-
1Academic Journal
المؤلفون: V. Petov S., A. Sapelko V., S. Danilov P., Ya. Chernov N., M. Taratkin S., A. Amosov V., D. Enikeev V., G. Krupinov E., В. Петов С., А. Сапелко В., С. Данилов П., Я. Чернов Н., М. Тараткин С., А. Амосов В., Д. Еникеев В., Г. Крупинов Е.
المصدر: Cancer Urology; Том 17, № 2 (2021); 157-167 ; Онкоурология; Том 17, № 2 (2021); 157-167 ; 1996-1812 ; 1726-9776
مصطلحات موضوعية: prostate cancer, multiparametric magnetic resonance imaging, targeted biopsy, prostate biopsy, рак предстательной железы, мультипараметрическая магнитно-резонансная томография, прицельная биопсия, биопсия предстательной железы
وصف الملف: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1409/1287; Состояние онкологической помощи населению России в 2018 году. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. 236 с.; Рак предстательной железы. Клинические рекомендации. Ассоциация онкологов России. М., 2020. 140 с.; Catalona W.J., Richie J.P., Ahmann F.R. et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 2017;197(2S):S200-7. DOI:10.1016/j.juro.2016.10.073.; Roddam A.W., Duffy M.J., Hamdy F.C. et al. Use of prostate-specific antigen (PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2-10 ng/ml: systematic review and meta-analysis. Eur Urol 2005;48(3):386-99. DOI:10.1016/j.eururo.2005.04.015.; Thompson I.M., Pauler D.K., Goodman P.J. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med 2004;350(22):2239-46. DOI:10.1056/NEJMoa031918.; Pepe P., Garufi A., Priolo G., Pennisi M. Can 3-Tesla pelvic phased-array multiparametric MRI avoid unnecessary repeat prostate biopsy in patients with PSA; Ahmed H.U., El-Shater Bosaily A., Brown L.C. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389(10071):815-22. DOI:10.1016/S0140-6736(16)32401-1.; Mottet N., Bellmunt J., Briers E. et al. Members of the EAU-ESTRO-ESUR-SIOG Prostate Cancer Guidelines Panel. EAU-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Edn. Presented at the EAU Annual Congress Amsterdam 2020. Arnhem, Netherlands: EAU Guidelines Office.; Fukui M., Tanaka M., Kadono M. et al. Serum prostate-specific antigen levels in men with type 2 diabetes. Diabetes Care 2008;31(5):930-1. DOI:10.2337/dc07-1962.; Chang S.L., Harshman L.C., Presti J.C. Jr. Impact of common medications on serum total prostate-specific antigen levels: analysis of the National Health and Nutrition Examination Survey. J Clin Oncol 2010;28(25):3951-7. DOI:10.1200/JCO.2009.27.9406.; Wright J.L., Lin D.W., Stanford J.L. The effect of demographic and clinical factors on the relationship between BMI and PSA levels. Prostate 2011;71(15):1631-7. DOI:10.1002/pros.21380.; Naji L., Randhawa H., Sohani Z. et al. Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis. Ann Fam Med 2018;16(2):149-54. DOI:10.1370/afm.2205.; Aigner F., Mitterberger M., Rehder P. et al. Status of transrectal ultrasound imaging of the prostate. J Endourol 2010;24(5):685-91. DOI:10.1089/end.2009.0640.; Smeenge M., Barentsz J., Cosgrove D. et al. Role of transrectal ultrasonography (TRUS) in focal therapy of prostate cancer: report from a Consensus Panel. BJU Int 2012;110(7):942-8. DOI:10.1111/j.1464-410X.2012.11072.x.; Roobol M.J., Steyerberg E.W., Kranse R. et al. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol 2010;57(1):79-85. DOI:10.1016/j.eururo.2009.08.025.; Draisma G., Boer R., Otto S.J. et al. Lead times and over detection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 2003;95(12):868-78. DOI:10.1093/jnci/95.12.868.; Pepe P., Garufi A., Priolo G., Pennisi M. Transperineal versus transrectal MRI/TRUS fusion targeted biopsy: detection rate of clinically significant prostate cancer. Clin Genitourin Cancer 2017;15(1):e33-6. DOI:10.1016/j.clgc.2016.07.007.; Сергеева Н.С., Скачкова Т.Е., Маршутина Н.В. и др. Клиническая значимость ПСА-ассоциированных тестов в диагностике и стадировании рака предстательной железы. Онкология. Журнал им. П.А. Герцена 2018;7(1):55-67. DOI:10.17116/onkolog20187155-67.; Sokoll L.J., Chan D.W., Mikolajczyk S.D. et al. Proenzyme PSA for the early detection of prostate cancer in the 2.5-4.0 ng/ml total PSA range: preliminary analysis. Urology 2003;61(2):274-6. DOI:10.1016/s0090-4295(02)02398-1.; Khan M.A., Partin A.W., Rittenhouse H.G. et al. Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml. J Urol 2003;170(3):723-6. DOI:10.1097/01.ju.0000086940.10392.93.; Catalona W.J., Southwick P.C., Slawin K.M. et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 2000;56(2):255-60. DOI:10.1016/s0090-4295(00)00637-3.; Martínez Jabaloyas J.M., García Morata F., Villamón Fort R. et al. Valor de la densidad del antígeno prostático específico y de la densidad del antígeno prostático específico de la zona transicional en el diagnóstico del cáncer de próstata. Actas Urol Esp 2003;27(6):442–9. [Martínez Jabaloyas J.M., García Morata F., Villamón Fort R. et al. Value of prostate-specific antigen density and transitional-zone prostate-specific antigen density in the diagnosis of prostate cancer. Actas Urol Esp 2003;27(6):442–9. (In Spanish)]. DOI:10.1016/s0210-4806(03)72951-9.; Nordstrom T., Akre O., Aly M. et al. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis 2018;21(1):57-63. DOI:10.1038/s41391-017-0024-7.; Roobol M.J., Verbeek J.F.M., van der Kwast T. et al. Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculator for Initial Prostate Biopsy by Incorporating the 2014 International Society of Urological Pathology Gleason Grading and Cribriform growth. Eur Urol 2017;72(1):45-51. DOI:10.1016/j.eururo.2017.01.033.; Lazzeri M., Haese A., de la Taille A. et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2-10 ng/ml: a multicentric European study. Eur Urol 2013;63(6):986-94. DOI:10.1016/j.eururo.2013.01.011.; Konety B., Zappala S.M., Parekh D.J. et al. The 4Kscore® test reduces prostate biopsy rates in community and academic urology practices. Rev Urol 2015;17(4):231-40.; Kuru T.H., Futterer J.J., Schiffmann J. et al. Transrectal ultrasound (US), contrast-enhanced US, real-time elastography, histo-scanning, magnetic resonance imaging (MRI), and MRI-US fusion biopsy in the diagnosis of prostate cancer. Eur Urol Focus 2015;1(2):117-26. DOI:10.1016/j.euf.2015.06.003.; Cornelis F., Rigou G., Le Bras Y. et al. Real-time contrast-enhanced transrectal US-guided prostate biopsy: diagnostic accuracy in men with previously negative biopsy results and positive MR imaging findings. Radiology 2013;269(1):159-66. DOI:10.1148/radiol.13122393.; Boehm K., Budaus L., Tennstedt P. et al. Prediction of Significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 2015;95(2):189-96. DOI:10.1159/000431233.; Salomon G., Drews N., Autier P. et al. Incremental detection rate of prostate cancer by real-time elastography targeted biopsies in combination with a conventional 10-core biopsy in 1024 consecutive patients. BJU Int 2014;113(4):548-53. DOI:10.1111/bju.12517.; Zhang M., Wang R., Wu Y. et al. Micro-Ultrasound imaging for accuracy of diagnosis in clinically significant prostate cancer: a meta-analysis. Front Oncol 2019;9:1368. DOI:10.3389/fonc.2019.01368.; Abouassaly R., Klein E.A., El-Shefai A., Stephenson A. Impact of using 29 MHz high-resolution micro-ultrasound in real-time targeting of transrectal prostate biopsies: initial experience. World J Urol 2020;38(5):1201-6. DOI:10.1007/s00345-019-02863-y.; Wiemer L., Hollenbach M., Heckmann R. et al. Evolution of targeted prostate biopsy by adding micro-ultrasound to the magnetic resonance imaging pathway. Eur Urol Focus 2020:S2405-4569(20)30188-7. DOI:10.1016/j.euf.2020.06.022.; Barrett T., Rajesh A., Rosenkrantz A.B. et al. PI-RADS version 2.1: one small step for prostate MRI. Clin Radiol 2019;74(11):841-52. DOI:10.1016/j.crad.2019.05.019.; Коробкин А.С., Шария М.А., Восканян Г.А., Винаров А.З. Мультипараметрическая магнитнорезонансная томография в диагностике рака предстательной железы. Андрология и генитальная хирургия 2015;16(1):53-61. DOI:10.17650/2070-97812015-1-53-61.; Willis S.R., Ahmed H.U., Moore C.M. et al. Multiparametric MRI followed by targeted prostate biopsy for men with suspected prostate cancer: a clinical decision analysis. BMJ Open 2014;4(6):e004895. DOI:10.1136/bmjopen-2014-004895.; Olleik G., Kassouf W., Aprikian A. et al. Evaluation of new tests and interventions for prostate cancer management: a systematic review. J Natl Compr Canc Netw 2018;16(11):1340-51. DOI:10.6004/jnccn.2018.7055.; Pokorny M.R., de Rooij M., Duncan E. et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014;66(1):22-9. DOI:10.1016/j.eururo.2014.03.002.; Kasivisvanathan V., Rannikko A.S., Borghi M. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018;378(19):1767-77. DOI:10.1056/NEJMoa1801993.; Mertan F.V., Berman R., Szajek K. et al. Evaluating the role of mpMRI in prostate cancer assessment. Expert Rev Med Devices 2016;13(2):129-41. DOI:10.1586/17434440.2016.1134311.; Meng X., Rosenkrantz A.B., Mendhiratta N. et al. Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusiontargeted prostate biopsy outcomes. Eur Urol 2016;69(3):512-7. DOI:10.1016/j.eururo.2015.06.005.; de Rooij M., Hamoen E.H., Futterer J.J. et al. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 2014;202(2):343-51. DOI:10.2214/AJR.13.11046.; Drost F.H., Osses D.F., Nieboer D. et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev 2019;4(4):CD012663. DOI:10.1002/14651858.CD012663.pub2.; Bratan F., Niaf E., Melodelima C. et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013;23(7):2019-29. DOI:10.1007/s00330-013-2795-0.; Monni F., Fontanella P., Grasso A. et al. Magnetic resonance imaging in prostate cancer detection and management: a systematic review. Minerva Urol Nefrol 2017;69(6):567-78. DOI:10.23736/S0393-2249.17.02819-3.; Mohler J.L., Antonarakis E.S., Armstrong A.J. et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019;17(5):479-505. DOI:10.6004/jnccn.2019.0023.; Wegelin O., Exterkate L., van der Leest M. et al. The FUTURE trial: a multicenter randomised controlled trial on target biopsy techniques