beresford, M. Beretta, D. Berge, E. Bergeaas Kuutmann, N. Berger, F. Berghaus, J. Beringer, C. Bernard, N. R. Bernard, C. Bernius, F. U. Bernlochner, T. Berry, P. Berta, C. Bertella, G. Bertoli, F. Bertolucci, C. Bertsche, D. Bertsche, M. I. Besana, G. J. Besjes, O. Bessidskaia Bylund, M. Bessner, N. Besson, C. Betancourt, S. Bethke, A. J. Bevan, W. Bhimji, R. M. Bianchi, L. Bianchini, M. Bianco, O. Biebel, D. Biedermann, S. P. Bieniek, M. Biglietti, J. Bilbao De Mendizabal, H. Bilokon, M. Bindi, S. Binet, A. Bingul, C. Bini, S. Biondi, C. W. Black, J. E. Black, K. M. Black, D. Blackburn, R. E. Blair, J.-B. Blanchard, J. E. Blanco, T. Blazek, I. Bloch, C. Blocker, W. Blum, U. Blumenschein, G. J. Bobbink, V. S. Bobrovnikov, S. S. Bocchetta, A. Bocci, C. Bock, M. Boehler, J. A. Bogaerts, D. Bogavac, A. G. Bogdanchikov, C. Bohm, V. Boisvert, T. Bold, V. Boldea, A. S. Boldyrev, M. Bomben, M. Bona, M. Boonekamp, A. Borisov, G. Borissov, S. Borroni, J. Bortfeldt, V. Bortolotto, K. Bos, D. Boscherini, M. Bosman, J. Boudreau, J. Bouffard, E. V. Bouhova-Thacker, D. Boumediene, C. Bourdarios, N. Bousson, A. Boveia, J. Boyd, I. R. Boyko, I. Bozic, J. Bracinik, A. Brandt, G. Brandt, O. Brandt, U. Bratzler, B. Brau, J. E. Brau, H. M. Braun, S. F. Brazzale, W. D. Breaden Madden, K. Brendlinger, A. J. Brennan, L. Brenner, R. Brenner, S. Bressler, K. Bristow, T. M. Bristow, D. Britton, D. Britzger, F. M. Brochu, I. Brock, R. Brock, J. Bronner, G. Brooijmans, T. Brooks, W. K. Brooks, J. Brosamer, E. Brost, J. Brown, P. A. Bruckman de Renstrom, D. Bruncko, R. Bruneliere, A. Bruni, G. Bruni, M. Bruschi, N. Bruscino, L. Bryngemark, T. Buanes, Q. Buat, P. Buchholz, A. G. Buckley, S. I. Buda, I. A. Budagov, F. Buehrer, L. Bugge, M. K. Bugge, O. Bulekov, D. Bullock, H. Burckhart, S. Burdin, C. D. Burgard, B. Burghgrave, S. Burke, I. Burmeister, E. Busato, D. Büscher, V. Büscher, P. Bussey, J. M. Butler, A. I. Butt, C. M. Buttar, J. M. Butterworth, P. Butti, W. Buttinger, A. Buzatu, A. R. Buzykaev, S. Cabrera Urbán, D. Caforio, V. M. Cairo, O. Cakir, N. Calace, P. Calafiura, A. Calandri, G. Calderini, P. Calfayan, L. P. Caloba, D. Calvet, S. Calvet, R. Camacho Toro, S. Camarda, P. Camarri, D. Cameron, R. Caminal Armadans, S. Campana, M. Campanelli, A. Campoverde, V. Canale, A. Canepa, M. Cano Bret, J. Cantero, R. Cantrill, T. Cao, M. D. M. Capeans Garrido, I. Caprini, M. Caprini, M. Capua, R. Caputo, R. Cardarelli, F. Cardillo, T. Carli, G. Carlino, L. Carminati, S. Caron, E. Carquin, G. D. Carrillo-Montoya, J. R. Carter, J. Carvalho, D. Casadei, M. P. Casado, M. Casolino, E. Castaneda-Miranda, A. Castelli, V. Castillo Gimenez, N. F. Castro, P. Catastini, A. Catinaccio, J. R. Catmore, A. Cattai, J. Caudron, V. Cavaliere, D. Cavalli, M. Cavalli-Sforza, V. Cavasinni, F. Ceradini, B. C. Cerio, K. Cerny, A. S. Cerqueira, A. Cerri, L. Cerrito, F. Cerutti, M. Cerv, A. Cervelli, S. A. Cetin, A. Chafaq, D. Chakraborty, I. Chalupkova, P. Chang, J. D. Chapman, D. G. Charlton, C. C. Chau, C. A. Chavez Barajas, S. Cheatham, A. Chegwidden, S. Chekanov, S. V. Chekulaev, G. A. Chelkov, M. A. Chelstowska, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, H. C. Cheng, Y. Cheng, A. Cheplakov, E. Cheremushkina, R. Cherkaoui El Moursli, V. Chernyatin, E. Cheu, L. Chevalier, V. Chiarella, G. Chiarelli, G. Chiodini, A. S. Chisholm, R. T. Chislett, A. Chitan, M. V. Chizhov, K. Choi, S. Chouridou, B. K. B. Chow, V. Christodoulou, D. Chromek-Burckhart, J. Chudoba, A. J. Chuinard, J. J. Chwastowski, L. Chytka, G. Ciapetti, A. K. Ciftci, D. Cinca, V. Cindro, I. A. Cioara, A. Ciocio, F. Cirotto, Z. H. Citron, M. Ciubancan, A. Clark, B. L. Clark, P. J. Clark, R. N. Clarke, W. Cleland, C. Clement, Y. Coadou, M. Cobal, A. Coccaro, J. Cochran, L. Coffey, J. G. Cogan, L. Colasurdo, B. Cole, S. Cole, A. P. Colijn, J. Collot, T. Colombo, G. Compostella, P. Conde Muiño, E. Coniavitis, S. H. Connell, I. A. Connelly, V. Consorti, S. Constantinescu, C. Conta, G. Conti, F. Conventi, M. Cooke, B. D. Cooper, A. M. Cooper-Sarkar, T. Cornelissen, M. Corradi, F. Corriveau, A. Corso-Radu, A. Cortes-Gonzalez, G. Cortiana, G. Costa, M. J. Costa, D. Costanzo, D. Côté, G. Cottin, G. Cowan, B. E. Cox, K. Cranmer, G. Cree, S. Crépé-Renaudin, F. Crescioli, W. A. Cribbs, M. Crispin Ortuzar, M. Cristinziani, V. Croft, G. Crosetti, T. Cuhadar Donszelmann, J. Cummings, M. Curatolo, C. Cuthbert, H. Czirr, P. Czodrowski, S. D’Auria, M. D’Onofrio, M. J. Da Cunha Sargedas De Sousa, C. Da Via, W. Dabrowski, A. Dafinca, T. Dai, O. Dale, F. Dallaire, C. Dallapiccola, M. Dam, J. R. Dandoy, N. P. Dang, A. C. Daniells, M. Danninger, M. Dano Hoffmann, V. Dao, G. Darbo, S. Darmora, J. Dassoulas, A. Dattagupta, W. Davey, C. David, T. Davidek, E. Davies, M. Davies, P. Davison, Y. Davygora, E. Dawe, I. Dawson, R. K. Daya-Ishmukhametova, K. De, R. de Asmundis, A. De Benedetti, S. De Castro, S. De Cecco, N. De Groot, P. de Jong, H. De la Torre, F. De Lorenzi, D. De Pedis, A. De Salvo, U. De Sanctis, A. De Santo, J. B. De Vivie De Regie, W. J. Dearnaley, R. Debbe, C. Debenedetti, D. V. Dedovich, I. Deigaard, J. Del Peso, T. Del Prete, D. Delgove, F. Deliot, C. M. Delitzsch, M. Deliyergiyev, A. Dell’Acqua, L. Dell’Asta, M. Dell’Orso, M. Della Pietra, D. della Volpe, M. Delmastro, P. A. Delsart, C. Deluca, D. A. DeMarco, S. Demers, M. Demichev, A. Demilly, S. P. Denisov, D. Derendarz, J. E. Derkaoui, F. Derue, P. Dervan, K. Desch, C. Deterre, P. O. Deviveiros, A. Dewhurst, S. Dhaliwal, A. Di Ciaccio, L. Di Ciaccio, A. Di Domenico, C. Di Donato, A. Di Girolamo, B. Di Girolamo, A. Di Mattia, B. Di Micco, R. Di Nardo, A. Di Simone, R. Di Sipio, D. Di Valentino, C. Diaconu, M. Diamond, F. A. Dias, M. A. Diaz, E. B. Diehl, J. Dietrich, S. Diglio, A. Dimitrievska, J. Dingfelder, P. Dita, S. Dita, F. Dittus, F. Djama, T. Djobava, J. I. Djuvsland, M. A. B. do Vale, D. Dobos, M. Dobre, C. Doglioni, T. Dohmae, J. Dolejsi, Z. Dolezal, B. A. Dolgoshein, M. Donadelli, S. Donati, P. Dondero, J. Donini, J. Dopke, A. Doria, M. T. Dova, A. T. Doyle, E. Drechsler, M. Dris, E. Dubreuil, E. Duchovni, G. Duckeck, O. A. Ducu, D. Duda, A. Dudarev, L. Duflot, L. Duguid, M. Dührssen, M. Dunford, H. Duran Yildiz, M. Düren, A. Durglishvili, D. Duschinger, M. Dyndal, C. Eckardt, K. M. Ecker, R. C. Edgar, W. Edson, N. C. Edwards, W. Ehrenfeld, T. Eifert, G. Eigen, K. Einsweiler, T. Ekelof, M. El Kacimi, M. Ellert, S. Elles, F. Ellinghaus, A. A. Elliot, N. Ellis, J. Elmsheuser, M. Elsing, D. Emeliyanov, Y. Enari, O. C. Endner, M. Endo, J. Erdmann, A. Ereditato, G. Ernis, J. Ernst, M. Ernst, S. Errede, E. Ertel, M. Escalier, H. Esch, C. Escobar, B. Esposito, A. I. Etienvre, E. Etzion, H. Evans, A. Ezhilov, L. Fabbri, G. Facini, R. M. Fakhrutdinov, S. Falciano, R. J. Falla, J. Faltova, Y. Fang, M. Fanti, A. Farbin, A. Farilla, T. Farooque, S. Farrell, S. M. Farrington, P. Farthouat, F. Fassi, P. Fassnacht, D. Fassouliotis, M. Faucci Giannelli, A. Favareto, L. Fayard, P. Federic, O. L. Fedin, W. Fedorko, S. Feigl, L. Feligioni, C. Feng, E. J. Feng, H. Feng, A. B. Fenyuk, L. Feremenga, P. Fernandez Martinez, S. Fernandez Perez, J. Ferrando, A. Ferrari, P. Ferrari, R. Ferrari, D. E. Ferreira de Lima, A. Ferrer, D. Ferrere, C. Ferretti, A. Ferretto Parodi, M. Fiascaris, F. Fiedler, A. Filipčič, M. Filipuzzi, F. Filthaut, M. Fincke-Keeler, K. D. Finelli, M. C. N. Fiolhais, L. Fiorini, A. Firan, A. Fischer, C. Fischer, J. Fischer, W. C. Fisher, E. A. Fitzgerald, N. Flaschel, I. Fleck, P. Fleischmann, S. Fleischmann, G. T. Fletcher, G. Fletcher, R. R. M. Fletcher, T. Flick, A. Floderus, L. R. Flores Castillo, M. J. Flowerdew, A. Formica, A. Forti, D. Fournier, H. Fox, S. Fracchia, P. Francavilla, M. Franchini, D. Francis, L. Franconi, M. Franklin, M. Frate, M. Fraternali, D. Freeborn, S. T. French, F. Friedrich, D. Froidevaux, J. A. Frost, C. Fukunaga, E. Fullana Torregrosa, B. G. Fulsom, T. Fusayasu, J. Fuster, C. Gabaldon, O. Gabizon, A. Gabrielli, G. P. Gach, S. Gadatsch, S. Gadomski, G. Gagliardi, P. Gagnon, C. Galea, B. Galhardo, E. J. Gallas, B. J. Gallop, P. Gallus, G. Galster, K. K. Gan, J. Gao, Y. Gao, Y. S. Gao, F. M. Garay Walls, F. Garberson, C. García, J. E. García Navarro, M. Garcia-Sciveres, R. W. Gardner, N. Garelli, V. Garonne, C. Gatti, A. Gaudiello, G. Gaudio, B. Gaur, L. Gauthier, P. Gauzzi, I. L. Gavrilenko, C. Gay, G. Gaycken, E. N. Gazis, P. Ge, Z. Gecse, C. N. P. Gee, Ch. Geich-Gimbel, M. P. Geisler, C. Gemme, M. H. Genest, S. Gentile, M. George, S. George, D. Gerbaudo, A. Gershon, S. Ghasemi, H. Ghazlane, B. Giacobbe, S. Giagu, V. Giangiobbe, P. Giannetti, B. Gibbard, S. M. Gibson, M. Gilchriese, T. P. S. Gillam, D. Gillberg, G. Gilles, D. M. Gingrich, N. Giokaris, M. P. Giordani, F. M. Giorgi, P. F. Giraud, P. Giromini, D. Giugni, C. Giuliani, M. Giulini, B. K. Gjelsten, S. Gkaitatzis, I. Gkialas, E. L. Gkougkousis, L. K. Gladilin, C. Glasman, J. Glatzer, P. C. F. Glaysher, A. Glazov, M. Goblirsch-Kolb, J. R. Goddard, J. Godlewski, S. Goldfarb, T. Golling, D. Golubkov, A. Gomes, R. Gonçalo, J. Goncalves Pinto Firmino Da Costa, L. Gonella, S. González de la Hoz, G. Gonzalez Parra, S. Gonzalez-Sevilla, L. Goossens, P. A. Gorbounov, H. A. Gordon, I. Gorelov, B. Gorini, E. Gorini, A. Gorišek, E. Gornicki, A. T. Goshaw, C. Gössling, M. I. Gostkin, D. Goujdami, A. G. Goussiou, N. Govender, E. Gozani, H. M. X. Grabas, L. Graber, I. Grabowska-Bold, P. O. J. Gradin, P. Grafström, K-J. Grahn, J. Gramling, E. Gramstad, S. Grancagnolo, V. Gratchev, H. M. Gray, E. Graziani, Z. D. Greenwood, C. Grefe, K. Gregersen, I. M. Gregor, P. Grenier, J. Griffiths, A. A. Grillo, K. Grimm, S. Grinstein, Ph. Gris, J.-F. Grivaz, J. P. Grohs, A. Grohsjean, E. Gross, J. Grosse-Knetter, G. C. Grossi, Z. J. Grout, L. Guan, J. Guenther, F. Guescini, D. Guest, O. Gueta, E. Guido, T. Guillemin, S. Guindon, U. Gul, C. Gumpert, J. Guo, Y. Guo, S. Gupta, G. Gustavino, P. Gutierrez, N. G. Gutierrez Ortiz, C. Gutschow, C. Guyot, C. Gwenlan, C. B. Gwilliam, A. Haas, C. Haber, H. K. Hadavand, N. Haddad, P. Haefner, S. Hageböck, Z. Hajduk, H. Hakobyan, M. Haleem, J. Haley, D. Hall, G. Halladjian, G. D. Hallewell, K. Hamacher, P. Hamal, K. Hamano, A. Hamilton, G. N. Hamity, P. G. Hamnett, L. Han, K. Hanagaki, K. Hanawa, M. Hance, P. Hanke, R. Hanna, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hansen, K. Hara, A. S. Hard, T. Harenberg, F. Hariri, S. Harkusha, R. D. Harrington, P. F. Harrison, F. Hartjes, M. Hasegawa, Y. Hasegawa, A. Hasib, S. Hassani, S. Haug, R. Hauser, L. Hauswald, M. Havranek, C. M. Hawkes, R. J. Hawkings, A. D. Hawkins, T. Hayashi, D. Hayden, C. P. Hays, J. M. Hays, H. S. Hayward, S. J. Haywood, S. J. Head, T. Heck, V. Hedberg, L. Heelan, S. Heim, T. Heim, B. Heinemann, L. Heinrich, J. Hejbal, L. Helary, S. Hellman, D. Hellmich, C. Helsens, J. Henderson, R. C. W. Henderson, Y. Heng, C. Hengler, S. Henkelmann, A. Henrichs, A. M. Henriques Correia, S. Henrot-Versille, G. H. Herbert, Y. Hernández Jiménez, R. Herrberg-Schubert, G. Herten, R. Hertenberger, L. Hervas, G. G. Hesketh, N. P. Hessey, J. W. Hetherly, R. Hickling, E. Higón-Rodriguez, E. Hill, J. C. Hill, K. H. Hiller, S. J. Hillier, I. Hinchliffe, E. Hines, R. R. Hinman, M. Hirose, D. Hirschbuehl, J. Hobbs, N. Hod, M. C. Hodgkinson, P. Hodgson, A. Hoecker, M. R. Hoeferkamp, F. Hoenig, M. Hohlfeld, D. Hohn, T. R. Holmes, M. Homann, T. M. Hong, L. Hooft van Huysduynen, W. H. Hopkins, Y. Horii, A. J. Horton, J-Y. Hostachy, S. Hou, A. Hoummada, J. Howard, J. Howarth, M. Hrabovsky, I. Hristova, J. Hrivnac, T. Hryn’ova, A. Hrynevich, C. Hsu, P. J. Hsu, S.