يعرض 1 - 20 نتائج من 165 نتيجة بحث عن '"A. S. Soloviev"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 13 (2024); 209-214 ; Медицинский Совет; № 13 (2024); 209-214 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8519/7490; Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159): 2052-2090. https://doi.org/10.1016/s0140-6736(18)31694-5.; Eisenga MF, Nolte IM, van der Meer P, Bakker SJL, Gaillard CAJM. Association of different iron deficiency cutoffs with adverse outcomes in chronic kidney disease. BMC Nephrol. 2018;19(1):225. https://doi.org/10.1186/s12882-018-1021-3.; Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE. 2014;9(1):e84943. https://doi.org/10.1371/journal.pone.0084943.; Locatelli F, Marcelli D, Conte F, D'Amico M, Del Vecchio L, Limido A et al. Cardiovascular disease in chronic renal failure: the challenge continues. Nephrol Dial Transplant. 2000;15(5 Suppl.):69-80. https://doi.org/10.1093/ndt/15.suppl_5.69.; Collins AJ, Kasiske B, Herzog C, Chavers B, Foley R, Gilbertson D et al. Excerpts from the United States Renal Data System 2004 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2005;45(1 Suppl.):A5-A7. https://doi.org/10.1053/j.ajkd.2004.10.009.; Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl. 3): S112-S119. https://doi.org/10.1053/ajkd.1998.v32.pm9820470.; Luthi JC, Flanders WD, Burnier M, Burnand B, McClellan WM. Anemia and chronic kidney disease are associated with poor outcomes in heart failure patients. BMC Nephrol. 2006;7:3. https://doi.org/10.1186/1471-2369-7-3.; Al-Ahmad A, Rand WM, Manjunath G, Konstam MA, Salem DN, Levey AS, Sarnak MJ. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38(4):955-962. https://doi.org/10.1016/s0735-1097(01)01470-x.; McClellan WM, Flanders WD, Langston RD, Jurkovitz C, Presley R. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population-based study. J Am Soc Nephrol. 2002;13(7):1928-1936. https://doi.org/10.1097/01.asn.0000018409.45834.fa.; Lee G, Choi S, Kim K, Yun JM, Son JS, Jeong SM et al. Association of Hemoglobin Concentration and Its Change With Cardiovascular and All-Cause Mortality. J Am Heart Assoc. 2018;7(3):e007723. https://doi.org/10.1161/jaha.117.007723.; Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, Collins AJ. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16(2):489-495. https://doi.org/10.1681/asn.2004030203.; Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631-1634. https://doi.org/10.1681/ASN.2011111078.; Kular D, Macdougall IC. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatr Nephrol. 2019;34(3):365-378. https://doi.org/10.1007/s00467-017-3849-3.; Tsukamoto T, Matsubara T, Akashi Y, Kondo M, Yanagita M. Annual Iron Loss Associated with Hemodialysis. Am J Nephrol. 2016;43(1):32-38. https://doi.org/10.1159/000444335.; Levin A. Prevalence of cardiovascular damage in early renal disease. Nephrol Dial Transplant. 2001;16(2 Suppl.):7-11. https://doi.org/10.1093/ndt/16.suppl_2.7.; Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162(12):1401-1408. https://doi.org/10.1001/archinte.162.12.1401.; De Cock E, Dellanna F, Khellaf K, Klatko W, Maduell F, Raluy-Callado M, Villa G. Time savings associated with C.E.R.A. once monthly: a time-and-motion study in hemodialysis centers in five European countries. J Med Econ. 2013;16(5):648-656. https://doi.org/10.3111/13696998.2013.775133.; Rossert J, McClellan WM, Roger SD, Verbeelen DL. Epoetin treatment: what are the arguments to expect a beneficial effect on renal disease progression? Nephrol Dial Transplant. 2002;17(3):359-362. https://doi.org/10.1093/ndt/17.3.359.; Tsai SF, Tarng DC. Anemia in patients of diabetic kidney disease. J Chin Med Assoc. 2019;82(10):752-755. https://doi.org/10.1097/JCMA.0000000000000175.; Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4(5):1205-1213. https://doi.org/10.1681/asn.v451205.; Ebben JP, Gilbertson DT, Foley RN, Collins AJ. Hemoglobin level variability: associations with comorbidity, intercurrent events, and hospitalizations. Clin J Am Soc Nephrol. 