based on magnetic resonance imaging in the diagnosis of prostate cancer in patients with prior negative biopsies. Eur Urol 2019;75(4):582-90. DOI:10.1016/j.eururo.2018.11.040.; Panebianco V., Barchetti F., Manenti G. et al. MR imaging-guided prostate biopsy: technical features and preliminary results. Radiol Med 2015;120(6):571-8. DOI:10.1007/s11547-014-0490-0.; Beyersdorff D., Winkel A., Hamm B. et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 2005;234(2):576-81. DOI:10.1148/radiol.2342031887.; Roethke M., Anastasiadis A.G., Lichy M. et al. MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol 2012;30(2):213-8. DOI:10.1007/s00345-011-0675-2.; Sertdemir M., Schoenberg S.O., Sourbron S. et al. Interscanner comparison of dynamic contrast-enhanced MRI in prostate cancer: 1.5 versus 3 T MRI. Invest Radiol 2013;48(2):92-7. DOI:10.1097/RLI.0b013e31827bbcbe.; Quentin M., Arsov C., Ullrich T. et al. Comparison of analgesic techniques in MRI-guided in-bore prostate biopsy. Eur Radiol 2019;29(12):6965-70. DOI:10.1007/s00330-019-06301-w.; Schiavina R., Vagnoni V., D'Agostino D. et al. “In-bore” MRI-guided prostate biopsy using an endorectal nonmagnetic device: a prospective study of 70 consecutive patients. Clin Genitourin Cancer 2017;15(3):417-27. DOI:10.1016/j.clgc.2017.01.013.; Hoeks C.M., Schouten M.G., Bomers J.G. et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012;62(5):902-9. DOI:10.1016/j.eururo.2012.01.047.; Pokorny M., Kua B., Esler R. et al. MRI-guided in-bore biopsy for prostate cancer: what does the evidence say? A case series of 554 patients and a review of the current literature. World J Urol 2019;37(7):1263-79. DOI:10.1007/s00345-018-2497-y.; Friedl A., Schneeweiss J., Sevcenco S. et al. In-bore 3.0-T magnetic resonance imaging-guided transrectal targeted prostate biopsy in a repeat biopsy population: diagnostic performance, complications, and learning curve. Urology 2018;114:139-46. DOI:10.1016/j.urology.2017.12.032.; Streicher J., Meyerson B.L., Karivedu V., Sidana A. A review of optimal prostate biopsy: indications and techniques. Ther Adv Urol 2019;11: 1756287219870074. DOI:10.1177/1756287219870074.; Venderink W., de Rooij M., Sedelaar J.P.M. et al. Elastic versus rigid image registration in magnetic resonance imaging-transrectal ultrasound fusion prostate biopsy: a systematic review and meta-analysis. Eur Urol Focus 2018;4(2):219-27. DOI:10.1016/j.euf.2016.07.003.; Mai Z., Zhou Z., Yan W. et al. The transverse and vertical distribution of prostate cancer in biopsy and radical prostatectomy specimens. BMC Cancer 2018;18(1):1205. DOI:10.1186/s12885-018-5124-9.; Tewes S., Peters I., Tiemeyer A. et al. Evaluation of MRI/ultrasound fusion-guided prostate biopsy using transrectal and transperineal approaches. Biomed Res Int 2017;2017:2176471. DOI:10.1155/2017/2176471.; Grummet J.P., Weerakoon M., Huang S. et al. Sepsis and “superbugs”: should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int 2014;114(3):384-8. DOI:10.1111/bju.12536.; Bass E.J., Donaldson I.A., Freeman A. et al. Magnetic resonance imaging targeted transperineal prostate biopsy: a local anaesthetic approach. Prostate Cancer Prostatic Dis 2017;20(3):311-7. DOI:10.1038/pcan.2017.13.; Cicione A., De Nunzio C., Manno S. et al. An update on prostate biopsy in the era of magnetic resonance imaging. Minerva Urol Nefrol 2018;70(3):264-74. DOI:10.23736/S0393-2249.18.03048-5.; Stabile A., Dell'Oglio P., Gandaglia G. et al. Not all multiparametric magnetic resonance imaging-targeted biopsies are equal: the impact of the type of approach and operator expertise on the detection of clinically significant prostate cancer. Eur Urol Oncol 2018;1(2):120-8. DOI:10.1016/j.euo.2018.02.002.; Kasabwala K., Patel N., Cricco-Lizza E. et al. The learning curve for magnetic resonance imaging/ultrasound fusion-guided prostate biopsy. Eur Urol Oncol 2019;2(2):135-40. DOI:10.1016/j.euo.2018.07.005.; Rosenkrantz A.B., Verma S., Choyke P. et al. mProstate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 2016;196(6):1613-8. DOI:10.1016/j.juro.2016.06.079.; Van der Leest M., Cornel E., кгаё1 B. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naive men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol 2019;75(4):570-8. DOI:10.1016/j.eururo.2018.11.023.; Marra G., Marquis A., Tappero S. et al. Transperineal free-hand mpMRI fusion-targeted biopsies under local anesthesia: technique and feasibility from a single-center prospective study. Urology 2020;140:122-31. DOI:10.1016/j.urology.2019.11.078.; Borghesi M., Ahmed H., Nam R. et al. Complications after systematic, random, and image-guided prostate biopsy. Eur Urol 2017;71(3):353-65. DOI:10.1016/j.eururo.2016.08.004.; Yaxley A.J., Yaxley J.W., Thangasamy I.A. et al. Comparison between target magnetic resonance imaging (MRI) in-gantry and cognitively directed transperineal or transrectal-guided prostate biopsies for Prostate ImagingReporting and Data System (PI-RADS) 3-5 MRI lesions. BJU Int 2017;120(Suppl 3): 