-C. Hsu, D. Hu, Q. Hu, X. Hu, Y. Huang, Z. Hubacek, F. Hubaut, F. Huegging, T. B. Huffman, E. W. Hughes, G. Hughes, M. Huhtinen, T. A. Hülsing, N. Huseynov, J. Huston, J. Huth, G. Iacobucci, G. Iakovidis, I. Ibragimov, L. Iconomidou-Fayard, E. Ideal, Z. Idrissi, P. Iengo, O. Igonkina, T. Iizawa, Y. Ikegami, K. Ikematsu, M. Ikeno, Y. Ilchenko, D. Iliadis, N. Ilic, T. Ince, G. Introzzi, P. Ioannou, M. Iodice, K. Iordanidou, V. Ippolito, A. Irles Quiles, C. Isaksson, M. Ishino, M. Ishitsuka, R. Ishmukhametov, C. Issever, S. Istin, J. M. Iturbe Ponce, R. Iuppa, J. Ivarsson, W. Iwanski, H. Iwasaki, J. M. Izen, V. Izzo, S. Jabbar, B. Jackson, M. Jackson, P. Jackson, M. R. Jaekel, V. Jain, K. Jakobs, S. Jakobsen, T. Jakoubek, J. Jakubek, D. O. Jamin, D. K. Jana, E. Jansen, R. Jansky, J. Janssen, M. Janus, G. Jarlskog, N. Javadov, T. Javůrek, L. Jeanty, J. Jejelava, G.-Y. Jeng, D. Jennens, P. Jenni, J. Jentzsch, C. Jeske, S. Jézéquel, H. Ji, J. Jia, Y. Jiang, S. Jiggins, J. Jimenez Pena, S. Jin, A. Jinaru, O. Jinnouchi, M. D. Joergensen, P. Johansson, K. A. Johns, K. Jon-And, G. Jones, R. W. L. Jones, T. J. Jones, J. Jongmanns, P. M. Jorge, K. D. Joshi, J. Jovicevic, X. Ju, C. A. Jung, P. Jussel, A. Juste Rozas, M. Kaci, A. Kaczmarska, M. Kado, H. Kagan, M. Kagan, S. J. Kahn, E. Kajomovitz, C. W. Kalderon, S. Kama, A. Kamenshchikov, N. Kanaya, S. Kaneti, V. A. Kantserov, J. Kanzaki, B. Kaplan, L. S. Kaplan, A. Kapliy, D. Kar, K. Karakostas, A. Karamaoun, N. Karastathis, M. J. Kareem, E. Karentzos, M. Karnevskiy, S. N. Karpov, Z. M. Karpova, K. Karthik, V. Kartvelishvili, A. N. Karyukhin, L. Kashif, R. D. Kass, A. Kastanas, Y. Kataoka, C. Kato, A. Katre, J. Katzy, K. Kawagoe, T. Kawamoto, G. Kawamura, S. Kazama, V. F. Kazanin, R. Keeler, R. Kehoe, J. S. Keller, J. J. Kempster, H. Keoshkerian, O. Kepka, B. P. Kerševan, S. Kersten, R. A. Keyes, F. Khalil-zada, H. Khandanyan, A. Khanov, A. G. Kharlamov, T. J. Khoo, V. Khovanskiy, E. Khramov, J. Khubua, S. Kido, H. Y. Kim, S. H. Kim, Y. K. Kim, N. Kimura, O. M. Kind, B. T. King, M. King, S. B. King, J. Kirk, A. E. Kiryunin, T. Kishimoto, D. Kisielewska, F. Kiss, K. Kiuchi, O. Kivernyk, E. Kladiva, M. H. Klein, M. Klein, U. Klein, K. Kleinknecht, P. Klimek, A. Klimentov, R. Klingenberg, J. A. Klinger, T. Klioutchnikova, E.-E. Kluge, P. Kluit, S. Kluth, J. Knapik, E. Kneringer, E. B. F. G. Knoops, A. Knue, A. Kobayashi, D. Kobayashi, T. Kobayashi, M. Kobel, M. Kocian, P. Kodys, T. Koffas, E. Koffeman, L. A. Kogan, S. Kohlmann, Z. Kohout, T. Kohriki, T. Koi, H. Kolanoski, I. Koletsou, A. A. Komar, Y. Komori, T. Kondo, N. Kondrashova, K. Köneke, A. C. König, T. Kono, R. Konoplich, N. Konstantinidis, R. Kopeliansky, S. Koperny, L. Köpke, A. K. Kopp, K. Korcyl, K. Kordas, A. Korn, A. A. Korol, I. Korolkov, E. V. Korolkova, O. Kortner, S. Kortner, T. Kosek, V. V. Kostyukhin, V. M. Kotov, A. Kotwal, A. Kourkoumeli-Charalampidi, C. Kourkoumelis, V. Kouskoura, A. Koutsman, R. Kowalewski, T. Z. Kowalski, W. Kozanecki, A. S. Kozhin, V. A. Kramarenko, G. Kramberger, D. Krasnopevtsev, M. W. Krasny, A. Krasznahorkay, J. K. Kraus, A. Kravchenko, S. Kreiss, M. Kretz, J. Kretzschmar, K. Kreutzfeldt, P. Krieger, K. Krizka, K. Kroeninger, H. Kroha, J. Kroll, J. Kroseberg, J. Krstic, U. Kruchonak, H. Krüger, N. Krumnack, A. Kruse, M. C. Kruse, M. Kruskal, T. Kubota, H. Kucuk, S. Kuday, S. Kuehn, A. Kugel, F. Kuger, A. Kuhl, T. Kuhl, V. Kukhtin, R. Kukla, Y. Kulchitsky, S. Kuleshov, M. Kuna, T. Kunigo, A. Kupco, H. Kurashige, Y. A. Kurochkin, V. Kus, E. S. Kuwertz, M. Kuze, J. Kvita, T. Kwan, D. Kyriazopoulos, A. La Rosa, J. L. La Rosa Navarro, L. La Rotonda, C. Lacasta, F. Lacava, J. Lacey, H. Lacker, D. Lacour, V. R. Lacuesta, E. Ladygin, R. Lafaye, B. Laforge, T. Lagouri, S. Lai, L. Lambourne, S. Lammers, C. L. Lampen, W. Lampl, E. Lançon, U. Landgraf, M. P. J. Landon, V. S. Lang, J. C. Lange, A. J. Lankford, F. Lanni, K. Lantzsch, A. Lanza, S. Laplace, C. Lapoire, J. F. Laporte, T. Lari, F. Lasagni Manghi, M. Lassnig, P. Laurelli, W. Lavrijsen, A. T. Law, P. Laycock, T. Lazovich, O. Le Dortz, E. Le Guirriec, E. Le Menedeu, M. LeBlanc, T. LeCompte, F. Ledroit-Guillon, C. A. Lee, S. C. Lee, L. Lee, G. Lefebvre, M. Lefebvre, F. Legger, C. Leggett, A. Lehan, G. Lehmann Miotto, X. Lei, W. A. Leight, A. Leisos, A. G. Leister, M. A. L. Leite, R. Leitner, D. Lellouch, B. Lemmer, K. J. C. Leney, T. Lenz, B. Lenzi, R. Leone, S. Leone, C. Leonidopoulos, S. Leontsinis, C. Leroy, C. G. Lester, M. Levchenko, J. Levêque, D. Levin, L. J. Levinson, M. Levy, A. Lewis, A. M. Leyko, M. Leyton, B. Li, H. Li, H. L. Li, L. Li, S. Li, X. Li, Y. Li, Z. Liang, H. Liao, B. Liberti, A. Liblong, P. Lichard, K. Lie, J. Liebal, W. Liebig, C. Limbach, A. Limosani, S. C. Lin, T. H. Lin, F. Linde, B. E. Lindquist, J. T. Linnemann, E. Lipeles, A. Lipniacka, M. Lisovyi, T. M. Liss, D. Lissauer, A. Lister, A. M. Litke, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, Y. Liu, M. Livan, A. Lleres, J. Llorente Merino, S. L. Lloyd, F. Lo Sterzo, E. Lobodzinska, P. Loch, W. S. Lockman, F. K. Loebinger, A. E. Loevschall-Jensen, A. Loginov, T. Lohse, K. Lohwasser, M. Lokajicek, B. A. Long, J. D. Long, R. E. Long, K. A. Looper, L. Lopes, D. Lopez Mateos, B. Lopez Paredes, I. Lopez Paz, J. Lorenz, N. Lorenzo Martinez, M. Losada, P. J. Lösel, X. Lou, A. Lounis, J. Love, P. A. Love, N. Lu, H. J. Lubatti, C. Luci, A. Lucotte, F. Luehring, W. Lukas, L. Luminari, O. Lundberg, B. Lund-Jensen, D. Lynn, R. Lysak, E. Lytken, H. Ma, L. L. Ma, G. Maccarrone, A. Macchiolo, C. M. Macdonald, B. Maček, J. Machado Miguens, D. Macina, D. Madaffari, R. Madar, H. J. Maddocks, W. F. Mader, A. Madsen, J. Maeda, S. Maeland, T. Maeno, A. Maevskiy, E. Magradze, K. Mahboubi, J. Mahlstedt, C. Maiani, C. Maidantchik, A. A. Maier, T. Maier, A. Maio, S. Majewski, Y. Makida, N. Makovec, B. Malaescu, Pa. Malecki, V. P. Maleev, F. Malek, U. Mallik, D. Malon, C. Malone, S. Maltezos, V. M. Malyshev, S. Malyukov, J. Mamuzic, G. Mancini, B. Mandelli, L. Mandelli, I. Mandić, R. Mandrysch, J. Maneira, A. Manfredini, L. Manhaes de Andrade Filho, J. Manjarres Ramos, A. Mann, A. Manousakis-Katsikakis, B. Mansoulie, R. Mantifel, M. Mantoani, L. Mapelli, L. March, G. Marchiori, M. Marcisovsky, C. P. Marino, M. Marjanovic, D. E. Marley, F. Marroquim, S. P. Marsden, Z. Marshall, L. F. Marti, S. Marti-Garcia, B. Martin, T. A. Martin, V. J. Martin, B. Martin dit Latour, M. Martinez, S. Martin-Haugh, V. S. Martoiu, A. C. Martyniuk, M. Marx, F. Marzano, A. Marzin, L. Masetti, T. Mashimo, R. Mashinistov, J. Masik, A. L. Maslennikov, I. Massa, L. Massa, N. Massol, P. Mastrandrea, A. Mastroberardino, T. Masubuchi, P. Mättig, Jm. Mattmann, J. Maurer, S. J. Maxfield, D. A. Maximov, R. Mazini, S. M. Mazza, L. Mazzaferro, G. Mc Goldrick, S. P. Mc Kee, A. McCarn, R. L. McCarthy, T. G. McCarthy, N. A. McCubbin, K. W. McFarlane, J. A. Mcfayden, G. Mchedlidze, S. J. McMahon, R. A. McPherson, M. Medinnis, S. Meehan, S. Mehlhase, A. Mehta, K. Meier, C. Meineck, B. Meirose, B. R. Mellado Garcia, F. Meloni, A. Mengarelli, S. Menke, E. Meoni, K. M. Mercurio, S. Mergelmeyer, P. Mermod, L. Merola, C. Meroni, F. S. Merritt, A. Messina, J. Metcalfe, A. S. Mete, C. Meyer, J-P. Meyer, J. Meyer, H. Meyer Zu Theenhausen, R. P. Middleton, S. Miglioranzi, L. Mijović, G. Mikenberg, M. Mikestikova, M. Mikuž, M. Milesi, A. Milic, D. W. Miller, C. Mills, A. Milov, D. A. Milstead, A. A. Minaenko, Y. Minami, I. A. Minashvili, A. I. Mincer, B. Mindur, M. Mineev, Y. Ming, L. M. Mir, T. Mitani, J. Mitrevski, V. A. Mitsou, A. Miucci, P. S. Miyagawa, J. U. Mjörnmark, T. Moa, K. Mochizuki, S. Mohapatra, W. Mohr, S. Molander, R. Moles-Valls, R. Monden, K. Mönig, C. Monini, J. Monk, E. Monnier, J. Montejo Berlingen, F. Monticelli, S. Monzani, R. W. Moore, N. Morange, D. Moreno, M. Moreno Llácer, P. Morettini, D. Mori, M. Morii, M. Morinaga, V. Morisbak, S. Moritz, A. K. Morley, G. Mornacchi, J. D. Morris, S. S. Mortensen, A. Morton, L. Morvaj, M. Mosidze, J. Moss, K. Motohashi, R. Mount, E. Mountricha, S. V. Mouraviev, E. J. W. Moyse, S. Muanza, R. D. Mudd, F. Mueller, J. Mueller, R. S. P. Mueller, T. Mueller, D. Muenstermann, P. Mullen, G. A. Mullier, J. A. Murillo Quijada, W. J. Murray, H. Musheghyan, E. Musto, A. G. Myagkov, M. Myska, B. P. Nachman, O. Nackenhorst, J. Nadal, K. Nagai, R. Nagai, Y. Nagai, K. Nagano, A. Nagarkar, Y. Nagasaka, K. Nagata, M. Nagel, E. Nagy, A. M. Nairz, Y. Nakahama, K. Nakamura, T. Nakamura, I. Nakano, H. Namasivayam, R. F. Naranjo Garcia, R. Narayan, D. I. Narrias Villar, T. Naumann, G. Navarro, R. Nayyar, H. A. Neal, P. Yu. Nechaeva, T. J. Neep, P. D. Nef, A. Negri, M. Negrini, S. Nektarijevic, C. Nellist, A. Nelson, S. Nemecek, P. Nemethy, A. A. Nepomuceno, M. Nessi, M. S. Neubauer, M. Neumann, R. M. Neves, P. Nevski, P. R. Newman, D. H. Nguyen, R. B. Nickerson, R. Nicolaidou, B. Nicquevert, J. Nielsen, N. Nikiforou, A. Nikiforov, V. Nikolaenko, I. Nikolic-Audit, K. Nikolopoulos, J. K. Nilsen, P. Nilsson, Y. Ninomiya, A. Nisati, R. Nisius, T. Nobe, M. Nomachi, I. Nomidis, T. Nooney, S. Norberg, M. Nordberg, O. Novgorodova, S. Nowak, M. Nozaki, L. Nozka, K. Ntekas, G. Nunes Hanninger, T. Nunnemann, E. Nurse, F. Nuti, B. J. O’Brien, F. O’grady, D. C. O’Neil, V. O’Shea, F. G. Oakham, H. Oberlack, T. Obermann, J. Ocariz, A. Ochi, I. Ochoa, J. P. Ochoa-Ricoux, S. Oda, S. Odaka, H. Ogren, A. Oh, S. H. Oh, C. C. Ohm, H. Ohman, H. Oide, W. Okamura, H. Okawa, Y. Okumura, T. Okuyama, A. Olariu, S. A. Olivares Pino, D. Oliveira Damazio, E. Oliver Garcia, A. Olszewski, J. Olszowska, A. Onofre, K. Onogi, P. U. E. Onyisi, C. J. Oram, M. J. Oreglia, Y. Oren, D. Orestano, N. Orlando, C. Oropeza Barrera, R. S. Orr, B. Osculati, R. Ospanov, G. Otero y Garzon, H. Otono, M. Ouchrif, F. Ould-Saada, A. Ouraou, K. P. Oussoren, Q. Ouyang, A. Ovcharova, M. Owen, R. E. Owen, V. E. Ozcan, N. Ozturk, K. Pachal, A. Pacheco Pages, C. Padilla Aranda, M. Pagáčová, S. Pagan Griso, E. Paganis, F. Paige, P. Pais, K. Pajchel, G. Palacino, S. Palestini, M. Palka, D. Pallin, A. Palma, Y. B. Pan, E. Panagiotopoulou, C. E. Pandini, J. G. Panduro Vazquez, P. Pani, S. Panitkin, D. Pantea, L. Paolozzi, Th. D. Papadopoulou, K. Papageorgiou, A. Paramonov, D. Paredes Hernandez, M. A. Parker, K. A. Parker, F. Parodi, J. A. Parsons, U. Parzefall, E. Pasqualucci, S. Passaggio, F. Pastore, Fr. Pastore, G. Pásztor, S. Pataraia, N. D. Patel, J. R. Pater, T. Pauly, J. Pearce, B. Pearson, L. E. Pedersen, M. Pedersen, S. Pedraza Lopez, R. Pedro, S. V. Peleganchuk, D. Pelikan, O. Penc, C. Peng, H. Peng, B. Penning, J. Penwell, D. V. Perepelitsa, E. Perez Codina, M. T. Pérez García-Estañ, L. Perini, H. Pernegger, S. Perrella, R. Peschke, V. D. Peshekhonov, K. Peters, R. F. Y. Peters, B. A. Petersen, T. C. Petersen, E. Petit, A. Petridis, C. Petridou, P. Petroff, E. Petrolo, F. Petrucci, N. E. Pettersson, R. Pezoa, P. W. Phillips, G. Piacquadio, E. Pianori, A. Picazio, E. Piccaro, M. Piccinini, M. A. Pickering, R. Piegaia, D. T. Pignotti, J. E. Pilcher, A. D. Pilkington, J. Pina, M. Pinamonti, J. L. Pinfold, A. Pingel, S. Pires, H. Pirumov, M. Pitt, C. Pizio, L. Plazak, M.