يعرض 1 - 20 نتائج من 272 نتيجة بحث عن '"A. V. Ageeva"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: A. I. Savelev, A. V. Ageeva

    المصدر: Сибирское юридическое обозрение, Vol 15, Iss 3, Pp 298-303 (2020)

    مصطلحات موضوعية: minors, security, threat, crime, sources, determinants, Law

    وصف الملف: electronic resource

  2. 2
    Academic Journal

    المؤلفون: A. I. Savelev, A. V. Ageeva

    المصدر: Сибирское юридическое обозрение, Vol 15, Iss 3, Pp 298-303 (2018)

    مصطلحات موضوعية: minors, security, threat, crime, sources, determinants, Law

    وصف الملف: electronic resource

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: The review was prepared with the financial support of the Russian Science Foundation (project No. 23-16-00041, https://rscf.ru/project/23-16-00041/).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 523-535 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 523-535 ; 2500-3259 ; 10.18699/vjgb-24-52

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4234/1859; Ali A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023;4:100076. DOI 10.1016/j.jtemin.2023.100076; Ali M., Ahmed I., Tariq H., Abbas S., Zia M.H., Mumtaz A., Sharif M. Growth improvement of wheat (Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. Front. Plant Sci. 2023;14:1140454. DOI 10.3389/fpls.2023.1140454; Alomari D.Z., Eggert K., Von Wirén N., Pillen K., Röder M.S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars. Front. Plant Sci. 2017;8:1797. DOI 10.3389/fpls.2017.01797; Alomari D.Z., Eggert K., Von Wirén N., Polley A., Plieske J., Ganal M.W., Liu F., Pillen K., Röder M.S. Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int. J. Mol. Sci. 2019;20(1):76. DOI 10.3390/ijms20010076; Alvarez J.B., Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor. Appl. Genet. 2018;131(2):225-251. DOI 10.1007/s00122-017-3042-x; Andersson M.S., Saltzman A., Virk P.S., Pfeiffer W.H. Progress update: сrop development of biofortified staple food crops under HarvestPlus. Afr. J. Food Agric. Nutr. Dev. 2017;17(2):11905- 11935. DOI 10.18697/ajfand.78.HarvestPlus05; Aristarkhov A.N., Busygin A.S., Yakovleva T.A. Selenium fertilizer effect on the yield and elemental composition of spring wheat (Triticum aestivum L.) in the soil and climatic conditions of the north-east of Non-Chernozem zone. Problemy Agrokhimii i Ekologii = Agrochemistry and Ecology Problems. 2018;1:3-12 (in Russian); Bhatta M., Stephen Baenziger P., Waters B.M., Poudel R., Belamkar V., Poland J., Morgounov A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int. J. Mol. Sci. 2018;19(10):3237. DOI 10.3390/ijms19103237; Bouis H.E., Saltzman A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017;12:49-58. DOI 10.1016/j.gfs.2017.01.009; Butt M.S., Ihsanullah Qamar M., Anjum F.M., Aziz A., Randhawa M.A. Development of minerals-enriched brown flour by utilizing wheat milling by-products. Nutr. Food Sci. 2004;34(4):161-165. DOI 10.1108/00346650410544855; Cabas-Lühmann P., Schwember A.R., Arriagada O., Marcotuli I., Matus I., Alfaro C., Gadaleta A. Meta-QTL analysis and candidate genes for quality traits, mineral content, and abiotic-related traits in wild emmer. Front. Plant Sci. 2024;15:1305196. DOI 10.3389/fpls.2024.1305196; Cakmak I., Torun A., Özkan H., Millet E., Feldman M., Fahima T., Korol A., Nevo E., Braun H.J. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 2004;50(7):1047-1054. DOI 10.1080/00380768.2004.10408573; Cakmak I., Pfeiffer W.H., McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010;87(1):10-20. DOI 10.1094/CCHEM-87-1-0010; Caldelas C., Rezzouk F.Z., Aparicio Gutiérrez N., Diez-Fraile M.C., raus Ortega J.L. Interaction of genotype, water availability, and nitrogen fertilization on the mineral content of wheat grain. Food Chem. 2023;404:134565. DOI 10.1016/j.foodchem.2022.134565; Calderini D.F., Ortiz-Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica. 2003; 134(2):169-178. DOI 10.1023/B:EUPH.0000003849.10595.ac; Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I., Saranga Y. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann. Bot. 2010;105(7):1211-1220. DOI 10.1093/aob/mcq024; Chikishev D.V., Abramov N.V., Larina N.S., Sherstobitov S.V. Chemical composition of spring wheat at different levels of mineral nutrition. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(3):496-505. DOI 10.21285/2227-2925-2020-10-3-496-505 (in Russian); Ciudad-Mulero M., Matallana-González M.C., Callejo M.J., Carrillo J.M., Morales P., Fernández-Ruiz V. Durum and bread wheat flours. Preliminary mineral characterization and its potential health claims. Agronomy. 2021;11:108. DOI 10.3390/agronomy11010108; Collard B.C.Y., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008;363(1491):557-572. DOI 10.1098/rstb.2007.2170; Crespo-Herrera L.A., Velu G., Singh R.P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann. Appl. Biol. 2016;169(1):27-35. DOI 10.1111/aab.12276; Crespo-Herrera L.A., Govindan V., Stangoulis J., Hao Y., Singh R.P. QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front. Plant Sci. 2017;8:01800. DOI 10.3389/fpls.2017.01800; De Santis M.A., Soccio M., Laus M.N., Flagella Z. Influence of drought and salt stress on durum wheat grain quality and composition: a review. Plants. 2021;10(12):2599. DOI 10.3390/plants10122599; De Vita P., Platani C., Fragasso M., Ficco D.B.M., Colecchia S.A., Del Nobile M.A., Padalino L., Di Gennaro S., Petrozza A. Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties. Food Chem. 2017;214:374-382. DOI 10.1016/j.foodchem.2016.07.015; Dhua S., Kumar K., Kumar Y., Singh L., Sharanagat V.S. Composition, characteristics and health promising prospects of black wheat: a review. Trends Food Sci. Technol. 2021;112:780-794. DOI 10.1016/j.tifs.2021.04.037; Faber M., Berti C., Smuts M. Prevention and control of micronutrient deficiencies in developing countries: current perspectives. Nutr. Diet. Suppl. 2014;6:41-57. DOI 10.2147/nds.s43523; Fan M.S., Zhao F.J., Fairweather-Tait S.J., Poulton P.R., Dunham S.J., McGrath S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008;22(4):315-324. DOI 10.1016/j.jtemb.2008.07.002; Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., Kruppa K., Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS trans-location identified by GISH and FISH. Genome. 2014;57(2):61-67. DOI 10.1139/gen-2013-0204; Ficco D.B.M., Riefolo C., Nicastro G., De Simone V., Di Gesù A.M., Beleggia R., Platani C., Cattivelli L., De Vita P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop. Res. 2009;111(3):235-242. DOI 10.1016/j.fcr.2008.12.010; Ficco D.B.M., De Simone V., Colecchia S.A., Pecorella I., Platani C., Nigro F., Finocchiaro F., Papa R., De Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014;62(34):8686-8695. DOI 10.1021/jf5003683; Fisenko A.V., Kalmykova L.P., Kuznetsova N.L., Kuz’mina N.P., Yermolenko O.I., Upelniek V.P. Selection of purple-grain common wheat and its technological properties. Agrarnaya Rossiya = Agricultural Russia. 2020;10:43-48. DOI 10.30906/1999-5636-2020-10-43-48 (in Russian); Fitileva Z.E., Sibikeev S.N. Bread wheat breeding for functional nutrition products. Agrarnyi Nauchnyi Zhurnal = The Agrarian Scientific Journal. 2023;7:48-55. DOI 10.28983/asj.y2023i7pp48-55 (in Russian); Garcia-Oliveira A.L., Chander S., Ortiz R., Menkir A., Gedil M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018;9:937. DOI 10.3389/fpls.2018.00937; Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018;5:12. DOI 10.3389/fnut.2018.00012; Garvin D.F., Welch R.M., Finley J.W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agric. 2006;86(13):2213-2220. DOI 10.1002/jsfa.2601; Genchi G., Carocci A., Lauria G., Sinicropi M.S., Catalano A. Nickel: human health and environmental toxicology. Int. J. Environ. Res. Public Health. 2020;17(3):679. DOI 10.3390/ijerph17030679; Golubkina N.А., Sokolova A.J., Sindireva A.V. The role of growth promoting bacteria in selenium accumulation by plants. Ovoshchi Rossii = Vegetable Crops of Russia. 2017;2:81-85. DOI 10.18619/2072-9146-2017-2-81-85 (in Russian); Gordeeva E.I., Shoeva O.Y., Shamanin V.P., Khlestkina E.K. The molecular markers applying in breeding of spring bread wheat (Triticum aestivum L.) lines with different anthocyanin coloration of the grains. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2023;9(2):86-99. DOI 10.18699/LettersVJ-2023-9-11 (in Russian); Gupta O.P., Singh A.K., Singh A., Singh G.P., Bansal K.C., Datta S.K. Wheat biofortification: utilizing natural genetic diversity, genome-wide association mapping, genomic selection, and genome editing technologies. Front. Nutr. 2022;9:826131. DOI 10.3389/fnut.2022.826131; Gupta P.K., Balyan H.S., Sharma S., Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020;133:1569-1602. DOI 10.1007/s00122-020-03583-3; Gupta P.K., Balyan H.S., Sharma S., Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor. Appl. Genet. 2021;134:1-35. DOI 10.1007/s00122-020-03709-7; Hao Y., Velu G., Peña R.J., Singh S., Singh R.P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol. Breed. 2014;34(4): 1893-1902. DOI 10.1007/s11032-014-0147-7; Hao Y., Kong F., Wang L., Zhao Yu, Li M., Che N., Li S., Wang M., Hao M., Zhang X., Zhao Y. Genome-wide association study of grain micronutrient concentrations in bread wheat. J. Integr. Agric. 2024; 23(5):1468-1480. DOI 10.1016/j.jia.2023.06.030; Hassan M.U., Chattha M.U., Ullah A., Khan I., Qadeer A., Aamer M., Khan A.U., Nadeem F., Khan T.A. Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. Int. J. Agric. Biol. 2019;21:615-620. DOI 10.17957/IJAB/15.0936; Helguera M., Abugalieva A., Battenfield S., Békés F., Branlard G., Cuniberti M., Hüsken A., Johansson E., Morris C.F., Nurit E., Sis-sons M., Vazquez D. Grain quality in breeding. In: Igrejas G., Ikeda T.M., Guzmán C. (Eds.) Wheat Quality for Improving Processing and Human Health. Switzerland: Springer, 2020;273-308. DOI 10.1007/978-3-030-34163-3; Islam M.R., Akash S., Jony M.H., Alam M.N., Nowrin F.T., Rah-man M.M., Rauf A., Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol. Cell. Biochem. 2023;478(10):2141-2171. DOI 10.1007/s11010-022-04638-3; Jaskulska I., Jaskulski D., Gałȩzewski L., Knapowski T., Kozera W., Wacławowicz R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018;2018:5013825. DOI 10.1155/2018/5013825; Jomova K., Makova M., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Rhodes C.J., Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022;367:110173. DOI 10.1016/j.cbi.2022.110173; Juliana P., Govindan V., Crespo-Herrera L., Mondal S., Huerta-Espino J., Shrestha S., Poland J., Singh R.P. Genome-wide association mapping identifies key genomic regions for grain zinc and iron bio-fortification in bread wheat. Front. Plant Sci. 2022;13:903819. DOI 10.3389/fpls.2022.903819; Kamble U., Mishra C.N., Govindan V., Sharma A.K., Pawar S., Kumar S., Krishnappa G., Gupta O.P., Singh G.P., Singh G. Ensuring nutritional security in India through wheat biofortification: a review. Genes. 