43-50. DOI:10.1111/bju.13971.; Xu G., Xiang L., Wu J. et al. The accuracy of prostate lesion localization in cognitive fusion. Clin Hemorheol Microcirc 2020;74(3):223-9. DOI:10.3233/CH-180423.; Oderda M., Faletti R., Battisti G. et al. Prostate cancer detection rate with koelis fusion biopsies versus cognitive biopsies: a comparative study. Urol Int 2016;97(2): 230-7. DOI:10.1159/000445524.; Bhat Z., Bhat A., Mahmalji W. Consecutive transperineal prostatic template biopsies employing cognitive and systematic approach: a single center study. Aging Male 2020:23(5):953-7. DOI:10.1080/13685538.2019.1641796.; Murphy I.G., NiMhurchu E., Gibney R.G., McMahon C.J. MRI-directed cognitive fusion-guided biopsy of the anterior prostate tumors. Diagn Interv Radiol 2017;23(2):87-93. DOI:10.5152/dir.2016.15445.; Galosi A.B., Maselli G., Sbrollini G. et al. Cognitive zonal fusion biopsy of the prostate: Original technique between target and saturation. Arch Ital Urol Androl 2016;88(4):292-5. DOI:10.4081/aiua.2016.4.292.; Patel M.I., Muter S., Vladica P., Gillatt D. Robotic-assisted magnetic resonance imaging ultrasound fusion results in higher significant cancer detection compared to cognitive prostate targeting in biopsy naive men. Transl Androl Urol 2020;9(2):601-8. DOI:10.21037/tau.2020.01.33.; Wegelin O., van Melick H.H.E., Hooft L. et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur Urol 2017;71(4):517-31. DOI:10.1016/j.eururo.2016.07.041.; Simmons L.A.M., Kanthabalan A., Arya M. et al. Accuracy of transperineal targeted prostate biopsies, visual estimation and image fusion in men needing repeat biopsy in the PICTURE trial. J Urol 2018;200(6):1227-34. DOI:10.1016/j.juro.2018.07.001.; Elkhoury F.F., Felker E.R., Kwan L. et al. Comparison of targeted vs systematic prostate biopsy in men who are biopsy naive: the Prospective Assessment of Image Registration in the Diagnosis of Prostate Cancer (PAIREDCAP) study. JAMA Surg 2019;154(9):811-8. DOI:10.1001/jamasurg.2019.1734.; Watts K.L., Frechette L., Muller B. et al. Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol 2020;38(9):734.e19-25. DOI:10.1016/j.urolonc.2020.03.020.; Costa D.N., Goldberg K., Leon A.D. et al. Magnetic resonance imaging-guided in-bore and magnetic resonance imaging-transrectal ultrasound fusion targeted prostate biopsies: an adjusted comparison of clinically significant prostate cancer detection rate. Eur Urol Oncol 2019;2(4):397-404. DOI:10.1016/j.euo.2018.08.022.; Kaufmann S., Russo G.I., Bamberg F. et al. Prostate cancer detection in patients with prior negative biopsy undergoing cognitive-, robotic- or in-bore MRI target biopsy. World J Urol 2018;36(5):761-8. DOI:10.1007/s00345-018-2189-7.; Rouviere O., Puech P., Renard-Penna R. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019;20(1):100-9. DOI:10.1016/S1470-2045(18)30569-2.; Baccaglini W., Glina F.P.A., Pazeto C.L. et al. mpMRI-targeted biopsy versus systematic biopsy for clinically significant prostate cancer diagnosis: a systematic review and metaanalysis. Curr Opin Urol 2020;30(5):711-9. DOI:10.1097/MOU.0000000000000801.; Goldberg H., Ahmad A.E., Chandrasekar T. et al. Comparison of magnetic resonance imaging and transrectal ultrasound informed prostate biopsy for prostate cancer diagnosis in biopsy naive men: a systematic review and meta-analysis. J Urol 2020;203(6):1085-93. DOI:10.1097/JU.0000000000000595.; Scattoni V., Zlotta A., Montironi R. et al. Extended and saturation prostatic biopsy in the diagnosis and characterization of prostate cancer: a critical analysis of the literature. Eur Urol 2007;52(5):1309-22. DOI:10.1016/j.eururo.2007.08.006.; Pepe P., Garufi A., Priolo G.D. et al. Is it time to perform only magnetic resonance imaging targeted cores? Our experience with 1,032 men who underwent prostate biopsy. J Urol 2018;200(4):774-8. DOI:10.1016/j.juro.2018.04.061.; Садченко А.В., Говоров А.В., Пушкарь Д.Ю. и др. Промежностная сатурационная биопсия простаты. Урология 2014;(1):33-6.; Pepe P., Aragona F. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 2013;81(6):1142-6. DOI:10.1016/j.urology.2013.02.019.; Kroenig M., Schaal K., Benndorf M. et al. Diagnostic accuracy of robot-guided, software based transperineal MRI/TRUS fusion biopsy of the prostate in a high risk population of previously biopsy negative men. Biomed Res Int 2016;2016:2384894. DOI:10.1155/2016/2384894.; Hansen N.L., Kesch C., Barrett T. et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int 2017;120(5):631-8. DOI:10.1111/bju.13711.; Overduin C.G., Futterer J.J., Barentsz J.O. MRI-guided biopsy for prostate cancer detection: a systematic review of current clinical results. Curr Urol Rep 2013;14(3):209-13. DOI:10.1007/s11934-013-0323-z.; https://oncourology.abvpress.ru/oncur/article/view/1409
-
2Academic Journal
المؤلفون: T. Sapelko V., T. Gusentsova M., M. Kulkova A., A. Ludikova V., V. Denisenkov P., N. Korneenkova Yu., Т. Сапелко В., Т. Гусенцова М., М. Кулькова А., А. Лудикова В., В. Денисенков П., Н. Корнеенкова Ю.