-A. Pleier, V. Pleskot, E. Plotnikova, P. Plucinski, D. Pluth, R. Poettgen, L. Poggioli, D. Pohl, G. Polesello, A. Poley, A. Policicchio, R. Polifka, A. Polini, C. S. Pollard, V. Polychronakos, K. Pommès, L. Pontecorvo, B. G. Pope, G. A. Popeneciu, D. S. Popovic, A. Poppleton, S. Pospisil, K. Potamianos, I. N. Potrap, C. J. Potter, C. T. Potter, G. Poulard, J. Poveda, V. Pozdnyakov, P. Pralavorio, A. Pranko, S. Prasad, S. Prell, D. Price, L. E. Price, M. Primavera, S. Prince, M. Proissl, K. Prokofiev, F. Prokoshin, E. Protopapadaki, S. Protopopescu, J. Proudfoot, M. Przybycien, E. Ptacek, D. Puddu, E. Pueschel, D. Puldon, M. Purohit, P. Puzo, J. Qian, G. Qin, Y. Qin, A. Quadt, D. R. Quarrie, W. B. Quayle, M. Queitsch-Maitland, D. Quilty, S. Raddum, V. Radeka, V. Radescu, S. K. Radhakrishnan, P. Radloff, P. Rados, F. Ragusa, G. Rahal, S. Rajagopalan, M. Rammensee, C. Rangel-Smith, F. Rauscher, S. Rave, T. Ravenscroft, M. Raymond, A. L. Read, N. P. Readioff, D. M. Rebuzzi, A. Redelbach, G. Redlinger, R. Reece, K. Reeves, L. Rehnisch, J. Reichert, H. Reisin, M. Relich, C. Rembser, H. Ren, A. Renaud, M. Rescigno, S. Resconi, O. L. Rezanova, P. Reznicek, R. Rezvani, R. Richter, S. Richter, E. Richter-Was, O. Ricken, M. Ridel, P. Rieck, C. J. Riegel, J. Rieger, O. Rifki, M. Rijssenbeek, A. Rimoldi, L. Rinaldi, B. Ristić, E. Ritsch, I. Riu, F. Rizatdinova, E. Rizvi, S. H. Robertson, A. Robichaud-Veronneau, D. Robinson, J. E. M. Robinson, A. Robson, C. Roda, S. Roe, O. Røhne, S. Rolli, A. Romaniouk, M. Romano, S. M. Romano Saez, E. Romero Adam, N. Rompotis, M. Ronzani, L. Roos, E. Ros, S. Rosati, K. Rosbach, P. Rose, P. L. Rosendahl, O. Rosenthal, V. Rossetti, E. Rossi, L. P. Rossi, J. H. N. Rosten, R. Rosten, M. Rotaru, I. Roth, J. Rothberg, D. Rousseau, C. R. Royon, A. Rozanov, Y. Rozen, X. Ruan, F. Rubbo, I. Rubinskiy, V. I. Rud, C. Rudolph, M. S. Rudolph, F. Rühr, A. Ruiz-Martinez, Z. Rurikova, N. A. Rusakovich, A. Ruschke, H. L. Russell, J. P. Rutherfoord, N. Ruthmann, Y. F. Ryabov, M. Rybar, G. Rybkin, N. C. Ryder, A. F. Saavedra, G. Sabato, S. Sacerdoti, A. Saddique, H. F-W. Sadrozinski, R. Sadykov, F. Safai Tehrani, M. Sahinsoy, M. Saimpert, T. Saito, H. Sakamoto, Y. Sakurai, G. Salamanna, A. Salamon, J. E. Salazar Loyola, M. Saleem, D. Salek, P. H. Sales De Bruin, D. Salihagic, A. Salnikov, J. Salt, D. Salvatore, F. Salvatore, A. Salvucci, A. Salzburger, D. Sammel, D. Sampsonidis, A. Sanchez, J. Sánchez, V. Sanchez Martinez, H. Sandaker, R. L. Sandbach, H. G. Sander, M. P. Sanders, M. Sandhoff, C. Sandoval, R. Sandstroem, D. P. C. Sankey, M. Sannino, A. Sansoni, C. Santoni, R. Santonico, H. Santos, I. Santoyo Castillo, K. Sapp, A. Sapronov, J. G. Saraiva, B. Sarrazin, O. Sasaki, Y. Sasaki, K. Sato, G. Sauvage, E. Sauvan, G. Savage, P. Savard, C. Sawyer, L. Sawyer, J. Saxon, C. Sbarra, A. Sbrizzi, T. Scanlon, D. A. Scannicchio, M. Scarcella, V. Scarfone, J. Schaarschmidt, P. Schacht, D. Schaefer, R. Schaefer, J. Schaeffer, S. Schaepe, S. Schaetzel, U. Schäfer, A. C. Schaffer, D. Schaile, R. D. Schamberger, V. Scharf, V. A. Schegelsky, D. Scheirich, M. Schernau, C. Schiavi, C. Schillo, M. Schioppa, S. Schlenker, K. Schmieden, C. Schmitt, S. Schmitt, B. Schneider, Y. J. Schnellbach, U. Schnoor, L. Schoeffel, A. Schoening, B. D. Schoenrock, E. Schopf, A. L. S. Schorlemmer, M. Schott, D. Schouten, J. Schovancova, S. Schramm, M. Schreyer, C. Schroeder, N. Schuh, M. J. Schultens, H.-C. Schultz-Coulon, H. Schulz, M. Schumacher, B. A. Schumm, Ph. Schune, C. Schwanenberger, A. Schwartzman, T. A. Schwarz, Ph. Schwegler, H. Schweiger, Ph. Schwemling, R. Schwienhorst, J. Schwindling, T. Schwindt, F. G. Sciacca, E. Scifo, G. Sciolla, F. Scuri, F. Scutti, J. Searcy, G. Sedov, E. Sedykh, P. Seema, S. C. Seidel, A. Seiden, F. Seifert, J. M. Seixas, G. Sekhniaidze, K. Sekhon, S. J. Sekula, D. M. Seliverstov, N. Semprini-Cesari, C. Serfon, L. Serin, L. Serkin, T. Serre, M. Sessa, R. Seuster, H. Severini, T. Sfiligoj, F. Sforza, A. Sfyrla, E. Shabalina, M. Shamim, L. Y. Shan, R. Shang, J. T. Shank, M. Shapiro, P. B. Shatalov, K. Shaw, S. M. Shaw, A. Shcherbakova, C. Y. Shehu, P. Sherwood, L. Shi, S. Shimizu, C. O. Shimmin, M. Shimojima, M. Shiyakova, A. Shmeleva, D. Shoaleh Saadi, M. J. Shochet, S. Shojaii, S. Shrestha, E. Shulga, M. A. Shupe, S. Shushkevich, P. Sicho, P. E. Sidebo, O. Sidiropoulou, D. Sidorov, A. Sidoti, F. Siegert, Dj. Sijacki, J. Silva, Y. Silver, S. B. Silverstein, V. Simak, O. Simard, Lj. Simic, S. Simion, E. Simioni, B. Simmons, D. Simon, P. Sinervo, N. B. Sinev, M. Sioli, G. Siragusa, A. N. Sisakyan, S. Yu. Sivoklokov, J. Sjölin, T. B. Sjursen, M. B. Skinner, H. P. Skottowe, P. Skubic, M. Slater, T. Slavicek, M. Slawinska, K. Sliwa, V. Smakhtin, B. H. Smart, L. Smestad, S. Yu. Smirnov, Y. Smirnov, L. N. Smirnova, O. Smirnova, M. N. K. Smith, R. W. Smith, M. Smizanska, K. Smolek, A. A. Snesarev, G. Snidero, S. Snyder, R. Sobie, F. Socher, A. Soffer, D. A. Soh, G. Sokhrannyi, C. A. Solans, M. Solar, J. Solc, E. Yu. Soldatov, U. Soldevila, A. A. Solodkov, A. Soloshenko, O. V. Solovyanov, V. Solovyev, P. Sommer, H. Y. Song, N. Soni, A. Sood, A. Sopczak, B. Sopko, V. Sopko, V. Sorin, D. Sosa, M. Sosebee, C. L. Sotiropoulou, R. Soualah, A. M. Soukharev, D. South, B. C. Sowden, S. Spagnolo, M. Spalla, M. Spangenberg, F. Spanò, W. R. Spearman, D. Sperlich, F. Spettel, R. Spighi, G. Spigo, L. A. Spiller, M. Spousta, T. Spreitzer, R. D. St. Denis, A. Stabile, S. Staerz, J. Stahlman, R. Stamen, S. Stamm, E. Stanecka, C. Stanescu, M. Stanescu-Bellu, M. M. Stanitzki, S. Stapnes, E. A. Starchenko, J. Stark, P. Staroba, P. Starovoitov, R. Staszewski, P. Steinberg, B. Stelzer, H. J. Stelzer, O. Stelzer-Chilton, H. Stenzel, G. A. Stewart, J. A. Stillings, M. C. Stockton, M. Stoebe, G. Stoicea, P. Stolte, S. Stonjek, A. R. Stradling, A. Straessner, M. E. Stramaglia, J. Strandberg, S. Strandberg, A. Strandlie, E. Strauss, M. Strauss, P. Strizenec, R. Ströhmer, D. M. Strom, R. Stroynowski, A. Strubig, S. A. Stucci, B. Stugu, N. A. Styles, D. Su, J. Su, R. Subramaniam, A. Succurro, Y. Sugaya, M. Suk, V. V. Sulin, S. Sultansoy, T. Sumida, S. Sun, X. Sun, J. E. Sundermann, K. Suruliz, G. Susinno, M. R. Sutton, S. Suzuki, M. Svatos, M. Swiatlowski, I. Sykora, T. Sykora, D. Ta, C. Taccini, K. Tackmann, J. Taenzer, A. Taffard, R. Tafirout, N. Taiblum, H. Takai, R. Takashima, H. Takeda, T. Takeshita, Y. Takubo, M. Talby, A. A. Talyshev, J. Y. C. Tam, K. G. Tan, J. Tanaka, R. Tanaka, S. Tanaka, B. B. Tannenwald, N. Tannoury, S. Tapprogge, S. Tarem, F. Tarrade, G. F. Tartarelli, P. Tas, M. Tasevsky, T. Tashiro, E. Tassi, A. Tavares Delgado, Y. Tayalati, F. E. Taylor, G. N. Taylor, W. Taylor, F. A. Teischinger, M. Teixeira Dias Castanheira, P. Teixeira-Dias, K. K. Temming, D. Temple, H. Ten Kate, P. K. Teng, J. J. Teoh, F. Tepel, S. Terada, K. Terashi, J. Terron, S. Terzo, M. Testa, R. J. Teuscher, T. Theveneaux-Pelzer, J. P. Thomas, J. Thomas-Wilsker, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thompson, L. A. Thomsen, E. Thomson, M. Thomson, R. P. Thun, M. J. Tibbetts, R. E. Ticse Torres, V. O. Tikhomirov, Yu. A. Tikhonov, S. Timoshenko, E. Tiouchichine, P. Tipton, S. Tisserant, K. Todome, T. Todorov, S. Todorova-Nova, J. Tojo, S. Tokár, K. Tokushuku, K. Tollefson, E. Tolley, L. Tomlinson, M. Tomoto, L. Tompkins, K. Toms, E. Torrence, H. Torres, E. Torró Pastor, J. Toth, F. Touchard, D. R. Tovey, T. Trefzger, L. Tremblet, A. Tricoli, I. M. Trigger, S. Trincaz-Duvoid, M. F. Tripiana, W. Trischuk, B. Trocmé, C. Troncon, M. Trottier-McDonald, M. Trovatelli, P. True, L. Truong, M. Trzebinski, A. Trzupek, C. Tsarouchas, J. C-L. Tseng, P. V. Tsiareshka, D. Tsionou, G. Tsipolitis, N. Tsirintanis, S. Tsiskaridze, V. Tsiskaridze, E. G. Tskhadadze, I. I. Tsukerman, V. Tsulaia, S. Tsuno, D. Tsybychev, A. Tudorache, V. Tudorache, A. N. Tuna, S. A. Tupputi, S. Turchikhin, D. Turecek, R. Turra, A. J. Turvey, P. M. Tuts, A. Tykhonov, M. Tylmad, M. Tyndel, I. Ueda, R. Ueno, M. Ughetto, M. Ugland, F. Ukegawa, G. Unal, A. Undrus, G. Unel, F. C. Ungaro, Y. Unno, C. Unverdorben, J. Urban, P. Urquijo, P. Urrejola, G. Usai, A. Usanova, L. Vacavant, V. Vacek, B. Vachon, C. Valderanis, N. Valencic, S. Valentinetti, A. Valero, L. Valery, S. Valkar, E. Valladolid Gallego, S. Vallecorsa, J. A. Valls Ferrer, W. Van Den Wollenberg, P. C. Van Der Deijl, R. van der Geer, H. van der Graaf, N. van Eldik, P. van Gemmeren, J. Van Nieuwkoop, I. van Vulpen, M. C. van Woerden, M. Vanadia, W. Vandelli, R. Vanguri, A. Vaniachine, F. Vannucci, G. Vardanyan, R. Vari, E. W. Varnes, T. Varol, D. Varouchas, A. Vartapetian, K. E. Varvell, F. Vazeille, T. Vazquez Schroeder, J. Veatch, L. M. Veloce, F. Veloso, T. Velz, S. Veneziano, A. Ventura, D. Ventura, M. Venturi, N. Venturi, A. Venturini, V. Vercesi, M. Verducci, W. Verkerke, J. C. Vermeulen, A. Vest, M. C. Vetterli, O. Viazlo, I. Vichou, T. Vickey, O. E. Vickey Boeriu, G. H. A. Viehhauser, S. Viel, R. Vigne, M. Villa, M. Villaplana Perez, E. Vilucchi, M. G. Vincter, V. B. Vinogradov, I. Vivarelli, F. Vives Vaque, S. Vlachos, D. Vladoiu, M. Vlasak, M. Vogel, P. Vokac, G. Volpi, M. Volpi, H. von der Schmitt, H. von Radziewski, E. von Toerne, V. Vorobel, K. Vorobev, M. Vos, R. Voss, J. H. Vossebeld, N. Vranjes, M. Vranjes Milosavljevic, V. Vrba, M. Vreeswijk, R. Vuillermet, I. Vukotic, Z. Vykydal, P. Wagner, W. Wagner, H. Wahlberg, S. Wahrmund, J. Wakabayashi, J. Walder, R. Walker, W. Walkowiak, C. Wang, F. Wang, H. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wang, C. Wanotayaroj, A. Warburton, C. P. Ward, D. R. Wardrope, A. Washbrook, C. Wasicki, P. M. Watkins, A. T. Watson, I. J. Watson, M. F. Watson, G. Watts, S. Watts, B. M. Waugh, S. Webb, M. S. Weber, S. W. Weber, J. S. Webster, A. R. Weidberg, B. Weinert, J. Weingarten, C. Weiser, H. Weits, P. S. Wells, T. Wenaus, T. Wengler, S. Wenig, N. Wermes, M. Werner, P. Werner, M. Wessels, J. Wetter, K. Whalen, A. M. Wharton, A. White, M. J. White, R. White, S. White, D. Whiteson, F. J. Wickens, W. Wiedenmann, M. Wielers, P. Wienemann, C. Wiglesworth, L. A. M. Wiik-Fuchs, A. Wildauer, H. G. Wilkens, H. H. Williams, S. Williams, C. Willis, S. Willocq, A. Wilson, J. A. Wilson, I. Wingerter-Seez, F. Winklmeier, B. T. Winter, M. Wittgen, J. Wittkowski, S. J. Wollstadt, M. W. Wolter, H. Wolters, B. K. Wosiek, J. Wotschack, M. J. Woudstra, K. W. Wozniak, M. Wu, S. L. Wu, X. Wu, Y. Wu, T. R. Wyatt, B. M. Wynne, S. Xella, D. Xu, L. Xu, B. Yabsley, S. Yacoob, R. Yakabe, M. Yamada, D. Yamaguchi, Y. Yamaguchi, A. Yamamoto, S. Yamamoto, T. Yamanaka, K. Yamauchi, Y. Yamazaki, Z. Yan, H. Yang, Y. Yang, W-M. Yao, Y. Yasu, E. Yatsenko, K. H. Yau Wong, J. Ye, S. Ye, I. Yeletskikh, A. L. Yen, E. Yildirim, K. Yorita, R. Yoshida, K. Yoshihara, C. Young, C. J. S. Young, S. Youssef, D. R. Yu, J. Yu, J. M. Yu, L. Yuan, S. P. Y. Yuen, A. Yurkewicz, I. Yusuff, B. Zabinski, R. Zaidan, A. M. Zaitsev, J. Zalieckas, A. Zaman, S. Zambito, L. Zanello, D. Zanzi, C. Zeitnitz, M. Zeman, A. Zemla, Q. Zeng, K. Zengel, O. Zenin, T. Ženiš, D. Zerwas, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhang, X. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, J. Zhong, B. Zhou, C. Zhou, L. Zhou, M. Zhou, N. Zhou, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhu, X. Zhuang, K. Zhukov, A. Zibell, D. Zieminska, N. I. Zimine, C. Zimmermann, S. Zimmermann, Z. Zinonos, M. Zinser, M. Ziolkowski, L. Živković, G. Zobernig, A. Zoccoli, M. zur Nedden, G. Zurzolo, L. Zwalinski, ATLAS Collaboration