2022;13(12):2298. DOI 10.3390/genes13122298; Kaur H., Sharma P., Kumar J., Singh V.K., Vasistha N.K., Gahlaut V., Tyagi V., Verma S.K., Singh S., Dhaliwal H.S., Sheikh I. Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS. Mol. Biol. Rep. 2023;50(11):9191-9202. DOI 10.1007/s11033-023-08800-y; Kaznina N.M., Ignatenko A.A., Batova Yu.V. Copper content in roots and shoots of cereals under different types of salicylic acid treatment. Trudy Karel’skogo Nauchnogo Tsentra RAN = Transactions of the Karelian Research Centre RAS. 2022;7:92-99. DOI 10.17076/eb1701 (in Russian); Khan M.I.R., Nazir F., Maheshwari C., Chopra P., Chhillar H., Sreenivasulu N. Mineral nutrients in plants under changing environments: a road to future food and nutrition security. Plant Genome. 2023;16(4):e20362. DOI 10.1002/tpg2.20362; Khokhar J.S., Sareen S., Tyagi B.S., Singh G., Wilson L., King I.P., Young S.D., Broadley M.R. Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS One. 2018; 13(1):e0192026. DOI 10.1371/journal.pone.0192026; Kostin V.I., Mudarisov F.A., Isaychev V.A. The Role of Microelements in Increasing the Yield of Spring and Winter Wheat and Improving the Milling and Baking Qualities of Grain. Ulyanovsk: UlGAU Publ., 2020 (in Russian); Krishnappa G., Rathan N.D., Sehgal D., Ahlawat A.K., Singh Santosh K., Singh Sumit K., Shukla R.B., Jaiswal J.P., Solanki I.S., Singh G.P., Singh A.M. Identification of novel genomic regions for biofortification traits using an SNP marker-enriched linkage map in wheat (Triticum aestivum L.). Front. Nutr. 2021;8:669444. DOI 10.3389/fnut.2021.669444; Kumari A., Sharma S., Sharma N., Chunduri V., Kapoor P., Kaur S., Goyal A., Garg M. Influence of biofortified colored wheats (purple, blue, black) on physicochemical, antioxidant and sensory characteristics of chapatti (Indian flatbread). Molecules. 2020;25:5071. DOI 10.3390/molecules25215071; Kutman U.B., Yildiz B., Cakmak I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 2011;53(1):118-125. DOI 10.1016/j.jcs.2010.10.006; Liu J., Huang L., Li T., Liu Y., Yan Z., Tang G., Zheng Y., Liu D., Wu B. Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Front. Plant Sci. 2021;12:651283. DOI 10.3389/fpls.2021.651283; Liu Y., Huang S., Jiang Z., Wang Y., Zhang Z. Selenium biofortification modulates plant growth, microelement and heavy metal concentrations, selenium uptake, and accumulation in black-grained wheat. Front. Plant Sci. 2021;12:748523. DOI 10.3389/fpls.2021.748523; Lockyer S., White A., Buttriss J.L. Biofortified crops for tackling micronutrient deficiencies – what impact are these having in developing countries and could they be of relevance within Europe? Nutr. Bull. 2018;43(4):319-357. DOI 10.1111/nbu.12347; Ma X., Luo W., Li J., Wu F. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils. Appl. Soil Ecol. 2019;135:91-97. DOI 10.1016/j.apsoil.2018.11.007; Manickavelu A., Hattori T., Yamaoka S., Yoshimura K., Kondou Y., Onogi A., Matsui M., Iwata H., Ban T. Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One. 2017; 12(1):e0169416. DOI 10.1371/journal.pone.0169416; Marschner H. Mineral Nutrition of Higher Plants. Acad. Press, 1995. DOI 10.1016/C2009-0-02402-7; Mitrofanova O.P., Khakimova A.G. New genetic resources in wheat breeding for an increased grain protein content. Russ. J. Genet. Appl. Res. 2017;7(4):477-487. DOI 10.1134/S2079059717040062; Monasterio I., Graham R.D. Breeding for trace minerals in wheat. Food Nutr. Bull. 2000;21(4):392-396. DOI 10.1177/156482650002100409; Morgounov A., Li H., Shepelev S., Ali M., Flis P., Koksel H., Savin T., Shamanin V. Genetic characterization of spring wheat germplasm for macro-, microelements and trace metals. Plants. 2022;11(16): 2173. DOI 10.3390/plants11162173; Murphy K.M., Reeves P.G., Jones S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163(3):381-390. DOI 10.1007/s10681-008-9681-x; Niyigaba E., TwizerimanaA., Mugenzi I., Ngnadong W.A. Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy. 2019;9(5):250. DOI 10.3390/agronomy9050250; Oury F.X., Leenhardt F., Rémésy C., Chanliaud E., Duperrier B., Balfourier F., Charmet G. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron. 2006;25(2):177-185. DOI 10.1016/j.eja.2006.04.011; Padhy A.K., Kaur P., Singh S., Kashyap L., Sharma A. Colored wheat and derived products: key to global nutritional security. Crit. Rev. Food Sci. Nutr. 2022;64(7):1894-1910. DOI 10.1080/10408398.2022.2119366; Pasqualone A., Bianco A.M., Paradiso V.M., Summo C., Gambacorta G., Caponio F., Blanco A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015; 180:64-70. DOI 10.1016/j.foodchem.2015.02.025; Peleg Z., Saranga Y., Yazici A., Fahima T., Ozturk L., Cakmak I. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil. 2008;306(1-2):57-67. DOI 10.1007/s11104-007-9417-z; Peleg Z., Cakmak I., Ozturk L., Yazici A., Jun Y., Budak H., Korol A.B., Fahima T., Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009;119(2):353-369. DOI 10.1007/s00122-009-1044-z; Peterson C.J., Jonson V.A., Mattern P.J. Influence of cultivar and environment on mineral and protein concentration of wheat flour, bran, and grain. Cereal Chem. 1986;63(3):183-186; Phuong L.M., Lachman J., Kotíková Z., Orsák M., Michlová T., Martinek P. Selenium in colour-grained winter wheat and spring tritordeum. Plant Soil Environ. 