المصدر: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; № 5 (2019); 78-95 ; Известия Российской академии наук. Серия географическая; № 5 (2019); 78-95 ; 2658-6975 ; 2587-5566
مصطلحات موضوعية: Ladoga transgression, peatlands, archaeological site, Holocene, palynology, diatoms, macrofossils, geochemistry, Ладожская трансгрессия, торфяники, археологический памятник, голоцен, палинология, диатомовые водоросли, ботанический анализ торфа, геохимия
وصف الملف: application/pdf
Relation: https://izvestia.igras.ru/jour/article/view/953/646; https://izvestia.igras.ru/jour/article/downloadSuppFile/953/809; Александровский А.Л., Арсланов Х.А., Давыдова Н.Н., Долуханов П.М., Зайцева Г.И., Кирпичников А.Н., Кузнецов Д.Д., Лавенто М., Лудикова А.В., Носов Е.Н., Савельева Л.А., Сапелко Т.В., Субетто Д.А. Новые данные относительно трансгрессии Ладожского озера, образования реки Невы и земледельческого освоения Северо-запада России // ДАН. 2009. т. 424. № 5. С. 682–687.; Атлас дикорастущих растений Ленинградской области. М.: КМК, 2010. 664 с.; Гричук В.П. Методика обработки осадочных пород, бедных органическими остатками, для целей пыльцевого анализа // Проблемы физической гео графии. 1940. Вып. 8. С. 53–58.; Гурина Н.Н. Древняя история Северо-запада европейской части СССР // Материалы и исследования по археологии СССР. № 87. М.–Л., 1961. 584 с.; Гусенцова Т.М. По следам древних культур Южного Приладожья: молодежная археологическая экспедиция // Геология в школе и вузе: геология и цивилизация. т.1. СПб.: РГПУ им. А.И. Герцена, 2013. C. 46–49.; Гусенцова Т.М., Кулькова М.А., Рябчук Д.В., Сергеев А.Ю., Холкина М.А. Геоархеология памятников первобытной эпохи Приневского региона // Геология, геоэкология, эволюционная география. т. XII. СПб.: РГПУ им. А.И. Герцена, 2014. С. 189–197.; Давыдова Н.Н. Диатомовые водоросли – индикаторы природных условий водоемов в голоцене. Л.: Наука, 1985. 244 с.; Домбровская Ф.В., Коренева М.М., Тюремнов С.Н. Атлас растительных остатков, встречаемых в торфе. М.–Л.: Госэнергоиздат, 1959. 90 с.; Иностранцев А.А. Доисторический человек каменного века побережья Ладожского озера. СПб.: тип. М.М. Стасюлевича, 1882. 291 с.; История Ладожского, Онежского, Псковско-чудского озер, Байкала и Ханки. Серия: История озер СССР. Л.: Наука, 1990. 279 с.; Кац Н.Я., Кац С.В., Скобеева Е.И. Атлас растительных остатков в торфах. М.: Недра, 1977. 376 с.; Квасов Д.Д., Назаренко В.А. О датировке максимума Ладожской трансгрессии // История оз. Вильнюс. 1970. С. 332–341.; Кошечкин Б.И., Адаменко И.В., Арсланов Х.А., Джиноридзе Р.Н., Хомутова В.И. Бере говые образования голоценовой трансгрессии в Южном Приладожье // Изв. РГО. 1992. т. 124. Вып. 6. С. 541–547.; Кулькова М.А., Козин Н.А., Мурашкин А.И., Герасимов Д.В., Юшкова М.А. Геоэкологические особенности неолитической стоянки УстьРыбежна 1 // Хронология, периодизация и кросскультурные связи в каменном веке. СПб.: Наука, 2008. С. 201–220.; Куприянова Л.А., Алешина Л.А. Пыльца и споры растений флоры европейской части СССР. Л.: Наука, 1972. 171 с.; Лак Г.Ц. О морских надморенных отложениях на северо-восточном побережье Ладожского озера // Стратиграфия и палеогеография четвертичного периода Севера европейской части СССР. Петрозаводск: Изд-во Карельского филиала АН СССР, 1977. С. 83–87.; Лисицына Г.Н. Вопросы палеогеографии неолита районов Северо-запада европейской части СССР // Материалы и исследования по археологии СССР. т. 87. М.–Л., 1961. С. 535–578.; Лудикова А. В. Свидетельства среднеголоценовой трансгрессии Ладожского озера по данным диатомового анализа // Известия РГО, 2015, т. 147, Вып. 4, с. 38-51.; Малаховский Д.Б., Арсланов Х.А., Гей Н.А., Джиноридзе Р.Н., Козырева М.Г. Новые данные по голоценовой истории Ладожского озера // Эволюция природных обстановок и современное состояние геосистемы Ладожского озера. СПб.: Изд-во Российского географического общества, 1993. С. 61–73.; Марков К.К. Послеледниковая история юго-восточного побережья Ладожского озера // Вопр. географии. М. 1949. Вып. 12. С. 213–220.; Минюк П.С., Борходоев В.Я. Геохимические индикаторы седиментационных и постседиментационных событий в озерах северо-востока России // Материалы VII Всероссийского литологического совещания, Новосибирск, 2013. С. 282–285.; Сапелко Т.В., Кузнецов Д.Д., Плотникова Е.В., Кулькова М.А. Изменение природных обстановок в голоцене на Онежско-Ладожском перешейке // Изв. РГО. 2016. т. 148. № 2. С. 35–43.; Тимофеев В.И. Памятники мезолита и неолита региона Петербурга и их место в системе балтийских культур каменного века // Древности Северо-запада. СПб.: Петербургское востоковедение, 1993. С. 8–33.; Тюремнов С.Н. торфяные месторождения. М.: Недра, 1976. 488 с.; Шеффер Е.