    المصدر: European Physical Journal C: Particles and Fields, Vol 82, Iss 1, Pp 1-15 (2022)

    وصف الملف: electronic resource

  7. 7
    Academic Journal

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 3 (2023); 53-60 ; Лучевая диагностика и терапия; Том 14, № 3 (2023); 53-60 ; 2079-5343

    وصف الملف: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/906/610; Polak S.B., Van Gool I.C., Cohen D., Von Der Thüsen J.H., Van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression // Modern Pathology. 2020. Nov. Vol. 33, No. 11. Р. 2128–2138. doi:10.1038/s41379-020-0603-3.; Lucatelli P., Del Monte M., De Rubeis G., Cundari G., Francone M., Panebianco V. et al. Did we turn a blind eye? The answer is simply there. Peripheral pulmonary vascular thrombosis in COVID-19 patients explains sudden worsening of clinical conditions // Imaging. 2020. Aug 6. Vol. 12, No. 1. Р. 4–7. doi:10.1556/1647.2020.00002.; Dhawan RT., Gopalan D., Howard L., Vicente A., Park M., Manalan K. et al. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19 // The Lancet Respiratory Medicine. 2021. Vol. 9, No. 1. Р. 107–116. doi:10.1016/S2213-2600(20)30407-0.; Buonsenso D., Di Giuda D., Sigfrid L., Pizzuto D.A., Di Sante G., De Rose C. et al. Evidence of lung perfusion defects and ongoing inflammation in an adolescent with post-acute sequelae of SARS-CoV-2 infection // Lancet Child Adolesc Health. 2021. Sep. Vol. 5, No. 9. Р. 677–680. doi:10.1016/S2352-4642(21)00196-6.; Schiwek M., Triphan S.M.F., Biederer J., Weinheimer O., Eichinger M., Vogelmeier C.F. et al. Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function // Eur. Radiol. 2022. Mar. Vol. 32, No. 3. Р. 1879–1890. doi:10.1007/s00330-021-08229-6.; Risse F., Eichinger M., Kauczor H.U., Semmler W., Puderbach M. Improved visualization of delayed perfusion in lung MRI // European Journal of Radiology. 2011. Jan. Vol. 77, No. 1. Р. 105–110. doi:10.1016/j.ejrad.2009.07.025.; Albers G.W., Lansberg M.G., Kemp S., Tsai J.P., Lavori P., Christensen S. et al. A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3) // International Journal of Stroke. 2017. Oct. Vol. 12, No. 8. Р. 896–905. doi:10.1177/1747493017701147.; Calamante F. Arterial input function in perfusion MRI: A comprehensive review // Progress in Nuclear Magnetic Resonance Spectroscopy. 2013. Oct. Vol. 74. Р. 1– 32. doi: 2023-05-10-10:19:14.; Soriano J.B., Kendrick P.J., Paulson K.R., Gupta V., Abrams E.M., Adedoyin R.A. et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 // The Lancet Respiratory Medicine. 2020. Vol. 8, No. 6. Р. 585–596. doi:10.1016/S2213-2600(20)30105-3.; Захарова А.В., Приц В.В., Поздняков А.В. Возможности количественной оценки регионарной легочной перфузии с использованием трехмерной сверхбыстрой динамической контрастной магнитно-резонансной томографии: предварительный опыт у 10 испытуемых // Педиатр (СПб). 2022. 18 апр. Т. 12, № 6. С. 15– 26.https://doi.org/10.17816/PED12615-26.; Cobes N., Guernou M., Lussato D., Queneau M., Songy B., Bonardel G. et al. Ventilation/perfusion SPECT/CT findings in different lung lesions associated with COVID-19: a case series // Eur. J. Nucl. Med. Mol. Imaging. 2020. Vol. 47, No. 10. Р. 2453–2460. doi:10.1007/s00259–020–04920-w.; Sajal D., Mudalsha R., Tinu L., Ranganath TG., Dibakar S. Lung Perfusion Scintigraphy Early After COVID-19: A Single-Center Retrospective Study // Journal of Nuclear Medicine Technology. 2021. Vol. 49, No. 4. Р. 320–323. doi:10.2967/jnmt.121.262440.; Yu J.Z., Granberg T., Shams R., Petersson S., Sköld M., Nyrén S. et al. Lung perfusion disturbances in nonhospitalized post‐COVID with dyspnea — A magnetic resonance imaging feasibility study // J. Intern. Med. 2022. Vol. 292, No. 6. Р. 941–956. doi:10.1111/joim.13558.; Fahrni G., Rocha A.C., Gudmundsson L., Pozzessere C., Qanadli S.D., Rotzinger D.C. Impact of COVID-19 pneumonia on pulmonary vascular volume // Frontiers in Medicine [Internet]. 2023 [cited 2023 May 10]. Vol. 10. doi:10.3389/fmed.2023.1117151.; Lin Y.R., Tsai S.Y., Huang T.Y., Chung H.W., Huang Y.L., Wu F.Z. et al. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation // J. Cardiovasc. Magn. Reson. 2013. Vol. 15, No. 1. Р. 21. doi:10.1186/1532-429X-15-21; https://radiag.bmoc-spb.ru/jour/article/view/906

  8. 8
    Academic Journal

    المصدر: Cancer Urology; Том 19, № 3 (2023); 19-28 ; Онкоурология; Том 19, № 3 (2023); 19-28 ; 1996-1812 ; 1726-9776