2017;63(7):315-321. DOI 10.17221/259/2017-PSE; Potapova N.A., Timoshchuk A.N., Tiys E.S., Vinichenko N.A., Leonova I.N., Salina E.A., Tsepilov Y.A. Multivariate genome-wide association study of concentrations of seven elements in seeds reveals four new loci in Russian wheat lines. Plants. 2023;12(17): 12173019. DOI 10.3390/plants12173019; Potapova N.A., Zlobin A.S., Leonova I.N., Salina E.A., Tsepilov Ya.A. The BLUP method in evaluation of breeding value of Russian spring wheat lines using micro- and macroelements in seeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2024;28(4):456-462. DOI 10.18699/vjgb-24-51; Prashanth L., Kattapagari K., Chitturi R., Baddam V.R., Prasad L. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Heal. Sci. 2015;4(2):75-85. DOI 10.4103/2277-8632.158577; Pu Z.E., Yu M., He Q.Y., Chen G.Y., Wang J.R., Liu Y.X., Jiang Q.T., Li W., Dai S.F., Wei Y.M., Zheng Y.L. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014;13(11):2322-2329. DOI 10.1016/S2095-3119(13)60640-1; Qiao L., Wheeler J., Wang R., Isham K., Klassen N., Zhao W., Su M., Zhang J., Zheng J., Chen J. Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Front. Plant Sci. 2021;12:756741. DOI 10.3389/fpls.2021.756741; Rachoń L., Pałys E., Szumiło G. Comparison of the chemical composition of spring durum wheat grain (Triticum durum) and common wheat grain (Triticum aestivum ssp. vulgare). J. Elem. 2012;17(1): 105-114. DOI 10.5601/jelem.2012.17.1.10; Rana A., Joshi M., Prasanna R., Shivay Y.S., Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012;50:118-126. DOI 10.1016/j.ejsobi.2012.01.005; Rathan N.D., Krishna H., Ellur R.K., Sehgal D., Govindan V., Ahlawat A.K., Krishnappa G., Jaiswal J.P., Singh J.B., Sv S., Ambati D., Singh S.K., Bajpai K., Mahendru-Singh A. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Sci. Rep. 2022;12(1):7037. DOI 10.1038/s41598-022-10618-w; Salantur A., Karaoğlu C. Macro-microelements in wheat landraces and their use in breeding. In: Zencirci N., Baloch F.S., Habyarimana E., Chung G. (Eds.) Wheat Landraces. Cham: Springer, 2021;83-91. DOI 10.1007/978-3-030-77388-5_5; Saquee F.S., Diakite S., Kavhiza N.J., Pakina E., Zargar M. The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy. 2023;13(2):566. DOI 10.3390/agronomy13020566; Savin T.V., Abugaliyeva A.I., Cakmak I., Kozhakhmetov K. Mineral composition of wild relatives and introgressive forms in wheat selection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):88-96. DOI 10.18699/VJ18.335 (in Russian); Shamanin V.P., Flis P., Savin T.V., Shepelev S.S., Kuzmin O.G., Chursin A.S., Pototskaya I.V., Likhenko I.E., Kushnirenko I.Yu., Kazak A.A., Chudinov V.A., Shelaeva T.V., Morgounov A.I. Genotypic and ecological variability of zinc content in the grain of spring bread wheat varieties in the international nursery KASIB. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(5):543-551. DOI 10.18699/VJ21.061; Shariatipour N., Heidari B., Tahmasebi A., Richards C. Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in wheat (Triticum aestivum L.). Front. Plant Sci. 2021;12:709817. DOI 10.3389/fpls.2021.709817; Sharma N., Kumari A., Chunduri V., Kaur S., Banda J., Goyal A., Garg M. Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. LWT – Food Sci. Technol. 2022;154:112802. DOI 10.1016/j.lwt.2021.112802; Sharma S., Chunduri V., Kumar A., Kumar R., Khare P., Kondepudi K.K. Anthocyanin bio-fortified colored wheat: nutritional and functional characterization. PLoS One. 2018;13:e0194367. DOI 10.1371/journal.pone.0194367; Shepelev S., Morgounov A., Flis P., Koksel H., Li H., Savin T., Sharma R., Wang J., Shamanin V. Variation of macro- and microelements, and trace metals in spring wheat genetic resources in Siberia. Plants. 2022;11(2):149. DOI 10.3390/plants11020149; Shewry P.R. Wheat. J. Exp. Bot. 2009a;60(6):1537-1553. DOI 10.1093/jxb/erp058; Shewry P.R. The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. Nutr. Bull. 2009b; 34(2):225-231. DOI 10.1111/j.1467-3010.2009.01747.x; Shewry P.R., Brouns F., Dunn J., Hood J., Burridge A.J., America A.H.P., Gilissen L., Proos-Huijsmans Z.A.M., van Straaten J.P., Jonkers D., Lazzeri P.A., Ward J.L., Lovegrove A. Comparative compositions of grain of tritordeum, durum wheat and bread wheat grown in multi-environment trials. Food Chem. 2023;423:136312. DOI 10.1016/j.foodchem.2023.136312; Shi R., Zhang Y., Chen X., Sun Q., Zhang F., Römheld V., Zou C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010; 51(1):165-170. DOI 10.1016/j.jcs.2009.11.008; Shi X., Zhou Z., Li W., Qin M., Yang P., Hou J., Huang F., Lei Z., Wu Z., Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2022;22(1):229. DOI 10.1186/s12870-022-03602-z; Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013;5(3):291-317. DOI 10.1007/s12571-013-0263-y; Shoormij F., Mirlohi A., Saeidi G., Shirvani M. Combined foliar application of Zn and Fe increases grain micronutrient concentrations and alleviates water stress across diverse wheat species and ploidal levels. Sci. Rep. 2022;12(1):20328. DOI 10.1038/s41598-022-24868-1; Singh R., Saripalli G., Gautam T., Kumar A., Jan I., Batra R., Kumar J., Kumar R., Balyan H.S., Sharma S., Gupta P.K. Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants. 2022; 28(3):637-650. DOI 10.1007/s12298-022-01149-9; Srinivasa J., Arun B., Mishra V.K., Singh G.P., Velu G., Babu R., Vasistha N.K., Joshi A.K. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor. Appl. Genet. 