Г. Некоторые черты развития южного Приладожья в голоцене // Вестн. ЛГУ. 1967. № 2. С. 159–162.; Ailio J. Die geographische Entwicklung des Ladogasees in Postglaziales Zeit und ihre Beziehung zur steinzeitlichen Besiedeledelung // Fennia. 1915. V. 38. № 3. 157 p.; Bronk Ramsey C. Bayesian analysis of radiocarbon dates // Radiocarbon. 2009. № 51 (1). P. 337–360.; Grimm E. Tilia 1.12, Tilia Graph 1.18. Illinois State Museum. Springfield, 1991.; Hyyppa E. Beitrage zur Kenntnis der Ladoga- und Acylustransgressionen. Bulletin de Coommision Géologique de Finlande, 1943, vol. 128, pp. 139–178.; Moore P.D., Webb J.A., Collinson M.E. Pollen analysis 2nd edition, 1-216. Blackwell Scientific Publications, Oxford, 1991. 216 p.; Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatte C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., van der Plicht J. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50.000 Years cal BP // Radiocarbon. 2013. № 55 (4). P. 1869–1887.; Saarnisto M., Grönlund T. Shoreline displacement of Lake Ladoga – new data from Kilpolansaari // Hydrobiologia. 1996. V. 322. P. 205–215.; Sapelko T., Subetto D., Gerasimov D., Ludikova A., Kuznetsov D., Dolukhanov P. Paleolimnology and Paleoenvironments of Lake Uzlovoye (Lake Ladoga Region, NW Russia) // Man and environment in boreal forest zone: past, present and future. Processing of International Conference, Moscow, 2008. P. 85–87.; Juggins S. C2 Vesrion 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: Newcastle University, 2007. 73 p.; https://izvestia.igras.ru/jour/article/view/953
-
3Academic Journal
المؤلفون: I. Borzenkova I., O. Borisova K., E. Zhiltsova L., T. Sapelko V., И. Борзенкова И., О. Борисова К., Е. Жильцова Л., Т. Сапелко В.
المساهمون: О.Борисова, Институт географии РАН
المصدر: Ice and Snow; Том 57, № 1 (2017); 117-132 ; Лёд и Снег; Том 57, № 1 (2017); 117-132 ; 2412-3765 ; 2076-6734 ; 10.15356/2076-6734-2017-1
مصطلحات موضوعية: cold period in the past, lessons from past for future, mechanisms of the rapid climate changes in past, возможные сценарии климата в будущем, механизм быстрых колебаний климата в прошлом, похолодание 8200 лет назад
وصف الملف: application/pdf
Relation: https://ice-snow.igras.ru/jour/article/view/363/207; Kobashi T., Severinghaus J.P., Brook E.J., Barnola J.M., Grachev A.M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice // Quaternary Science Reviews. 2007. V. 26. P. 1212–1222.; Rasmussen S.O., Bigler M., Blockley S.P., Blunier T., Buchardt S.L., Clausen H.B., Cvijanovic I., Dahl-Jensen D., Johnsen S.J., Fischer H., Seierstad I.K., Steffensen J.P., Anders M., Svensson A.M., Vallelonga P., Vinther B.M., Walker M.J.C., Wheatley J.J., Winstrup M. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy // Quaternary Science Reviews. 2014. V. 106. P. 14–28.; Thomas E.R., Wolff E.W., Mulvaney R., Steffensen J.P., Johnsen S.J., Arrowsmith C., White J.W.C., Vaughn B., Popp T. The 8.2 ka event from Greenland ice cores // Quaternary Science Reviews. 2007. V. 26. P. 70–81.; Fleitmann D., Mudelsee M., Burns S.J., Bradley R.S., Kramers J., Matter A. Evidence for widespread climatic anomaly at around 9.2 ka before present // Paleoceanography. 2008. V. 23. PA1102. doi:10.1029/2007PA001519.; Hoek W.Z., Bos J.A.A. Early Holocene climate oscillations – causes and consequences // Quaternary Science Reviews. 2007. V. 26. P. 1901–1906.; Grachev A.M., Severinghaus J.P. A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants // Quaternary Science Reviews. 2005. V. 4. P. 513–519.; Borzenkova I.I., Zorita E., Borisova O.K., Kalniņa L., Kisielienė D., Koff T., Kuznetsov D., LemdahlG., Sapelko T., Stančikaitė M., Subetto D. Second assessment of climate change for the Baltic Sea Basin // Heidelberg, New York, Dordrecht, London: Springer Verlag, 2015. P. 25–50.; Борзенкова И.И., Борисова О.К., Жильцова Е.Л., Сапелко Т.В. Холодные эпизоды раннего голоцена в Северной Европе: анализ эмпирических данных и возможных причин // Материалы Междунар. конф. «Водные ресурсы: изучение и управление»: Т. 1. Петрозаводск, 2016. С. 171–177.; Alley R.B., Ágústsdóttir A.M. The 8k event: Cause and consequences of a major Holocene abrupt climate change // Quaternary Science Reviews. 2005. V. 24. P. 1123–1149.; Broecker W.S., Peteet D.M., Rind D. Does the oceanatmosphere system have more than one stable mode of operation? // Nature. 1985. V. 315. P. 21–26.; Clark P.U., Marshall S.J., Clarke G.K.C., Hostetler S.W., Licciardi J.M., Teller J.T. Freshwater forcing of abrupt climate change during the last glaciation // Science. 2001. V. 293. P. 283–287.; Dixit Y., Hodell D.A., Sinha R., Petrie C.A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. // Earth Planetary Science Letters. 2014. V. 391. P. 16–23.; Борзенкова И.