2006;1(6):1205-1210. https://doi.org/10.2215/cjn.01110306.; Pisoni RL, Bragg-Gresham JL, Fuller DS, Morgenstern H, Canaud B, Locatelli F et al. Facility-level interpatient hemoglobin variability in hemodialysis centers participating in the Dialysis Outcomes and Practice Patterns Study (DOPPS): Associations with mortality, patient characteristics, and facility practices. Am J Kidney Dis. 2011;57(2):266-275. https://doi.org/10.1053/j.ajkd.2010.11.003.; Roche A, Macdougall IC, Walker RG. Haemoglobin fluctuations in patients on haemodialysis treated with ESAs: clinical observations from two centres. Curr Med Res Opin. 2009;25(12):2971-2976. https://doi.org/10.1185/03007990903350029.; Manley HJ, Drayer DK, Muther RS. Medication-related problem type and appearance rate in ambulatory hemodialysis patients. BMC Nephrol. 2003;4:10. https://doi.org/10.1186/1471-2369-4-10.; Weiss LG, Clyne N, Divino Fihlho J, Frisenette-Fich C, Kurkus J, Svensson B. The efficacy of once weekly compared with two or three times weekly subcutaneous epoetin beta: results from a randomized controlled multicentre trial. Swedish Study Group. Nephrol Dial Transplant. 2000;15(12):2014-2О19. https://doi.org/10.1093/ndt/15.12.2014.; Locatelli F, Baldamus CA, Villa G, Ganea A, Martin de Francisco AL. Once-weekly compared with three-times-weekly subcutaneous epoetin beta: results from a randomized, multicenter, therapeutic-equivalence study. Am J Kidney Dis. 2002;40(1):119-125. https://doi.org/10.1053/ajkd.2002.33920.; Besarab A, Reyes CM, Hornberger J. Meta-analysis of subcutaneous versus intravenous epoetin in maintenance treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40(3):439-446. https://doi.org/10.1053/ajkd.2002.34881.; Hynes DM, Stroupe KT, Greer JW, Reda DJ, Frankenfield DL, Kaufman JS et al. Potential cost savings of erythropoietin administration in end-stage renal disease. Am J Med. 2002;112(3):169-175. https://doi.org/10.1016/s0002-9343(01)01103-2.; https://www.med-sovet.pro/jour/article/view/8519

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 5 (2024); 117-122 ; Медицинский Совет; № 5 (2024); 117-122 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8228/7251; Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159): 2052–2090. https://doi.org/10.1016/s0140-6736(18)31694-5.; Eisenga MF, Nolte IM, van der Meer P, Bakker SJL, Gaillard CAJM. Association of different iron deficiency cutoffs with adverse outcomes in chronic kidney disease. BMC Nephrol. 2018;19(1):225. https://doi.org/10.1186/s12882-018-1021-3.; Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE. 2014;9(1):e84943. https://doi.org/10.1371/journal.pone.0084943.; Locatelli F, Marcelli D, Conte F, D’Amico M, Del Vecchio L, Limido A et al. Cardiovascular disease in chronic renal failure: the challenge continues. Registro Lombardo Dialisi e Trapianto. Nephrol Dial Transplant. 2000;15(Suppl. 5):69–80. https://doi.org/10.1093/ndt/15.suppl_5.69.; Collins AJ, Kasiske B, Herzog C, Chavers B, Foley R, Gilbertson D et al. Excerpts from the United States Renal Data System 2004 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2005;45(Suppl. 1):A5–А7. https://doi.org/10.1053/j.ajkd.2004.10.009.; Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3): S112–S119. https://doi.org/10.1053/ajkd.1998.v32.pm9820470.; Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–663. https://doi.org/10.1001/archinte.164.6.659.; Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, Collins AJ. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16(2):489–495. https://doi.org/10.1681/ASN.2004030203.; Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–1634. https://doi.org/10.1681/ASN.2011111078.; Kular D, Macdougall IC. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatr Nephrol. 2019;34(3):365–378. https://doi.org/10.1007/s00467-017-3849-3.; Tsukamoto T, Matsubara T, Akashi Y, Kondo M, Yanagita M. Annual Iron Loss Associated with Hemodialysis. Am J Nephrol. 2016;43(1):32–38. https://doi.org/10.1159/000444335.; Levin A. Prevalence of cardiovascular damage in early renal disease. Nephrol Dial Transplant. 2001;16(Suppl. 2):7–11. https://doi.org/10.1093/ndt/16.suppl_2.7.; Astor BC, Muntner P, Levin A, Eustace JA, Coresh J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988–1994). Arch Intern Med. 2002;162(12):1401–1408. https://doi.org/10.1001/archinte.162.12.1401.; Tsai SF, Tarng DC. Anemia in patients of diabetic kidney disease. J Chin Med Assoc. 