2014; 127(7):1643-1651. DOI 10.1007/s00122-014-2327-6; Stepien A., Wojtkowiak K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chil. J. Agric. Res. 2016;76(2):220-227. DOI 10.4067/S0718-58392016000200012; Sun M., Luo Q., Zheng Q., Tong J., Wang Y., Song J., Zhang Y., Pu Z., Zheng J., Liu L., Zhou A., Rasheed A., Li M., Cao S., Xia X., He Z., Hao Y. Molecular characterization of stable QTL and putative candidate genes for grain zinc and iron concentrations in two related wheat populations. Theor. Appl. Genet. 2023;136:217. DOI 10.1007/s00122-023-04467-y; Sun Z., Yue Z., Liu H., Ma K., Li C. Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Front. Nutr. 2021;8:704030. DOI 10.3389/fnut.2021.704030; Tadesse W., Sanchez-Garcia M., Assefa S.G., Amri A., Bishaw Z., Ogbonnaya F.C., Baum M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed. Genet. Genom. 2019;1:e190005. DOI 10.20900/cbgg20190005; Tadesse W., Gataa Z.E., Rachdad F.E., Baouchi A.E., Kehel Z., Ale-mu A. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment. Mol. Genet. Genomics. 2023;298(6):1515-1526. DOI 10.1007/s00438-023-02074-6; Tian S.Q., Chen Z.C., Wei Y.C. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. J. Cereal Sci. 2018;83:63-67. DOI 10.1016/j.jcs.2018.07.018; Tibbs Cortes L., Zhang Z., Yu J. Status and prospects of genome-wide association studies in plants. Plant Genome. 2021;14(1):20077. DOI 10.1002/tpg2.20077; Tiwari V.K., Rawat N., Chhuneja P., Neelam K., Aggarwal R., Randhawa G.S., Dhaliwal H.S., Keller B., Singh K. Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J. Hered. 2009;100(6):771-776. DOI 10.1093/jhered/esp030; Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298-1301. DOI 10.1126/science.1133649; Van Der Kamp J.W., Poutanen K., Seal C.J., Richardson D.P. The HEALTHGRAIN definition of “whole grain”. Food Nutr. Res. 2014; 58(10):22100. DOI 10.3402/fnr.v58.22100; Vasilova N.Z., Askhadullin D.F., Askhadullin D.F., Bagavieva E.Z., Tazutdinova M.R., Khusainova I.I. Violet-green variety of spring soft wheat Nadira. Zernobobovye i Krupyanye Kultury = Legumes and Groat Crops. 2021;4(40):66-75. DOI 10.24412/2309-348X-2021-4-66-75 (in Russian); Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R.P. Bio-fortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014;59(3):365-372. DOI 10.1016/j.jcs.2013.09.001; Velu G., Singh R.P., Huerta J., Guzmán C. Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crop. Res. 2017a;214:373-377. DOI 10.1016/j.fcr.2017.09.030; Velu G., Singh R.P., Cardenas M.E., Wu B., Guzman C., Ortiz-Monasterio I. Characterization of grain protein content gene (GPC¬B1) introgression lines and its potential use in breeding for enhanced grain zinc and iron concentration in spring wheat. Acta Physiol. Plant. 2017b;39(9):212. DOI 10.1007/s11738-017-2509-3; Velu G., Tutus Y., Gomez-Becerra H.F., Hao Y., Demir L., Kara R., Crespo-Herrera L.A., Orhan S., Yazici A., Singh R.P., Cakmak I. QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil. 2017c;411(1-2):81-99. DOI 10.1007/s11104-016-3025-8; Verma S., Chakdar H., Kumar M., Varma A., Saxena A.K. Microorganisms as a sustainable alternative to traditional biofortification of iron and zinc: status and prospect to combat hidden hunger. J. Soil Sci. Plant Nutr. 2021;21(2):1700-1717. DOI 10.1007/s42729-021-00473-5; Vincent J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017;147(12):2212-2219. DOI 10.3945/jn.117.255901; Wang P., Wang H., Liu Q., Tian X., Shi Y., Zhang X. QTL mapping of selenium content using a RIL population in wheat. PLoS One. 2017;12(9):e0184351. DOI 10.1371/journal.pone.0184351; Wang S., Yin L., Tanaka H., Tanaka K., Tsujimoto H. Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breed. Sci. 2011;61(2):189-195. DOI 10.1270/jsbbs.61.189; Wang W., Guo H., Wu C., Yu H., Li X., Chen G., Tian J., Deng Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biol. 2021; 21(1):311. DOI 10.1186/s12870-021-03105-3; Wang Y., Xu X., Hao Y., Zhang Y., Liu Y., Pu Z., Tian Y., Xu D., Xia X., He Z., Zhang Y. QTL mapping for grain zinc and iron concentrations in bread wheat. Front. Nutr. 2021;8:680391. DOI 10.3389/fnut.2021.680391; Xia Q., Yang Z., Shui Y., Liu X., Chen J., Khan S., Wang J., Gao Z. Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front. Plant Sci. 2020;11:1114. DOI 10.3389/fpls.2020.01114; Yadav R., Ror P., Rathore P., Ramakrishna W. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiol. Biochem. 2020;150:222-233. DOI 10.1016/j.plaphy.2020.02.039; Zeibig F., Kilian B., Frei M. The grain quality of wheat wild relatives in the evolutionary context. Theor. Appl. Genet. 2022;135(11):4029-4048. DOI 10.1007/s00122-021-04013-8; Zeibig F., Kilian B., Özkan H., Pantha S., Frei M. Grain quality traits within the wheat (Triticum spp.) genepool: prospects for improved nutrition through de novo domestication. J. Sci. Food Agric. 2024; 104(7):4400-4410. DOI 10.1002/jsfa.13328; Zhao F.J., Su Y.H., Dunham S.J., Rakszegi M., Bedo Z., McGrath S.P., Shewry P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009;49(2):290-295. DOI 10.1016/j.jcs.2008.11.007; Zou C.Q., Zhang Y.Q., Rashid A., Ram H., Savasli E., Arisoy R.Z., Ortiz-Monasterio I., Simunji S., Wang Z.H., Sohu V., Hassan M., Kaya Y., Onder O., Lungu O., Mujahid M.Y., Joshi A.K., Zelenskiy Y., Zhang F.S., Cakmak I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 2012; 361(1-2):119-130. DOI 10.1007/s11104-012-1369-2; https://vavilov.elpub.ru/jour/article/view/4234