И. История оледенения арктического бассейна: взгляд из прошлого для оценки возможных изменений в будущем // Лёд и Снег. 2016. Т. 56. № 2. С. 221–234. doi:10.15356/2076-67342016-2-221-234; Morrill C., Jacobsen R.M. How widespread were climate anomalies 8200 years ago? // Geophys. Research Letters. 2005. V. 32. L19701. doi:10.1029/2005GL023536.; Morrill C., Anderson D.M, Bauer B.A., Buckner R., Gille E.P., Gross W.S, Hartman M., Shah A. Proxy benchmarks for intercomparison of 8.2 ka simulations // Climate Past. 2013. V. 9. P. 423–432.; Rohling E.J., Pälike H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago // Nature. 2005. V. 434. P. 975–979.; Seppä H., Birks H.J.B., Giesecke T., Hammarlund D., Alenius T., Antonsson K., Bjune A.E., Heikkilä M., MacDonald G.M., Ojala A.E.K., Telford R.J., Veski S. Spatial structure of the 8200 cal yr BP event in Northern Europe // Climate Past. 2007. V. 3. P. 165–195.; Seppä H., Birks H.J.B. Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri // Quaternary Research. 2002. V. 57. P. 191–199.; Veski S., Seppä H., Ojala A.E.K. Cold event at 8200 yr BP recorded in annually laminated lake sediments in eastern Europe // Geology. 2004. V. 32. P. 681–684.; Wiersma A.P., Renssen H., Goosse H., Fichefet T. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model // Climate Dynamics. 2006. V. 27. P. 831–849.; Daley T.J., Thomas E.R., Holmes J.A., Street-PerrottF.A., Chapman M.R., Tindall J.C., Valdes P.J., Loader N.J., Marshall J.D., Wolff E.W., Hopley P.J., Atkinson T.C., Barber K.E., Fisher E.H., Robertson I., Roberts C.N. The 8200 yr BP cold event in stable isotope records from the North Atlantic region // Global and Planetary Change. 2011. V. 79. P. 288–302.; Boch R., Spötl C., Kramers J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria // Quaternary Science Reviews. 2009. V. 28. P. 2527–2538.; Fohlmeister J., Schröder-Ritzrau A., Scholz D., Spötl C., Riechelmann D.F.C., Mudelsee M., Wackerbarth A., Gerdes A., Riechelmann S., Immenhauser A., Richter D.K., Mangini A. Bunker Cave stalagmites: an archive for central European Holocene climate variability // Climate Past. 2012. V. 8. P. 1751–1764.; Szeroczyńska K., Zawisza E. Records of the 8200 cal BP cold event reflected in the composition of subfossil Cladocera in the sediments of three lakes in Poland // Quaternary International. 2011. V. 233. P. 185–193.; Lauterbach S., Brauer A., Andersen N., Danielopol D.L., Dulski P., H ls M., Milecka K., Namiotko T., Plessen B., von Grafenstein U., and DECLAKES participants. Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland // Boreas. 2011. V. 40. P. 57–72.; Dolven J.K., Cortese G., Bjørklund K.R. A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea // Paleoceanography. 2002. V. 17. № 4. P. 1072. doi:10.1029/2002PA000780.; Ellison C.R.W., Chapman M.R., Hall I.R. Surface and deep ocean interactions during the cold climate event 8200 years ago // Science. 2006. V. 312. № 5782. P. 1929–1932.; Jennings A., Andrews J., Pearce C., Wilson L., Ólfasdótttir S. Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre // Quaternary Science Reviews. 2015. V. 107. P. 62–80.; Moros M., Emeis K., Risebrobakken B., Snowball I., Kuijpers A., McManus J., Jansen E. Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland // Quaternary Science Reviews. 2004. V. 23. P. 2113–2126.; http://www.fluvial-systems.net/Borzenkova_et_al_supplement.html; Leuenberger M.C., Lang C., Schwander J. Delta 15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: a case study for the 8200 BP event on GRIP ice // Journ. of Geophys. Research. 1999. V. 1 (D18). P. 22,163–22,170.; Monnin E., Steig E.J., Siegenthaler U., Kawamura K., Schwander J., Stauffer B., Stocker T.F., Morse D.L., Barnola J.M., Bellier B., Raynaud D., Fischer H. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores // Earth Planetary Science Letters. 2004. V. 224. P. 45–54.; Ahn J., Brook E.J., Buizert C. Response of atmospheric CO2 to abrupt cooling event 8200 years ago // Geophys. Research Letters. 2014. V. 41. P. 604–609.; Holmes J.A., Tindall J., Roberts N., Marshall W., Marshall J.D., Bingham A., Feeser I., O'Connell M., Atkinson T., Jourdan A.L., March A., Fisher E.H. Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations // Quaternary Science Reviews. 2016. V. 131. P. 341–349.; von Grafenstein U., Erlenkeuser H., Müller J., Jouzel J., Johnsen S.J. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland // Climate Dynamics. 1998. V. 14. P. 73–81.; Giraudeau J., Jennings A.E., Andrews J.T. Timing and mechanisms of surface and intermediate water circulation changes in the Nordic Seas over the last 10,000 cal. years: a view from the North Iceland shelf // Quaternary Science Reviews. 