    وصف الملف: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1594/1476; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1175; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1176; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1177; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1178; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1179; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1180; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1181; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1594/1182; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15–24. DOI:10.17650/1726-9776-2019-15-2-15-24; Ljungberg B., Bensalah K., Canfield S. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 2015;67(5):913–24. DOI:10.1016/j.eururo.2015.01.005; Campbell S., Uzzo R.G., Allaf M.E. et al. Renal mass and localized renal cancer: AUA guideline. J Urol 2017;198(3):520–9. DOI:10.1016/j.juro.2017.04.100; Ракул С.А., Поздняков К.В., Елоев Р.А. Отдаленные онкологические результаты хирургического лечения локализованных опухолей почек. Онкоурология 2021;17(4):27–37. DOI:10.17650/1726-9776-2021-17-4-27-37; Kim S.P., Campbell S.C., Gill I. et al. Collaborative review of risk benefit trade-offs between partial and radical nephrectomy in the management of anatomically complex renal masses. Eur Urol 2017;72(1):64–75. DOI:10.1016/j.eururo.2016.11.038; Kim S.P., Thompson R.H., Boorjian S.A. et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: a systematic review and meta-analysis. J Urol 2012;188(1):51–7. DOI:10.1016/j.juro.2012.03.006; Соколов Д.В., Полушин Ю.С. Острое почечное повреждение в периоперационном периоде. Вестник анестезиологии и реаниматологии 2018;15(1):46–54. DOI:10.21292/2078-5658-2018-15-1-46-54; Chawla L.S., Eggers P.W., Star R.A. et al. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371(1):58–66. DOI:10.1056/NEJMra1214243; Bellomo R., Ronco C., Kellum J.A. et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004;8(4):204–12. DOI:10.1186/cc2872; Mehta R.L., Kellum J.A., Shah S.V. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11(2):31. DOI:10.1186/cc5713; Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012;120(4):179–84. DOI:10.1159/000339789; Thomas A.A., Demirjian S., Lane B.R. et al. Acute kidney injury: novel biomarkers and potential utility for patient care in urology. Urology 2011;77(1):5–11. DOI:10.1016/j.urology.2010.05.004; Thompson R.H., Lane B.R., Lohse CM. et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology 2012;79(2):356–60. DOI:10.1016/j.urology.2011.10.031; Lane B.R., Russo P., Uzzo R.G. et al. Comparison of cold and warm ischemia during partial nephrectomy in 660 solitary kidneys reveals predominant role of nonmodifiable factors in determining ultimate renal function. J Urol 2011;185(2):421–7. DOI:10.1016/j.juro.2010.09.131; Zhang Z., Zhao J., Dong W. et al. Acute kidney injury after partial nephrectomy: role of parenchymal mass reduction and ischemia and impact on subsequent functional recovery. Eur Urol 2016;69(4): 745–52. DOI:10.1016/j.eururo.2015.10.023; National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;9(2 Suppl 1):1–266.; Bravi C.A., Vertosick E., Benfante N. et al. Impact of acute kidney injury and its duration on long-term renal function after partial nephrectomy. Eur Urol 2019;76(3):398–403. DOI:10.1016/j.eururo.2019.04.040; Suer E., Akpinar C., Izol V. et al. Predicting factors of acute kidney injury after partial nephrectomy and its impact on long-term renal function: a multicentre study of the Turkish Urooncology Association. Int J Clin Pract 2021;75(11). DOI:10.1111/ijcp.14751; Zhu K., Song H., Zhang Z. et al. Acute kidney injury in solitary kidney patients after partial nephrectomy: incidence, risk factors and prediction. Transl Androl Urol 2020;9(3):1232–43. DOI:10.21037/tau.2020.03.45; Volpe A., Blute M.L., Ficarra V. et al. Renal ischemia and function after partial nephrectomy: a collaborative review of the literature. Eur Urol 2015;68(1):61–74. DOI:10.1016/j.eururo.2015.01.025; Parekh D.J., Weinberg J.M., Ercole B. et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol 2013;24(3):506–17. DOI:10.1681/ASN.2012080786; Wahlberg E., Di Muzio P.J., Stoney R.J. et al. Aortic clamping during elective operations for infrarenal disease: the influence of clamping time on renal function. J Vasc Surg 2002;36(1):13–8. DOI:10.1067/mva.2002.123679; Xiong L., Nguyen J.K., Peng Y. et al. What happens to the preserved renal parenchyma after clamped partial nephrectomy? Eur Urol 2022;81(5):492–500. DOI:10.1016/j.eururo.2021.12.036; Antonelli A., Cindolo L., Sandri M. et al. Is off-clamp robot-assisted partial nephrectomy beneficial for renal function? Data from the CLOCK trial. BJU Int 2022;129(2):217–24. DOI:10.1111/bju.15503; Zabell J., Isharwal S., Dong W. et al. Acute kidney injury after partial nephrectomy of solitary kidneys: impact on long-term stability of renal function. J Urol 2018;200(6):1295–301. DOI:10.1016/j.juro.2018.07.042; Kim N.Y., Hong J.H., Koh D.H. et al. Effect of diabetes mellitus on acute kidney injury after minimally invasive partial nephrectomy: a case-matched retrospective analysis. J Clin Med 2019;8(4):468. DOI:10.3390/jcm8040468; https://oncourology.abvpress.ru/oncur/article/view/1594

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: T. A. Chikisheva, D. V. Pozdnyakov

    المساهمون: The study was performed under R&D Project "Multidisciplinary Studies of the Ancient Cultures of Siberia and Adjacent Territories: Chronology, Technologies, Adaptation, and Cultural Ties" (FWZG-2022-0006).

    المصدر: Archaeology, Ethnology & Anthropology of Eurasia; Vol 50, No 4 (2022); 145-153 ; Археология, этнография и антропология Евразии; Vol 50, No 4 (2022); 145-153 ; 1563-0110

    وصف الملف: application/pdf

  11. 11
    Academic Journal

    المصدر: Cancer Urology; Том 17, № 4 (2021); 27-37 ; Онкоурология; Том 17, № 4 (2021); 27-37 ; 1996-1812 ; 1726-9776

    وصف الملف: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1484/1325; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1484/1024; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1484/1025; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1484/1026; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15-24. DOI:10.17650/1726-9776-2019-15-2-15-24.; Состояние онкологической помощи населению России в 2017 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018. 236 с.; Ljungberg B., Bensalah K., Canfield S. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 2015;67(5):913-24. DOI:10.1016/j.eururo.2015.01.005.; Campbell S., Uzzo R.G., Allaf M.E. et al. Renal mass and localized renal cancer: AUA guideline. J Urol 2017;198:520-9. DOI:10.1016/j.juro.2017.04.100.; Kim S.P., Campbell S.C., Gill I. et al. Collaborative review of risk benefit trade offs between partial and radical nephrectomy in the management of anatomically complex renal masses. Eur Urol 2017;72(1):64-75. DOI:10.1016/j.eururo.2016.11.038.; Kim S.P., Thompson R.H., Boorjian S.A. et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: a systematic review and meta-analysis. J Urol 2012;188(1):51-7. DOI:10.1016/j.juro.2012.03.006.; Capitanio U., Terrone C., Antonelli A. et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur Urol 2015;67(4):683-9. DOI:10.1016/j.eururo.2014.09.027.; Wang D.C., Plante K., Stewart T. et al. Comparison of survival for partial vs. radical nephrectomy in young patients with T1a renal cell carcinoma treated at commission on cancer-accredited facilities and influence of comorbidities on treatment choice. Urol Oncol 2017;35(11):660.e9-15. DOI:10.1016/j.urolonc.2017.06.056.; Go A.S., Chertow G.M., Fan D. et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351(13):1296-305. DOI:10.1056/NEJMoa041031.; Van Poppel H., Da Pozzo L., Albrecht W. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011;59(4):543-52. DOI:10.1016/j.eururo.2010.12.013.; Koo K.C., Kim J.C., Cho K.S. et al. Oncological outcomes after partial vs radical nephrectomy in renal cell carcinomas of; Beauval J.B., Peyronnet B., Benoit T. et al. Long-term oncological outcomes after robotic partial nephrectomy for renal cell carcinoma: a prospective multicentre study. World J Urol 2018;36(6):897-904. DOI:10.1007/s00345-018-2208-8.; Jang H.A., Kim J.W., Byun S.S. et al. Oncologic and functional outcomes after partial nephrectomy versus radical nephrectomy in T1b renal cell carcinoma: a multicenter, matched case-control study in Korean patients. Cancer Res Treat 2016;48(2):612-20. DOI:10.4143/crt.2014.122.; Cai Y., Li H.Z., Zhang Y.S. Comparison of partial and radical laparoscopic nephrectomy: long-term outcomes for clinical T1b renal cell carcinoma. Urol J 2018;15(2):16-20. DOI:10.22037/uj.v0i0.3913.; Bertolo R., Autorino R., Simone G. et al. Outcomes of robot-assisted partial nephrectomy for clinical T2 renal tumors: a multicenter analysis (ROSULA Collaborative Group). Eur Urol 2018;74(2):226-32. DOI:10.1016/j.eururo.2018.05.004.; Kopp R.P., Mehrazin R., Palazzi K.R. et al. Survival outcomes after radical and partial nephrectomy for clinical T2 renal tumours categorised by R.E.N.A.L. nephrometry score. BJU Int 2014;114(5):708-18. DOI:10.1111/bju.12580.; https://oncourology.abvpress.ru/oncur/article/view/1484

  12. 12
    Academic Journal

    المصدر: Pelvic Surgery and Oncology; Том 11, № 1 (2021); 35-41 ; Тазовая хирургия и онкология; Том 11, № 1 (2021); 35-41 ; 2686-7435

    وصف الملف: application/pdf

    Relation: https://ok.abvpress.ru/jour/article/view/494/360; Jacob T.J., Perakath B., Keighley M.R. Surgical intervention for anorectal fistula. Cochrane Database Syst Rev 2010;5:CD006319. DOI:10.1002/14651858.CD006319.pub2.; Zanotti C., Martinez-Puente C., Pascual I. et al. An assessment of the incidence of fistula-in-ano in four countries of the European Union. Int J Colorectal Dis 2007;22:1459–62. DOI:10.1007/s00384-007-0334-7.; Williams J.G., Farrands P.A., Williams A.B. The treatment of anal fistula: ACPGBI position statement. Colorectal Dis 2007;9:18–50. DOI:10.1111/j.1463-1318.2007.01372.x.; Garcés-Albir M., García-Botello S.A., Esclapez-Valero P. Quantifying the extent of fistulotomy. How much sphincter can we safely divide? A three-dimensional endosonographic study. Int J Colorectal Dis 2012;27:1109–16. DOI:10.1007/s00384-012-1437-3.; Toyonaga T., Matsushima M., Tanaka Y. Non-sphincter splitting fistulectomy vs conventional fistulotomy for high transsphincteric fistula-in-ano: a prospective functional and manometric study. Int J Colorectal Dis 2007;22:1097–02. DOI:10.1007/s00384-007-0288-9.; Blumetti J., Abcarian A., Quinteros F. et al. Evolution of treatment of fistula in ano. World J Surg 2012;36:1162–7. DOI:10.1007/s00268-012-1480-9.; Parks A.G., Gordon P.H., Hardcastle J.D. A classification of fistula-in-ano. Br J Surg 1976;63:1–12.; Дульцев Ю.В., Саламов К.Н. Парапроктит. М., 1981. [Dultsev Yu.V., Salamov K.N. Paraproctitis. Moscow, 1981. (In Russ.)].; Arnous J., Denis J., Puy-Montbrun T. Les suppurations anales et périanales. A propos de 6500 cas. Concours Med 1980;12:1715–29.; Tyler K.M., Aarons C.B., Sentovich S.M. Successful sphincter-sparing surgery for all anal fistulas. Dis Colon Rectum 2007;50: 1535–9. DOI:10.1007/s10350-007-9002-9.; The Surgisis AFP anal fistula plug: report of a consensus conference. Colorectal Dis 2008;10:17–20. DOI:10.1111/j.1463-1318.2007.01423.x.; Giamundo P., Cecchetti W., Esercizio L. Doppler guided hemorrhoidal laser procedure for the treatment of symptomatic hemorrhoids: experimental background and short-term clinical results of a new mini-invasive treatment. Surg Endosc 2011;25:1369–75. DOI:10.1007/s00464-010-1370-x.; Giamundo P., Salfi R., Geraci M. The hemorrhoid laser procedure technique vs rubber band ligation: a randomized trial comparing 2 mini-invasive treatments for second- and third-degree hemorrhoids. Dis Colon Rectum 2011;54:693–8. DOI:10.1007/DCR.0b013e3182112d58.; Jahanshahi A., Mashhadizadeh E., Sarmast M.H. Diode laser for treatment of symptomatic hemorrhoid: a short term clinical result of a mini invasive treatment, and one year follow up. Pol Przegl Chir 2012;84:329–32.; Plapler H., Hage R., Duarte J. A new method for hemorrhoid surgery: intrahemorrhoidal diode laser, does it work? Photomed Laser Surg 2009;27:819–23. DOI:10.1089/pho.2008.2368.; Wang D., Zhong K.L., Chen J.L. Effect of diode laser coagulation treatment on grade III internal hemorrhoids. Zhonghua Wei Chang Wai Ke Za Zhi 2005;8:325–7.; Gale S.S., Lee J.N., Walsh M.E. A randomized, controlled trial of endovenous thermal ablation using the 810-nm wavelength laser and the ClosurePLUS radiofrequency ablation methods for superficial venous insufficiency of the great saphenous vein. J Vasc Surg 2010;52:645–50.; Doganci S., Demirkilic U. Comparison of 980 nm laser and bare-tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomized clinical trial. Eur J Vasc Endovasc Surg 2010;40:254–9.; Litza E.M., van Wijk J.J., Gosselink M.P. Seton drainage prior to transanal advancement flap repair: useful or not? Int J Colorectal Dis 2010;25:1499–502. DOI:10.1007/s00384-010-0993-7.; Ellison G.W., Bellah J.R., Stubbs W.P., Van Gilder J. Treatment of perianal fistulas with ND:YAG laser – results in twenty cases. Vet Surg 1995;24:140–7.; Bodzin J.H. Laser ablation of complex perianal fistulas preserves continence and is a rectum-sparing alternative in Crohn’s disease patients. Am Surg 1998;64:627–31.; Wilhelm A. A new technique for sphincter preserving anal fistula repair using a novel radial emitting laser probe. Tech Coloproctol 2011;15:445–9.; Giamundo P., Geraci M., Tibaldi L., Valente M. Closure of fistula-in-ano with laser – FiLaC™: an effective novel sphincter-saving procedure for complex disease. Colorectal Dis 2014;16:110–5. DOI:10.1111/codi.12440.; Oztürk E., Gülcü B. Laser ablation of fistula tract: A sphincter preserving method for treating fistula-in-ano. Dis Colon Rectum 2014;57:360–4.; De Bonnechose G., Lefevre J.H., Auber M. et al. Laser ablation of fistula tract (LAFT) and complex fistula-inano: the ideal indication is becoming clearer. Tech Coloproctol 2020. DOI:10.1007/s1015 1-020-02203-y.; Lauretta A., Falco N., Stocco E. et al. Anal fistula laser closure: the length of fistula is the Achilles’ heel. Tech Coloproctol 2018;22:933–9.; Marref I., Spindler L., Aubert M. et al. The optimal indication for FiLaC® is high trans-sphincteric fistula-in-ano: the study of a prospective cohort of 69 consecutive patients. Tech Coloproctol 2019;23:893–7. DOI:10.1007/s10151-019-02077-9.; Wilhelm A., Fiebig A., Krawczak M. Five years of experience with the FiLaCTM laser for fistula-in-ano management: long-term follow-up from a single institution. Tech Coloproctol 2017;21:269–76. DOI:10.1007/s10151-017-1599-7.; Giamundo P., Esercizio L., Geraci M. et al. Fistula-tract laser closure (FiLaCTM): long-term results and new operative strategies. Tech Coloproctol 2015;19:449–53. DOI:10.1007/s10151-015-1282-9.; Terzi M.C., Agalar C., Habip S. et al. Closing perianal fistulas using a laser: long-term results in 103 patients. Dis Colon Rectum 2018;61:599–603. DOI:10.1097/DCR.0000000000001038.; https://ok.abvpress.ru/jour/article/view/494