  6. 6
    Academic Journal

    المصدر: Modern science and education: choosing the future; 65-67 ; Современная наука и образование: выбор будущего; 65-67

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6051279-2-5; https://interactive-plus.ru/e-articles/896/Action896-561571.pdf; Абдалина Л.В. Субъектная позиция как совокупность отношений личности студента-психолога / Л.В. Абдалина, О.П. Полухина // Вестник Тамбовского университета. Серия: Гуманитарные науки. – 2010. – №4 (84). – С. 103–107. EDN MNHCAF; Абдалина Л.В. Психологическая компетентность как фактор профилактики профессиональных деформаций руководителя / Л.В. Абдалина // Известия ВГПУ. – 2016. – №1 (270). – С. 62–64.; Абдалина Л.В. Профессионализм преподавателя вуза: личностные детерминанты развития / Л.В. Абдалина // Педагогическое образование: вызовы ХХI века: сборник научных трудов Всероссийской научно-практической конференции, посвященной памяти академика В.А. Сластёнина (Новосибирск, 26–27 сентября 2019 г.) / под ред. Е.В. Андриенко, Л.П. Жуйковой. – Новосибирск: Новосибирский государственный педагогический университет, 2019. – С. 162–167. EDN PSOQFD; Гостева С.Р. Компетентность в профессиональной деятельности педагога / С.Р. Гостева.; Гостева С.Р. Возможности субъектогенетического подхода к организации личностнопрофессионального развития педагога / С.Р. Гостева, Т.С. Поваляева // Актуальные проблемы и перспективы развития транспорта, промышленности и экономики России (ТрансПромЭк-2020): труды международной Научно-практической конференции. – 2020. – С. 7–9. – EDN XNTUDT; Петровский В.А. Феномен субъектности в психологии личности / В.А. Петровский. – М., 1993. – 70 с.; Рубинштейн С.Л. Основы общей психологии / С.Л. Рубинштейн. – СПб.: Питер, 1998. – 579 с. EDN TNTZYA; Сластенин В.А. Субъектно-деятельностный подход в общем и профессиональном образовании / В.А. Сластенин – М.: Изд. Дом Магистр-Пресс, 2000. – 488 с.; https://interactive-plus.ru/files/Books/896/Cover-896.jpg?req=561571; https://interactive-plus.ru/article/561571/discussion_platform

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المساهمون: This work was supported by a grant from the Russian Science Foundation (project No. 21-76-30003). Multiplication of seed material and field trials were carried out at the Collective Use Center of Plant Reproduction as part of the implementation of the budget project FWNR-2022-0017.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 7 (2022); 765-683 ; Вавиловский журнал генетики и селекции; Том 26, № 7 (2022); 765-683 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-72