2004. V. 23. P. 2127–2139.; Davis B.A.S., Brewer S., Stevenson A.C., Guiot J. The temperature of Europe during the Holocene reconstructed from pollen data // Quaternary Science Reviews. 2003. V. 22. P. 1701–1716.; Tinner W., Lotter A.F. Central European vegetation response to abrupt climate change at 8.2 ka // Geology. 2001. V. 29. P. 551–554.; Antonsson K., Seppä H. Holocene temperatures in Bohuslän, southwest Sweden: a quantitative reconstruction from fossil pollen data // Boreas. 2007. V. 36. P. 400–410.; Heikkilä M., Seppä H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland // Quaternary Science Reviews. 2003. V. 22. P. 541–554.; Heikkilä M., Seppä H. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison // Boreas. 2010. V. 39. № 4. P. 705–719.; Ojala A.E.K., Heinsalu A., Kauppila T., Alenius T., Saarnisto M. Characterizing changes in the sedimentary environment of a varved lake sediment record in southern central Finland around 8000 cal. yr BP // Journ. of Quaternary Science. 2008. V. 23 (8). P. 765–775.; Seppä H., Poska A. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns // Quaternary Research. 2004. V. 61. P. 22–31.; Stančikaitė M., Kisielienė D., Moe D., Vaikutienė G. Lateglacial and early Holocene environmental changes in northeastern Lithuania // Quaternary International. 2009. V. 207. P. 80–92.; Velle G., Brooks S.J., Birks H.J.B., Willassen E. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia // Quaternary Science Reviews. 2005. V. 24. P. 1429–1462.; Šeirienė V., Stančikaitė M., Kisielienė D., Šinkūnas P. Lateglacial environment inferred from palaeobotanical and 14C data of sediment sequence from Lake Kašučiai, West Lithuania // Baltica. 2006. V. 19. № 2. P. 80–90.; Snowball I., Muscheler R., Zillén L., Sandgren P., Stanton T., Ljung K. Radiocarbon wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2 kyr cold event // Boreas. 2010. V. 39. P. 720–733.; Novenko E.Yu., Tsyganov A.N., Volkova E.M., Babeshko K.V., Lavrentiev N.V., Payne R.J., Mazei Yu.A. The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region // Quaternary Research. 2015. V. 83. № 3. P. 459–468.; Nesje A., Dahl S.O. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences // Journ. of Quaternary Science. 2001. V. 16. P. 155–166.; Bjune A.E., Birks H.J.B., Seppä H. Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils from lakes situated at or near the present tree-line // Boreas. 2004. V. 33. P. 211–223.; Barber D.C., Dyke A., Hillaire-Marcel C., Jennings A.E., Andrews J.T., Kerwin M.W., Bilodeau G., McNeely R., Southon J., Morehead M.D., Gagnon J.M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes // Nature. 1999. V. 400. P. 344–348.; Clarke G. K. C., Leverington D.W., Teller J.T., Dyke A.S. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event // Quaternary Science Reviews. 2004. V. 23. P. 389–407.; Stouffer R.J., Gregory J.M., Dixon K.W., Spelman M.J., Hurlin W., Weaver A.J., Eby M., Flato G.M., Hasumi H., Hu A., Jungclaus J.H., Kamenkovich I.V., Levermann A., Montoya M., Murakami S., Nawrath S., Oka A., Peltier W.R., Robitaille D.Y., Sokolov A., Vettoretti G. Weber S.L. Investigating the causes of the response of the thermohaline circulation to past and future climate changes // Journ. of Climate. 2006. V. 19. P. 1365–1387.; Herold N., Yin Q.Z., Karami M.P., Berger A. Modeling the climatic diversity of the warm interglacials // Quaternary Science Reviews. 2012. V. 56. P. 126–141.; Bos J.A.A., van Geel B., van der Plicht J., Bohncke S.J.P. Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records // Quaternary Science Reviews. 2007. V. 26. P. 1927–1950.; Hoffman J.S., Carlson A.E., Winsor K., Klinkhammer G.P., LeGrande A.N., Andrews J.T., Strasser J.C. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea // Geophys. Research Letters. 2012. V. 39. P. L18703. doi:10.1029/2012GL053047.; Li Y.-X., Tornqvist T.E., Nevitt J.M., Kohl B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago // Earth Planetary Science Letters. 2012. V. 315–316. P. 41–50.; IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Еds.: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014. 1535 p.; Шикломанов И.А., Георгиевский В.Ю., Шикломанов А.И., Голованов О.Ф. Новые данные о стоке крупнейших рек, впадающих в Северный Ледовитый океан // Полярная криосфера и воды суши. Москва – Санкт-Петербург: Paulsen, ААНИИ, 2011. С. 263–287.; Rahmstorf S., Box J., Feulner G., Mann M., Robinson A., Rutherford S., Schaffernicht E. Exceptional twentiethcentury slowdown in Atlantic Ocean overturning circulation // Nature Climate Change. 2015. V. 5. P. 475–480.; https://ice-snow.igras.ru/jour/article/view/363