  13. 13
    Academic Journal

    المساهمون: We acknowledge with gratitude that this work was funded by Saint Petersburg State University, project N 75295423 (i.bashmachnikov@spbu.ru)

    المصدر: GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY; Vol 14, No 2 (2021); 50-62 ; 2542-1565 ; 2071-9388

    وصف الملف: application/pdf

    Relation: https://ges.rgo.ru/jour/article/view/1866/552; Alcolombri U., Ben-Dor S., Feldmesser E., Levi Y, Tawfik D. S. and Vardi A. (2015). Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. Science, 348(6242), 1466-1469, DOI:10.1126/science.aab1586.; Alekin O. (1966). Ocean chemistry. Leningrad: Gidrometizdat, 344p. (in Russian).; Alexander H., Rouco M., Sheean T. H. and Dyhrman S. T. (2020). Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Environmental Microbiology, 22(5), 1847-1860, DOI:10.1111/1462-2920.14942.; Althoff F., Benzing K., Comba P, McRoberts C., Boyd D. R., Greiner S. and Keppler F. (2014). Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nature Communications, 5(1), 1-9, DOI:10.1038/ncomms5205.; Amelina A., Segeeva V., Arashkevich E., Drifts A., Louppova N. and Solovyev K. (2017). Feeding of the dominant herbivorous plankton species in the Black Sea and their role in coccolithophorid consumption. Oceanology, 57(6), 806-816, DOI:10.1134/S000143701706011X.; Bach L.T., Riebesell U. and Schulz K. G. (2011). Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56(6), 2040-2050, DOI:10.4319/lo.2011.56.6.2040.; Bach L.T., Mackinder L.C., Schulz K.G., Wheeler G., Schroeder D.C., Brownlee C. and Riebesell U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 121-134, DOI:10.1111/nph.12225.; Bach L.T., Riebesell U., Gutowska M.A., Federwisch L. and Schulz K.G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, DOI:10.1016/j.pocean.2015.04.012.; Balch W.M., Bowler B.C., Lubelczyk L.C. and Stevens M.W. (2014). Aerial extent, composition, bio-optics and biogeochemistry of a massive under-ice algal bloom in the Arctic. Deep-Sea Research II, 105, 42-58, DOI:10.1016/j.dsr2.2014.04.001.; Balch W.M., Kilpatrick K., Holligan P.M. and Cucci T. (1993). Coccolith production and detachment by Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 29(5), 566-575, DOI:10.1111/j.0022-3646.1993.00566.x.; Balch W.M., Bates N.R., Lam PJ., Twining B.S., Rosengard S.Z., Bowler B.C., Drapeau D.T., Garley R., Lubelczyk L.C., Mitchell C. and Rauschenberg S. (2016). Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance. Global Biogeochemical Cycles, 30(8), 1124-1144, DOI:10.1002/2016GB005414.; Benner I., Diner R.E., Lefebvre S.C., Li D., Komada T., Carpenter E.J. and Stillman J.H. (2013). Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society B, 368(1627), 20130049, DOI:10.1098/rstb.2013.0049.; Boyd P.W. and Hutchins D.A. (2012). Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology Progress Series, 470, 125-135, DOI:10.3354/meps10121.; Brown C. and Yoder J. (1994). Coccolithophorid blooms in the Global ocean. Journal of Geophysical Research, 99(C4): 7467-7482, DOI:10.1029/93JC02156.; Brownlee C. and Taylor A. (2004). Calcification in coccolithophores: A cellular perspective. In: H. R. Thierstein, J. R. Young, ed., Coccolithophores. Springer, Berlin, Heidelberg, 31-49, DOI:10.1007/978-3-662-06278-4_2.; Brownlee C., Wheeler G.L. and Taylor A.R. (2015). Coccolithophore biomineralization: New questions, new answers. Seminars in Cell & Developmental Biology, 46, 11-16, DOI:10.1016/j.semcdb.2015.10.027.; Burenkov V.I., Kopelevich O.V., Rat'kova T.N. and Sheberstov S.V. (2011). Satellite observations of coccolithophorids in the Barents Sea. Okeanologiya. 51(5), 818-826 (in Russian).; Charalampopoulou A., Poulton A.J., Bakker D.C., Lucas M.I., Stinchcombe M.C. and Tyrrell T. (2016). Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean). Biogeosciences, 13(21), 5917-5935, DOI:10.5194/bg-13-5917-2016.; Cokacar T., Oguz T. and Kubilay N. (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research I, 51(8), 1017-1031, DOI:10.1016/j.dsr.2004.03.007.; Daniels C.J., Poulton A.J., Balch W.M., Maranon E., Adey T., Bowler B.C. and Tyrrell T. (2018). A global compilation of coccolithophore calcification rates. Earth System Science Data, 10(4), 1859-1876, DOI:10.5194/essd-10-1859-2018.; Dlugokencky E. (2016). Annual Mean Carbon Dioxide Data. Earth System Research Laboratory, National Oceanic & Atmospheric Administration.; Durairaj P, Sarangi R.K., Ramalingam S., Thirunavukarassu T. and Chauhan P. (2015). Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data. Environmental Monitoring and Assessment, 187(4), 1-15, DOI:10.1007/s10661-015-4340-x.; Evans C., Kadner S., Darroch L., Wilson W., Liss P. and Malin G. (2007). The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulphoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study, Limnological and Oceanographic Methods, 53(3), 1036-1045, DOI:10.4319/lo.2007.52.3.1036.; Feng Y., Hare C. E., Leblanc K., Rose J. M., Zhang Y., DiTullio G. R. and Hutchins D. A. (2009). The effects of increased pCO2 and temperature on the North Atlantic spring bloom: I. Phytoplankton community and biogeochemical response. Marine Ecology Progress Series, 388, 13-25, DOI:10.3354/meps08133.; Feng Y., Roleda M. Y., Armstrong E., Law C. S., Boyd P. W. and Hurd C. L. (2018). Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Biogeosciences, 15(2), 581-595, DOI:10.5194/bg-15-581-2018.; Fiorini S., Middelburg J. J. and Gattuso J.-P. (2011). Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology, 47(6), 1281-1291, DOI:10.1111/j.1529-8817.2011.01080.x.; Frada M. J., Bidle K. D., Probert I. and de Vargas C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14(6), 1558-1569, DOI:10.1111/j.1462-2920.2012.02745.x.; Gao K., Ruan Z., Villafane V. E., Gattuso J. P. and Helbling E. W. (2009). Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography, 54(6), 1855-1862, DOI:10.4319/lo.2009.54.6.1855.; Gnatiuk N., Radchenko I., Davy R., Morozov E. and Bobylev L. (2020). Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection. Biogeosciences, 17(4), 1199-1212, DOI:10.5194/bg-17-1199-2020.; Godoi R. H. M., Aerts K., Harlay J., Kaegi R., Ro C. U., Chou L. and van Grieken R. (2008). Organic surface coating on coccolithophores Emiliania huxleyi: Its determination and implication in the marine carbon cycle. Microchemical Journal, 91(2), 266-271, DOI:10.1016/j.microc.2008.12.009.; Godrijan J., Drapeau D. and Balch W. M. (2020). Mixotrophic uptake of organic compounds by coccolithophores. Limnology and Oceanog raphy, 65(6), 1410-1421, DOI:10.1002/lno.11396.; Green J.C., Course PA and Tarran G.A. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9(1-2), 33-44, DOI:10.1016/0924-7963(96)00014-0.; Hagino K., Bendif E.M., Young J.R., Kogame K., Probert I., Takano Y., Horiguchi T., Vargas C. and Okada H. (2011) New evidence for morphological and genetic variation in the cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae) from the COX1b-ATP4 genes. Journal of Phycology, 47(5), 1164-1176, DOI:10.1111/j.1529-8817.2011.01053.x.; Harris R. P (2004). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119, 431-49, DOI:10.1007/BF00347540.; Hayden L. (2013). Effects of ocean acidification and nutrient enrichment on growth of the planktonic coccolithophore Emiliania huxleyi. Available at: https://www.mbl.edu/ses [Accessed 7 February 2021].; Iglesias-Rodriguez M.D., Halloran PR., Rickaby R.E., Hall I.R., Colmenero-Hidalgo E., Gittins J.R. and Boessenkool K.P. (2008). Phytoplankton calcification in a high-CO2 world. Science, 320 (5874), 336-340, DOI:10.1126/science.1154122.; Iglesias-Rodriguez M.D., Schofield O.M., Batley J., Medlin L.K. and Hayes PK. (2006). Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. Journal of Phycology, 42(3), 526-536, DOI:10.1111/j.1529-8817.2006.00231.x.; Johnsen S.A.L. and Bollmann J. (2020). Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material. PLoS ONE, 15(3), e0230569, DOI:10.1371/journal.pone.0230569.; Kaffes A., Thoms S., Trimborn S., Rost B., Langer G., Richter K. U. and Giordano M. (2010). Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. Journal of Experimental Marine Biology and Ecology, 393(1-2), 1-8, DOI:10.1016/j.jembe.2010.06.004.; Klintzsch T., Langer G., Nehrke G., Wieland A., Lenhart K. and Keppler F. (2019). Methane production by three widespread marine phytoplankton species: release rates, precursor compounds and potential relevance for the environment. Biogeosciences, 16(20), 4129-4144, DOI:10.5194/bg-16-4129-2019.; Kondrik D.V., Kazakov E.E., Pozdnyakov D.V. and Johannessen O.M. (2019). Satellite evidence for enhancement of columnal mixing ratio of atmospheric CO2 over E. huxleyi blooms. Transactions of the Karelian Research Centre of the Russian Academy of Sciences, 9, 125-135.; Kondrik D.V., Pozdnyakov D.V. and Johannessen O.M. (2018). Satellite evidence that E. huxleyi phytoplankton blooms weaken marine carbon sinks. Geophysical Research Letters, 45(2), 846-854, DOI:10.1002/2017GL076240.; Kondrik D.V., Pozdnyakov D.V. and Pettersson L.H. (2017). Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: a satellite time series study (1998-2013). International Journal of Remote Sensing, 38(22), 6179-6205, DOI:10.1080/01431161.2017.1350304.; Kopelevich O., Burenkov V., Sheberstov S., Vazyulya S., Kravchishina M., Pautova L. and Grigoriev A. (2013). Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data. Remote Sensing of Environment, 146, 113-123, DOI:10.1016/j.rse.2013.09.009.; Krumhardt K.M., Lovenduski N.S., Iglesias-Rodriguez M.D. and Kleypas J.A. (2017). Coccolithophore growth and calcification in a changing ocean. Progress in Oceanography, 159, 276-295, DOI:10.1016/j.pocean.2017.10.007.; Kubryakov A. A., Mikaelyan A. S. and Stanichny S. V. (2019). Summer and winter coccolithophore blooms in the Black Sea and their impact on production of dissolved organic matter from Bio-Argo data. Journal of Marine Systems, 199, 103220, DOI:10.1016/j.jmarsys.2019.103220.; Lana A., Bell T. G., Simo R., Vallina S. M., Ballabrera-Poy J., Kettle A. J. and Liss P S. (2011). An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25(1), GB1004, DOI:10.1029/2010GB003850.; Lenhart K., Klintzsch T., Langer G., Nehrke G., Bunge M., Schnell S. and Keppler F. (2016). Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13(10), 3163-3174, DOI:10.5194/bg-13-3163-2016.; Leon P, Walsham P, Bresnan E., Hartman S. E., Hughes S., Mackenzie K. and Webster L. (2018). Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site. Estuarine, Coastal and Shelf Science, 202, 302-314, DOI:10.1016/j.ecss.2018.01.011.; Lipsen M.S., Crawford D.W., Gower J. and Harrison PJ. (2007). Spatial and temporal variability in coccolithophore abundance and production of PIC and POC in the NE subarctic during El Nino (1998) and La Nina (1999) and 2000. Progress in Oceanology, 75(2), 304-325, DOI:10.1016/j.pocean.2007.08.004.; Loebl M., Cockshutt A.M., Campbell D.A. and Finkel Z.V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55(5), 2150-2160, DOI:10.4319/lo.2010.55.5.2150.; Lohbeck K.T., Riebesell U. and Reusch T.B.H. (2012). Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geosciences, 5, 346-351, DOI:10.1038/ngeo1441.; Lorenzo M.R., Neale PJ., Sobrino C., Leon P, Vazquez V., Bresnan E. and Segovia M. (2019). Effects of elevated CO2 on growth, calcification, and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 55(4), 775788, DOI:10.1111/jpy.12885.; Mackinder L., Wheeler G., Schroeder D., von Dassow P., Riebesell U. and Brownlee C. (2011). Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environmental Microbiology, 13(12), 3250-3265, DOI:10.1111/j.1462-2920.2011.02561.x.; Malin G. and Steinke M. (2004). Dimethyl sulfide production: what is the contribution of the coccolithophores? In: H. Thierstein and J. Young, ed., Coccolithophores, Heidelberg: Springer, Berlin, Heidelberg, 127-164, DOI:10.1007/978-3-662-06278-4_6.; Maranon E., Balch W. M., Cermeno P, Gonzalez N., Sobrino C., Fernandez A. and Pelejero C. (2016). Coccolithophore calcification is independent of carbonate chemistry in the tropical ocean. Limnology and Oceanology, 61(4), 1345-1357, DOI:10.1002/lno.10295.; Martin J.H., Coale K.H., Johnson K.S., Fitzwater S.E., Gordon R.M., Tanner S.J. and Tindale N. W. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123-129, DOI:10.1038/371123a0.; Martiny A.C., Vrugt J.A. and Lomas M.W. (2014). Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Scientific Data, 1, 140048, DOI:10.1038/sdata.2014.48.; Merico A., Tyrrell T., Lessard E.J., Oguz T., Stabeno PJ., Zeeman S.I. and Whitledge T.E. (2004). Modelling phytoplankton succession on the Bering Sea shelf: role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997-2000. Deep Sea Research Part I: Oceanographic Research Papers, 51, 1803-1826, DOI:10.1016/j.dsr.2004.07.003.; Meyer J. and Riebesell U. (2015). Reviews and syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences, 12(6), 1671-1682, DOI:10.5194/bg-12-1671-2015.; Mikaelyan A.S., Pautova L.A., Chasovnikov V.K., Mosharov S.A. and Silkin V.A. (2015). Alternation of diatoms and coccolithophores in the north-eastern Black Sea: a response to nutrient changes. Hydrobiologia, 755(1), 89-105, DOI:10.1007/s10750-015-2219-z.; Miller C.B., Frost B.W., Wheeler P.A., Landry M.R., Welschmeyer N. and Powell T.M. (1991). Ecological dynamics in subarctic Pacific, a possibly iron-limited ecosystem. Limnology and Oceanology, 36(8), 1600-1615, DOI:10.4319/lo.1991.36.8.1600.; Mohan R., Mergulhao L.P., Guptha M.V.S., Rajakumar A., Thamban M., AnilKumar N. and Ravindra R. (2008). Ecology of coccolithophores in the Indian sector of the Southern Ocean. Marine Micropaleontology, 67(1-2), 30-45, DOI:10.1016/j.marmicro.2007.08.005.; Moncheva S. and Krastev A. (1997). Some aspects of phytoplankton long-term alterations off Bulgarian Black Sea Shelf. In: E. Ozsoy, A. Mikaelyan, ed., Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Dordrecht: Springer, Dordrecht, 79-93, DOI:10.1007/978-94-011-5758-2_7.; Moore T.S., Dowel M.D. and Franz B.A. (2012). Detection of coccolithophore blooms in ocean color imagery: A generalized approach for use with multiple sensors. Remote Sensing of Environment, 117, 249-263, DOI:10.1016/j.rse.2011.10.001.; Morozov E.A., Kondrik D.V., Chepikova S.S. and Pozdnyakov D.V. (2019). Atmospheric columnar CO2 enhancement over E. huxleyi blooms: case studies in the North Atlantic and Arctic waters. Limnology and Oceanology Series, 3, 28-33, DOI:10.17076/lim989.; Morozov E., Pozdnyakov D.V., Smyth T., Sychev V. and Grassl H. (2013). Space-borne study of seasonal, multi-year and decadal phytoplankton dynamics in the Bay of Biscay. International Journal of Remote Sensing, 34(4), 1297-1331, DOI:10.1080/01431161.2012.718462.; Muggli D.L. and Harrison PJ. (1996). Effects of nitrogen source on physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions. Marine Ecology Progress Series, 130, 255-267, DOI:10.3354/meps130255.; Müller M.N. (2019). On the Genesis and Function of Coccolithophore Calcification. Frontiers in Marine Science, 6, 49, DOI:10.3389/fmars.2019.00049.; Müller M.N., Antia A.N. and LaRoche J. (2008). Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 53(2), 506-512, DOI:10.4319/lo.2008.53.2.0506.; Müller M.N., Trull T.W. and Hallegraeff G.M. (2015). Differing responses of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry. Marine Ecology Progress Series, 531,81-90, DOI:10.3354/meps11309.; Müller M.N., Beaufort L., Bernard O., Pedrotti M.L., Talec A. and Sciandra A. (2012). Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences, 9(10), 4155-4167, DOI:10.5194/bg-9-4155-2012.; Nissen C., Vogt M., MQnnich M., Gruber N. and Haumann F.A. (2018). Factors controlling coccolithophore biogeography in the Southern Ocean. Biogeosciences, 15(22), 6997-7024, DOI:10.5194/bg-15-6997-2018.; Oviedo A.M., Langer G. and Ziveri P. (2014). Effects of phosphorus limitation on coccoliths and elemental ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi. Journal of Experimental Marine Biology and Ecology, 459, 105-113, DOI:10.1016/j.jembe.2014.04.021.; Oziel L., Baudena A., Ardyna M., Massicotte P., Randelhoff A., Sallee J. B. and Babin M. (2020). Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nature Communications, 11(1), 1-8, DOI:10.1038/s41467-020-15485-5.; Paasche E. (2002). A review of the coccolithophorid Emiliania huxleyi (Prymneosiophyceae) with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia, 40(6), 503-529, DOI:10.2216/i0031-8884-40-6-503.1.; Pantorno A., Holland D.P., Stojkovic S. and Beardall J. (2013). Impacts of nitrogen limitation on the sinking rate of the coccolithophorid Emiliania huxleyi (Prymneosiophyceae). Phycologia, 52(3), 288-294, DOI:10.2216/12-064.1.; Petrenko D., Pozdnyakov D., Johannessen J., Counillon F. and Sychov V. (2013). Satellite-driven multi-year trend in primary production in the Arctic Ocean. International Journal of Remote Sensing, 34(11), 3903-3937, DOI:10.1080/01431161.2012.762698.; Poulton A.J., Young J.R., Bates N.R. and Balch W. (2011). Biometry of detached Emiliania huxleyi coccoliths along the Patagonian Shelf. Marine Ecology Progress Series, 443, 1-17, DOI:10.3354/meps09445.; Pozdnyakov D., Chepikova S. and Kondrik D. (2020). A possible teleconnection mechanism of initiation of Emiliania huxleyi outbursts in the Bering Sea in 1998-2001 and 2018-2019. Proceedings of SPIE, 11534, 1153412, DOI:10.1117/12.2573272.; Pozdnyakov D., Kondrik D., Kazakov E. and Chepikova S. (2019). Environmental conditions favoring coccolithophore blooms in subarctic and arctic seas: a 20-year satellite and multi-dimensional statistical study. Proceedings of SPIE, 11150, 111501W, DOI:10.1117/12.2547868.; Raffi I., Backman J., Fornaciari E., Palike H., Rio D., Lourens L. and Hilgen F. (2006). A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25(23-24), 3113-3137, DOI:10.1016/j.quascirev.2006.07.007.; Ramos J.B., MQller M. and Riebesell U. (2010). Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences, 7(1), 177-186, DOI:10.5194/bg-7-177-2010.; Read B.A., Kegel J., Klute M.J., Kuo A., Lefebvre S.C., Maumus F. and Grigoriev I.V. (2013). Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499(7457), 209-213, DOI:10.1038/nature12221.; Redfield A.C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: James Johnstone Memorial volume. Liverpool: University Press of Liverpool, 176-192.; Richier S., Fiorini S., Kerros M.E., von Dassow P. and Gattuso J.P (2010). Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level. Marine Biology, 158(3), 551-560, DOI:10.1007/s00227-010-1580-8.; Riebesell U., Zondervan I., Rost B., Tortell PD., Zeebe R.E. and Morel F.M. (2000). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407(6802), 364-367, DOI:10.1038/35030078.; Riegman R., Stolte W., Noordeloos A.A.M. and Slezak D. (2000). Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology, 36(1), 87-96, DOI:10.1046/j.1529-8817.2000.99023.x.; Rigual-Hernandez A.S., Trull T.W., Flores J.A., Nodder S.D., Eriksen R., Davies D.M., Hallegraeff G.M.F., Sierro J., Patil S.M., Cortina A., Ballegeer A.M., Northcote L.C., Abrantes F. and Rufino M.M. (2020). Full annual monitoring of Subantarctic Emiliania huxleyi populations reveals highly calcified morphotypes in high-CO2 winter conditions. Scientific Reports, 10, 2594-2599, DOI:10.1038/s41598-020-59375-8.; Rivero-Calle S., Gnanadesikan A., Del Castillo C.E., Balch W.M. and Guikema S.D. (2015). Multidecadal increase in North Atlantic coccolithophores and potential role of rising CO2. Science, 350(6267), 1533-1537, DOI:10.1126/science.aaa8026.; Rokitta S.D. and Rost B. (2012). Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57(2), 607-618, DOI:10.4319/lo.2012.57.2.0607.; Rost B. and Riebesell U. (2004). Coccolithophores and the biological pump: responses to environmental changes. In: H.R. Thierstein, J.R. Young, ed., Coccolithophores: from molecular processes to global impact. Heidelberg: Springer, Berlin, Heidelberg, 99-125, DOI:10.1007/978-3-662-06278-4_5.; Sadeghi A., Dinter T., Vountas M., Taylor B., Altenburg-Soppa M. and Bracher A. (2012). Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences, 9(6), 2127-2143, DOI:10.5194/bg-9-2127-2012.; SchlQter L., Lohbeck K.T., Gutowska M.A., Groger J.P, Riebesell U. and ReuschT.B. (2014). Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change, 4(11), 1024-1030, DOI:10.1038/nclimate2379.; Segovia M., Lorenzo M.R., Iniguez C. and Garcia-Gomez C. (2018). Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 586, 73-89, DOI:10.3354/meps12389.; Sergeeva V.M., Drits A. and Flint M.V (2019). Specific features of distribution and nutrition of dominant zooplankton species under conditions of autumnal growth of coccolithophorids in the eastern Barents Sea. Oceanology, 59(5), 734-745 (in Russian), DOI:10.31857/S0030-1574595734-745.; Sett S., Bach L.T., Schulz K.G., Koch-Klavsen S., Lebrato M. and Riebesell U. (2014). Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE, 9(2), e88308, DOI:10.1371/journal.pone.0088308.; Shi D., Xu Y. and Morel F. M. M. (2009). Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences, 6(7), 1199-1207, DOI:10.5194/bg-6-1199-2009.; Shutler J.D., Land PE., Brown C.W., Findlay H. S., Donlon C.J., Medland M. and Blackford J. C. (2013). Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences, 10(4), 2699-2709, DOI:10.5194/bg-10-2699-2013.; Silkin V.A. (2017). Why coccolithophorids dominate or the physiological mechanisms of Emiliania huxleyi domination. Voprosy sovremennoy al'gologii, [online] Volume 3(15). Available at: http://algology.ru/1185 [Accessed 03.11.2020] (in Russian with English summary).; Silkin V.A., Pautova L.A., Giordano M., Chasovnikov V.K., Vostokov S.V., Podymov O.I. and Moskalenko L.V. (2019). Drivers of phytoplankton blooms in the northeastern Black Sea. Marine Pollution Bulletin, 138, 274-284, DOI: /10.1016/j.marpolbul.2018.11.042.; Smith H.E., Poulton A.J., Garley R., Hopkins J., Lubelczyk L.C., Drapeau D.T. and Balch W. M. (2017). The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt. Biogeosciences, 14(21), 4905-4925, DOI:10.5194/bg-14-4905-2017.; Smyth T.J., Tyrrell T. and Tarrant B. (2004). Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery. Geophysical Research Letters, 31(11), L11302, DOI:10.1029/2004GL019735.; Stelmakh L. and Gorbunova T. (2019). Emiliania huxleyi blooms in the Black Sea: Influence of abiotic and biotic factors. Botanica, 24(2), 172-184, DOI:10.2478/botlit-2018-0017.; Strom S. L., Barberi O., Mazur C., Bright K. and Fredrickson K. (2020). High light stress reduces dinoflagellate predation on phytoplankton through both direct and indirect responses. Aquatic Microbial Ecology, 84, 43-57, DOI:10.3354/ame01924.; Thierstein H.R. and Young J.R. (2004). Coccolithophores: from molecular processes to global Impact. Heidelberg: Springer-Verlag Berlin Heidelberg, 565 p., DOI:10.1007/978-3-662-06278-4.; Thierstein H.R., Geitzenauer K.R., Molfino B. and Shackleton N.J. (1977). Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology, 5(7), 400-404, DOI:10.1130/0091-7613(1977)52.0.CO;2.; Tyrrell T. and Merico A. (2004). Emiliania huxleyi: bloom observations and the conditions that induce them. In: H.R. Thierstein, J.R. Young, ed., Coccolithophores, 1st ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 75-97, DOI:10.1007/978-3-662-06278-4_4.; Tyrrell T. and Young J R. (2009). Coccolithophores. In: J. H. Steele, K. K. Turekian and S.A. Thorpe, ed., Encyclopedia of Ocean Sciences. 2nd ed. San Diego: Academic Press, 3568-3576, DOI:10.2989/16085910109503736.; Vargas C., Aubry M.-P, Probert I. and Young J. (2007). Origin and Evolution of Coccolithophores: from Coastal Hunters to Oceanic Farmers. In: G. Falkowski, A. H. Knoll, ed., Evolution of Primary Producers in the Sea. Cambridge: Academic Press, 251-285, DOI:10.1016/B978-012370518-1/50013-8.; Vogt M. and Liss PS. (2010). Dimethylsulfide and climate. Surface Ocean-Lower Atmospheric Processes. Geophysical Research Series, 187, 197-232, DOI:10.1029/2008GM000790.; von Dassow P., Diaz-Rosas F., Bendif E.M., Gaitan-Espitia J. D., Mella-Flores D., Rokitta S. and Torres R. (2018). Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification. Biogeosciences, 15(5), 1515-1534, DOI:10.5194/bg-15-1515-2018.; von Dassow P., John U., Ogata H., Probert I., Bendif E.M., Kegel J.U. and De Vargas C. (2015). Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. The ISME Journal, 9(6), 1365-1377, DOI:10.1038/ismej.2014.221.; Walker C.E., Taylor A.R., Langer G., Durak G.M., Heath S., Probert I. and Wheeler G.L. (2018). The requirement for calcification differs between ecologically important coccolithophore species. New Phytologist, 220(1), 147-162, DOI:10.1111/nph.15272.; Wang S., Eliott S., Maltreed M. and Cameron-Smith P (2015) Influence of explicit Phaeocystis on the global distribution of marine dimethyl sulfide. Journal of Geophysical Research, 120(11), 2158-2177, DOI:10.1002/2015JG003017.; Wang X., Fu F., Qu P, Kling J.D., Jiang H., Gao Y and Hutchins D. A. (2019). How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean? Biogeosciences, 16(22), 4393-4409, DOI:10.5194/bg-16-4393-2019.; Winter A., Henderiks J., Beaufort L., Rickaby R.E. and Brown C.W. (2014). Poleward expansion of the coccolithophore Emiliania huxleyi. Journal of Plankton Research, 36(2), 316-325, DOI:10.1093/plankt/fbt110.; Xu K. and Gao K. (2012). Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. Plant and Cell Physiology, 53(7), 1267-1274, DOI:10.1093/pcp/pcs066.; Young J.R., Poulton A.J. and Tyrrell T. (2014). Morphology of Emiliania huxleyi coccoliths on the northwestern European shelf - is there an influence of carbonate chemistry? Biogeosciences, 11(17), 4771- 4782, DOI:10.5194/bg-11-4771-2014.; https://ges.rgo.ru/jour/article/view/1866