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3537/1658; Ain Q., Rasheed A., Anwar A., Mahmood T., Imtiaz M., Mahmood T., Xia X., He Z., Quraishi U.M. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front. Plant Sci. 2015;6:743. DOI:10.3389/fpls.2015.00743.; Akram S., Arif M.A.R., Hameed A.A. GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.) J. Appl. Genet. 2021;62(1):27-41. DOI:10.1007/s13353-020-00593-1.; Aoun M., Rouse M.N., Kolmer J.A., Kumar A., Elias E.M. Genomewide association studies reveal all-stage rust resistance loci in elite durum wheat genotypes. Front. Plant Sci. 2021;12:640739. DOI:10.3389/fpls.2021.640739.; Atkins I.M. Relation of certain plant characters to strength of straw and lodging in winter wheat. J. Agricult. Res. 1938;56:99-120.; Battenfield S.D., Sheridan J.L., Silva L.D.C.E., Miclaus K.J., Dreisigacker S., Wolfinger R.D., Peña R.J., Singh R.P., Jackson E.W., Fritz A.K., Guzmán C., Poland J.A. Breeding-assisted genomics: applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS One. 2018;13(11):e0204757. DOI:10.1371/journal.pone.0204757.; Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289-300. DOI:10.1111/j.2517-6161.1995.tb02031.x.; Berry P.M., Berry S.T. Understanding the genetic control of lodgingassociated plant characters in winter wheat (Triticum aestivum L.). Euphytica. 2015;205:671-689. DOI:10.1007/s10681-015-1387-2.; Berry P., Spink J., Gay A., Craigon J. A comparison of root and stem lodging risks among winter wheat cultivars. J. Agricult. Sci. 2003; 141:191-202. DOI:10.1017/S002185960300354X.; Börner A., Schumann E., Fürste A., Cöster H., Leithold B., Röder S., Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002;105(6-7):921-936. DOI:10.1007/s00122-002-0994-1.; Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633-2635. DOI:10.1093/bioinformatics/btm308.; Casebow R., Hadley C., Uppal R., Addisu M., Loddo S., Kowalski A., Griffiths S., Gooding M. Reduced height (Rht) alleles affect wheat grain quality. PLoS One. 2016;11(5):e0156056. DOI:10.1371/journal.pone.0156056.; Cericola F., Jahoor A., Orabi J., Andersen J.R., Janss L.L., Jensen J. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PLoS One. 2017;12(1):e0169606. DOI:10.1371/journal.pone.0169606.; Chernook A.G., Kroupin P.Yu., Bespalova L.A., Panchenko V.V., Kovtunenko V.Ya., Bazhenov M.S., Nazarova L.A., Karlov G.I., Kroupina A.Yu., Divashuk M.G. Phenotypic effects of the dwarfing gene Rht-17 in spring durum wheat under two climatic conditions. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):916-925. DOI:10.18699/VJ19.567. (in Russian); Demina I.F. Breeding value of varieties of soft spring wheat of different ecological and geographical groups in terms of resistance to lodging. Surskiy Vestnik = Sura Herald. 2019;2(6):27-30. (in Russian); Dreccer M.F., Macdonald B., Farnsworth C.A., Paccapelo M.V., Awasi M.A., Condon A.G., Forrest K., Long I.L., McIntyre C.L. Multidonor × elite-based populations reveal QTL for low-lodging wheat. Theor. Appl. Genet. 2022;135:1685-1703. DOI:10.1007/s00122-022-04063-6.; Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359-361. DOI:10.1007/s12686-011-9548-7.; Ellis M., Rebetzke G., Chandler P., Bonnett D., Spielmeyer W., Richards R. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 2004;31:583-589. DOI:10.1071/FP03207.; Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611-2620. DOI:10.111/j.1365-294X.2005.02553.x.; Flintham J.E., Börner A., Worland A.J., Gale M.D. Optimizing wheat grain yield effects of Rht (gibberellin-insensitive) dwarfing genes. J.Agricult. Sci. 1997;128:11-25. DOI:10.1017/S0021859696003942.; Ford B.A., Foo E., Sharwood R., Karafiatova M., Vrána J., MacMillan C., Nichols D.S., Steuernagel B., Uauy C., Dolezel J., Chandler P.M., Spielmeyer W. Rht18 semidwarfism in wheat is due to increased GA 2-oxidase A9 expression and reduced GA content. Plant Physiol. 2018;177:168-180. DOI:10.1104/pp.18.00023.; Gahlaut V., Jaiswal V., Balyan H.S., Joshi A.K., Gupta P.K. Multi-locus GWAS for grain weight-related traits under rain-fed conditions in common wheat (Triticum aestivum L.). Front. Plant Sci. 2021;12: 758631. DOI:10.3389/fpls.2021.758631.; Gale M.D., Law C.N., Worland A.J. The chromosomal location of a major dwarfing gene from Norin 10 in new British semi-dwarf wheats. Heredity. 1975;35:417-421.; Gao F., Wen W., Liu J., Rasheed A., Yin G., Xia X., Wu X., He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015;6:1099. DOI:10.3389/fpls.2015.01099.; Guidelines for Studying the World Wheat Collection. Leningrad: VIR Publ., 1987. (in Russian); Hai L., Guo H., Xiao S., Jiang G., Zhang X., Yan C., Xin Z., Jia J. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica. 2005;141:1-9. DOI:10.1007/s10681-005-4713-2.; Keller M., Karutz Ch., Schmid J.E., Stamp P., Winzeler M., Keller B., Messmer M.M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor. Appl. Genet. 1999;98: 1171-1182. DOI:10.1007/s001220051182.; Kharyutkina E.V., Loginov S.V., Usova E.I., Martynova Yu.V., Pustovalov K.N. Tendencies in changes of climate extremality in Western Siberia at the end of the XX century and the beginning of the XXI century. Fundamentalnaya i Prikladnaya Klimatologiya = Basic and Applied Climatology. 2019;2:45-65. DOI:10.21513/2410-8758-2019-2-45-65. (in Russian); Khobra R., Sareen S., Meena B.K., Kumar A., Tiwari V., Singh G.P. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol. Mol. Biol. Plants. 2019;25(3):589-600. DOI:10.1007/s12298-018-0629-x.; Kiseleva A.A., Shcherban A.B., Leonova I.N., Frenkel Z., Salina E.A. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16:8. DOI:10.1186/s12870-015-0688-x.; Kokhmetova A., Sehgal D., Ali S., Atishova M., Kumarbayeva M., Leonova I., Dreisigacker S. Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Front. Genet. 2021;11:581214. DOI:10.3389/fgene.2020.581214.; Korzun V., Roder M.S., Ganal M.W., Worland A.J., Law C.N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum). Theor. Appl. Genet. 1998;96:1104-1109. DOI:10.1007/s001220050845.; Leonova I.N., Kiseleva A.A., Berezhnaya A.A., Stasyuk A.I., Likhenko I.E., Salina E.A. Identification of QTLs for grain protein content in Russian spring wheat varieties. Plants. 2022;11:437. DOI:10.3390/plants11030437.; Li X.-P., Lan S.-Q., Liu Y.-P., Gale M.D., Worland T.J. Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Cereal Res. Commun. 2006;34(2/3):919-924. DOI:10.1556/CRC.34.2006.2-3.220.; Liu J., Yao Y., Xin M., Peng H., Ni Z., Sun Q. Shaping polyploid wheat for success: origins, domestication, and the genetic improvement of agronomic traits J. Integr. Plant Biol. 2022;64:536-563. DOI:10.1111/jipb.13210.; Luján Basile S.M., Ramírez I.A., Crescente J.M., Conde M.B., Demichelis M., Abbate P., Rogers W.J., Pontaroli A.K., Helguera M., Vanzetti L.S. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol. 2019;19:553. DOI:10.1186/s12870-019-2015-4.; Malik P.L., Janss L., Nielsen L.K., Borum F., Jørgensen H., Eriksen B., Schjoerring J.K., Rasmussen S.K. Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theor. Appl. Genet. 2019;132:3375-3398. DOI:10.1007/s00122-019-03431-z.; Miralles D.J., Slafer G.A. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed. 1995;114(5):392-396. DOI:10.1111/j.1439-0523.1995.tb00818.x.; Mo Y., Vanzetti L.S., Hale I., Spagnolo I.J., Guidobaldi F., Al-OboudiJ., Odle N., Pearce S., Helguera M., Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development Theor. Appl. Genet. 2018;131:2021-2035. DOI:10.1007/s00122-018-3130-6.; Muhammad A., Li J., Hu W., Yu J., Khan S.U., Khan M.H.U., Xie G., Wang J., Wang L. Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci. Rep. 2021;11(1):6767. DOI:10.1038/s41598-021-86127-z.; Packa D., Wiwart M., Suchowilska E., Bieńkowska T. Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum. Int. Agrophys. 2015;29(4):475-483. DOI:10.1515/intag-2015-0053.; Peng J.R., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.J., Harberd N.P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256-261. DOI:10.1038/22307.; Pritchard J., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. DOI:10.1534/genetics.116.195164.; Pshenichnikova T.A., Osipova S.V., Smirnova O.G., Leonova I.N., Permyakova M.D., Permyakov A.V., Rudikovskaya E.G., Konstantinov D.K., Verkhoturov V.V., Lohwasser U., Börner А. Regions of chromosome 2A of bread wheat (Triticum aestivum L.) associated with variation in physiological and agronomical traits under contrasting water regimes. Plants. 2021;10:1023. DOI:10.3390/plants10051023.; Rebetzke G., Richards R., Fischer V.M., Mickelson B.J. Breeding long coleoptile, reduced height wheats. Euphytica. 1999;106:159-168. DOI:10.1023/A:1003518920119.; Shamanin V.P., Truschenko А.Yu. General Breeding and Variety Science of Field Crops. Omsk: OmGAU Publ., 2006;39-41. (in Russian); Singh D., Wang X., Kumar U., Gao L., Noor M., Imtiaz M., Singh R.P., Poland J. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 2019;10:394. DOI:10.3389/fpls.2019.00394.; Stapper M., Fischer R.A. Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. I. Potential yields and optimum flowering dates. Aust. J. Agric. Res. 1990;41:1043-1056.; Sukhikh I.S., Vavilova V.J., Blinov A.G., Goncharov N.P. Divesity and phenotypical effect of allelic variants of Rht dwarfing genes in wheat. Russ. J. Genet. 2021;57(2):127-138. DOI:10.31857/S0016675821020107.; Verma V., WorlandA.J., Savers E.J., Fish L., Caligari P.D.S., Snape J.W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed. 2005;124(3):234-241. DOI:10.1111/j.1439-0523.2005.01070.x.; Vikhe P., Patil R., Chavan A., Oak M., Tamhankar S. Mapping gibberellin-sensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding. Mol. Breed. 2017;37:28. DOI:10.1007/s11032-017-0641-9.; Wang N., Liu B., Liang X., Zhou Y., Song J., Yang J., Yong H., Weng J., Zhang D., Li M., Nair S., Vicente F.S., Hao Z., Zhang X., Li X. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. Mol. Breed. 2019;39:113. DOI:10.1007/s11032-019-1013-4.; Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L., Mastrangelo A.M., WhanA., Stephen S., Barker G., Wieseke R., Plieske J., International Wheat Genome Sequencing Consortium, Lillemo M., Mather D., Appels R., Dolferus R., Brown-Guedira G., Korol A., Akhunova A.R., Feuillet C., Salse J., Morgante M., Pozniak C., Luo M.-C., Dvorak J., Morell M., Dubcovsky J., Ganal M., Tuberosa R., Lawley C., Mikoulitch I., Cavanagh C., Edwards K.J., Hayden M., Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014;12:787-796. DOI:10.1111/pbi.12183.; Würschum T., Langer S.M., Longin C.F.H., Tucker M.R., Leiser W.L. A modern Green Revolution gene for reduced height in wheat. Plant J. 2017;92:892-903. DOI:10.1111/tpj.13726.; Yan J., Zhang S. Effects of dwarfing genes on water use efficiency of bread wheat. Front. Agr. Sci. Eng. 2017;4:126-134. DOI:10.15302/J-FASE-2017134.; Zakharov V.G., Syukov V.V., Yakovleva O.D. Correlation of morphoanatomical traits with lodging resistance in spring wheat in the Middle Volga region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(3):506-510. (in Russian); Zaytseva I.Yu., Shchennikova I.N. Association of morphological traits with lodging resistance in spring barley under the conditions of the Volga-Vyatka region. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(3):32-40. DOI:10.30901/2227-8834-2020-3-32-40. (in Russian); Zhuchenko A.A. Resource Potential of Grain Production in Russia. Moscow, 2004. (in Russian); https://vavilov.elpub.ru/jour/article/view/3537

  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20