  14. 14
    Academic Journal

    المؤلفون: T. A. Chikisheva, D. V. Pozdnyakov

    المصدر: Archaeology, Ethnology & Anthropology of Eurasia; Vol 49, No 1 (2021); 133-146 ; Археология, этнография и антропология Евразии; Vol 49, No 1 (2021); 133-146 ; 1563-0110

    وصف الملف: application/pdf

    Relation: https://journal.archaeology.nsc.ru/jour/article/view/1169/773; Akimova M.S. 1953. Paleoantropologicheskiye nakhodki epokhi neolita na territorii lesnoy polosy yevropeiskoy chasti SSSR. KSIE, iss. 18: 55–65.; Alekseev V.P. 1976. O roli sotsialnykh faktorov v biologicheskoy divergentsii chelovecheskikh populyatsiy. Sovetskaya etnographiya, No. 4: 114–131.; Alekseev V.P. 2007. Izbrannoye: In 5 vols. Vol. 2: Antropogeografiya. Moscow: Nauka.; Alekseev V.P., Gokhman I.I. 1984. Rezultaty ekspertizy nadezhnosti kraniometricheskikh pokazateley antropologicheskikh materialov iz mogilnika na Yuzhnom Olenyem ostrove Onezhskogo ozera (v svyazi s ikh sokhrannostyu i osobennostyami restavratsii). In Problemy antropologii drevnego i sovremennogo naseleniya severa Yevrazii. Leningrad: Nauka, pp. 155–158.; Alekseeva T.I., Denisova R.Y., Kozlovskaya M.V., Kostyleva E.L., Krainov D.A., Lebedinskaya G.V., Utkin A.V., Fedosova V.N. 1997. Neolit lesnoy polosy Vostochnoy Yevropy: (Antropologiya Sakhtyshskikh stoyanok). Moscow: Nauch. mir.; Arkhipov S.A. 1997. Khronologiya geologicheskikh sobytiy pozdnego pleistotsena Zapadnoy Sibiri. Geologiya i geofizika, vol. 38 (12): 1863–1884.; Bagashev A.N. 2003. Noviye materialy k antropologii neoliticheskogo naseleniya Zapadnoy Sibiri. In Gorizonty antropologii. Moscow: Nauka, pp. 438–443.; Bobrov V.V. 2008. K probleme kulturnoy prinadlezhnosti pozdneneoliticheskogo kompleksa poseleniya Avtodrom-2. In Okno v nevedomiy mir. Novosibirsk: Izd. IAET SO RAN, pp. 110–113.; Bobrov V.V., Marochkin A.G. 2011. Artynskaya kultura. In Trudy III (XIX) Vseros. arkheol. syezda, vol. 1. St. Petersburg, Moscow, Velikiy Novgorod: pp. 106–108.; Bobrov V.V., Marochkin A.G., Yurakova A.Y. 2012. Poseleniye boborykinskoy kultury Avtodrom-2/2 (severo- zapadniye rayony Barabinskoy lesostepi). Vestnik arkheologii, antropologii i etnografii, No. 3: 4–13.; Bobrov V.V., Marochkin A.G., Yurakova A.Y. 2017. Avtodrom 2—a Late Neolithic (Artyn Culture) site in the Baraba forest-steppe, Western Siberia. Archaeology, Ethnology and Anthropology of Eurasia, vol. 45 (1): 49–61.; Chairkina N.M., Kuzmin Y.V. 2018. Noviye radiouglerodniye daty epokhi mezolita – rannego zheleznogo veka Zauralya. Uralskiy istoricheskiy vestnik, No. 2: 124–134.; Chikisheva T.A. 1991. Paleoantropologicheskiye nakhodki neoliticheskogo vremeni s territorii Srednego Zauralya. Izvestiya Sibirskogo otdeleniya AN SSSR. Ser.: Istoriya, filologiya i filosofiya, iss. 2: 56–60.; Chikisheva T.A. 2012. Dinamika antropologicheskoy differentsiatsii naseleniya yuga Zapadnoy Sibiri v epokhi neolita – rannego zheleza. Novosibirsk: Izd. IAET SO RAN.; Chikisheva T.A., Pozdnyakov D.V., Zubova A.V. 2015. Kraniologicheskiye osobennosti paleopopulyatsii neoliticheskogo mogilnika Vengerovo-2A v Barabinskoy lesostepi. Teoriya i praktika arkheologicheskikh issledovaniy, No. 2: 144–162.; Denisova R.Y. 1975. Antropologiya drevnikh baltov. Riga: Zinatne.; Dremov V.A. 1986. Izmereniya cherepov i skeletov iz neoliticheskikh mogilnikov Ust-Isha i Itkul (Verkhneye Priobye). In Problemy antropologii drevnego i sovremennogo naseleniya sovetskoy Azii. Novosibirsk: Nauka, pp. 56–74.; Dremov V.A. 1997. Naseleniye Verkhnego Priobya v epokhu bronzy. Tomsk: Izd. Tom. Gos. Univ.; Gerasimova M.M., Pezhemsky D.V. 2005. Mezoliticheskiy chelovek iz Peschanitsy: Kompleksniy antropologicheskiy analiz. Moscow: IEA RAN.; Gokhman I.I. 1984. Noviye antropologicheskiye nakhodki epokhi mezolita v Kargopolye. In Problemy antropologii drevnego i sovremennogo naseleniya severa Yevrazii. Leningrad: pp. 6–27.; Khokhlov A.A. 2017. Morfogeneticheskiye protsessy v Volgo-Uralye v epokhu rannego golotsena (po kraniologicheskim materialam mezolita – bronzovogo veka). Samara: Samar. Gos. Soc.-Ped. Univ.; Khrisanfova E.N., Perevozchikov I.V., 1991 Antropologiya. Moscow: Izd. Mosk. Gos. Univ. Kosorukova N.V., Kulkova M.A., Pitsonka K., Nesterova L.A., Sementsov A.A., Lebedeva L.M., Terberger T., Harts S. 2016. Radiouglerodnoye datirovaniye neoliticheskikh pamyatnikov v mestnosti Karavaikha v basseine ozera Vozhe. In Radiouglerodnaya khronologiya epokhi neolita Vostochnoy Yevropy VII–III tysyacheletiya do n.e. Smolensk: Svitok, pp. 410–443.; Kuzmin Y.V., Zolnikov I.D., Orlova L.A., Zenin V.N. 2006. K voprosu o prirodnykh usloviyakh Zapadnoy Sibiri v epokhu poslednego (sartanskogo) oledeneniya. Izvestiya Laboratorii drevnikh tekhnologiy. Irkut. Gos. Tekhn. Univ., No. 4: 159–165.; Levin M.G. 1956. Antropologicheskiy material iz Verkholenskogo mogilnika. Antropologicheskiy sbornik, No. 1: 299–339. (TIE; vol. 33).; Mamonova N.N. 1969. Novaya paleoantropologicheskaya nakhodka na bolote Berendeyevo. In Golotsen. Moscow: Nauka, pp. 145–151.; Mamonova N.N. 1973. K voprosu o drevnem naselenii Priangarya po paleoantropologicheskim dannym. In Problemy arkheologii Urala i Sibiri. Moscow: Nauka, pp. 18–28.; Mamonova N.A. 1980. Drevneye naseleniye Angary i Leny v serovskoye vremya po dannym antropologii (k voprosu o mezhgruppovykh razlichiyakh v epokhu neolita). In Paleoantropologiya Sibiri. Moscow: Nauka, pp. 64–88.; Mamonova N.N., Sulerzhitsky L.D. 1989. Opyt datirovaniya po 14С pogrebeniy Pribaikalya epokhi golotsena. Sovetskaya arkheologiya, No. 1: 19–32.; Marchenko Z.V. 2009. Radiouglerodnaya khronologiya arkheologicheskikh pamyatnikov epokhi neolita i rannego metalla Barabinskoy lesostepi. In Rol yestestvennonauchnykh metodov v arkheologicheskikh issledovaniyakh. Barnaul: Izd. Alt. Gos. Univ., pp. 140–143.; Molodin V.I. 2001. Pamyatnik Sopka-2 na reke Omi. Novosibirsk: Izd. IAET SO RAN.; Molodin V.I., Chikisheva T.A. 1996. Neoliticheskiy mogilnik Korchugan. In Noveishiye arkheologicheskiye i etnograficheskiye otkrytiya v Sibiri: Materialy IV Godovoy itogovoy sessii Inst. arkheologii i etnografii SO RAN. Novosibirsk: Izd. IAET SO RAN, pp. 185–190.; Molodin V.I., Kobeleva L.S., Mylnikova L.N. 2017. Ranneneoliticheskaya stoyanka Ust-Tartas-1 i yeyo kulturno-khronologicheskaya interpretatsiya. In Problemy arkheologii, etnografii, antropologii Sibiri i sopredelnykh territoriy, vol. XXIII. Novosibirsk: Izd. IAET SO RAN, pp. 172–177.; Molodin V.I., Mylnikova L.N., Nesterova M.S. 2016. The Vengerovo-2A Neolithic cemetery, Southwestern Siberia: Results of a multidisciplinary study. Archaeology, Ethnology and Anthropology of Eurasia, vol. 44 (2): 30–46.; Molodin V.I., Mylnikova L.N., Nesterova M.S., Orlova L.A., 2012. Unikalniy pograbalno-ritualniy kompleks epokhi neolita v Barabinskoy lesostepi. In Problemy arkheologii, etnografii, antropologii Sibiri i sopredelnykh territoriy, vol. XVIII. Novosibirsk: Izd. IAET SO RAN, pp. 117–122.; Molodin V.I., Nenakhov D.A., Mylnikova L.N., Reinhold S., Parkhomchuk E.V., Kalinkin P.N., Parkhomchuk V.V., Rastigeev S.A. 2019. The Early Neolithic complex on the Tartas-1 site: Results of the AMS radiocarbon dating. Archaeology, Ethnology and Anthropology of Eurasia, vol. 47 (1): 15–22.; Molodin V.I., Novikov A.V., Chikisheva T.A. 1999. Neoliticheskiy mogilnik Korchugan na Sredney Tare. In Problemy neolita–eneolita yuga Zapadnoy Sibiri. Kemerovo: Kuzbassvuzizdat, pp. 66–98.; Molodin V.I., Reinhold S., Mylnikova L.N., Nenakhov D.A., Hansen S. 2018. Radiouglerodniye daty neoliticheskogo kompleksa Tartas-1 (ranniy neolit v Barabe). Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Ser.: Istoriya, filologiya, vol. 17. Iss. 3: Arkheologiya i etnografiya: 39–56.; Mosin V.S., Bobrov V.V., Marochkin A.G. 2017. New absolute dates for the Trans-Uralian and Western Siberian Neolithic. Archaeology, Ethnology and Anthropology of Eurasia, vol. 45 (4): 65–73.; Orlova L.A. 1990. Golotsen Baraby: Stratigrafiya i radiouglerodnaya khronologiya. Novosibirsk: Nauka.; Orlova L.A. 1995. Radiouglerodnoye datirovaniye pamyatnikov Sibiri i Dalnego Vostoka. In Metody yestestvennykh nauk v arkheologicheskikh rekonstruktsiyakh. Novosibirsk: Izd. IAET SO RAN, pp. 207–232.; Oshibkina S.V., 2007. Mogilniki i pogrebalniye kompleksy epokhi mezolita v lesnoy zone Vostochnoy Yevropy. Rossiyskaya arkheologiya, No. 1: 36–48.; Polosmak N.V., Chikisheva T.A., Balueva T.S. 1989. Neoliticheskiye mogilniki Severnoy Baraby. Novosibirsk: Nauka.; Saag L., Vasilyev S.V., Varul L., Kosorukova N.V., Gerasimov D.V., Oshibkina S.V., Griffith S.J., Solnik A., Saag L., D’Atanasio E., Metspalu E., Reidla M., Rootsi S., Kivisild T., Scheib C.L., Tambets K., Kriiska A., Metspalu M. 2020. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Prepr. from bioRxiv. URL: https:// doi.org/10.1101/2020.07.02.184507; Timofeev V.I., Zaitseva G.I., Dolukhanov P.M., Shukurov A.M. 2004. Radiouglerodnaya khronologiya neolita Severnoy Yevrazii. St. Petersburg: Teza.; Yakimov V.P. 1960. Antropologicheskiye materialy iz neoliticheskogo mogilnika na Yuzhnom Olenyem ostrove. Sbornik MAE, iss. XIX: 221–359.; Zakh V.A. 2018. Poyavleniye keramiki v Zapadnoy Sibiri. Vestnik arkheologii, antropologii i etnografii, No. 4: 20–31.; Zenin V.N. 2002. Major stages in the human occupation of the West Siberian Plain during the Paleolithic. Archaeology, Ethnology and Anthropology of Eurasia, No. 4 (12): 22–44.; Zenin V.N. 2003. Pozdniy paleolit Zapadno-Sibirskoy ravniny: D. Sc. (History) Dissertation. Novosibirsk.; https://journal.archaeology.nsc.ru/jour/article/view/1169

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20