2019;82(10):752–755. https://doi.org/10.1097/JCMA.0000000000000175.; Luthi JC, Flanders WD, Burnier M, Burnand B, McClellan WM. Anemia and chronic kidney disease are associated with poor outcomes in heart failure patients. BMC Nephrol. 2006;7:3. https://doi.org/10.1186/1471-2369-7-3.; Al-Ahmad A, Rand WM, Manjunath G, Konstam MA, Salem DN, Levey AS, Sarnak MJ. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38(4):955–962. https://doi.org/10.1016/s0735-1097(01)01470-x.; McClellan WM, Flanders WD, Langston RD, Jurkovitz C, Presley R. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population-based study. J Am Soc Nephrol. 2002;13(7):1928–1936. https://doi.org/10.1097/01.asn.0000018409.45834.fa.; Cai A, Wu Z, Xu L, Xia S, He X, Zhang Y et al. Association of anaemia and allcause mortality in patients with ischaemic heart failure varies by renal function status. ESC Heart Fail. 2021;8(3):2270–2281. https://doi.org/10.1002/ehf2.13325.; Lee G, Choi S, Kim K, Yun JM, Son JS, Jeong SM et al. Association of Hemoglobin Concentration and Its Change With Cardiovascular and AllCause Mortality. J Am Heart Assoc. 2018;7(3):e007723. https://doi.org/10.1161/JAHA.117.007723.; Hörl WH. Anaemia management and mortality risk in chronic kidney disease. Nat Rev Nephrol. 2013;9(5):291–301. https://doi.org/10.1038/nrneph.2013.21.; Tanaka S, Kamiya K, Saito H, Saito K, Ogasahara Y, Maekawa E et al. Prevalence and prognostic value of the coexistence of anaemia and frailty in older patients with heart failure. ESC Heart Fail. 2021;8(1):625–633. https://doi.org/10.1002/ehf2.13140.; Goh VJ, Tromp J, Teng TK, Tay WT, Van Der Meer P, Ling LH et al. Prevalence, clinical correlates, and outcomes of anaemia in multi-ethnic Asian patients with heart failure with reduced ejection fraction. ESC Heart Fail. 2018;5(4):570–578. https://doi.org/10.1002/ehf2.12279.; Harnett JD, Kent GM, Foley RN, Parfrey PS. Cardiac function and hematocrit level. Am J Kidney Dis. 1995;25(4 Suppl. 1):S3–7. https://doi.org/10.1016/0272-6386(95)90673-8.; Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uraemia. Nephrol Dial Transplant. 1996;11(7):1277–1285. https://doi.org/10.1093/ndt/11.7.1277.; Levin A. The role of anaemia in the genesis of cardiac abnormalities in patients with chronic kidney disease. Nephrol Dial Transplant. 2002;17(2):207–210. https://doi.org/10.1093/ndt/17.2.207.; Madore F, Lowrie EG, Brugnara C, Lew NL, Lazarus JM, Bridges K, Owen WF. Anemia in hemodialysis patients: variables affecting this outcome predictor. J Am Soc Nephrol. 1997;8(12):1921–1929. https://doi.org/10.1681/ASN.V8121921.; Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10(3):610–319. https://doi.org/10.1681/ASN.V103610.; Kovesdy CP, Trivedi BK, Kalantar-Zadeh K, Anderson JE. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006;69(3):560–564. https://doi.org/10.1038/sj.ki.5000105.; Levin A, Djurdjev O, Duncan J, Rosenbaum D, Werb R. Haemoglobin at time of referral prior to dialysis predicts survival: an association of haemoglobin with long-term outcomes. Nephrol Dial Transplant. 2006;21(2):370–377. https://doi.org/10.1093/ndt/gfi209.; Rossert J, McClellan WM, Roger SD, Verbeelen DL. Epoetin treatment: what are the arguments to expect a beneficial effect on renal disease progression? Nephrol Dial Transplant. 2002;17(3):359–362. https://doi.org/10.1093/ndt/17.3.359.; Kuriyama S, Tomonari H, Yoshida H, Hashimoto T, Kawaguchi Y, Sakai O. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron. 1997;77(2):176–185. https://doi.org/10.1159/000190270.; Jungers P, Choukroun G, Oualim Z, Robino C, Nguyen AT, Man NK. Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol Dial Transplant. 2001;16(2):307–312. https://doi.org/10.1093/ndt/16.2.307.; Erslev A. Humoral regulation of red cell production. Blood. 1953;8(4):349–357. https://doi.org/10.1182/blood.V8.4.349.349.; Jacobson LO, Goldwasser E, Fried W, Plzak LF. Studies on erythropoiesis. VII. The role of the kidney in the production of erythropoietin. Trans Assoc Am Physicians. 1957;70:305–317. Available at: https://pubmed.ncbi.nlm.nih.gov/13496139/.; Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252(15):5558–5564. https://doi.org/10.1016/S0021-9258(19)63387-9.; Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985;82(22):7580–7584. https://doi.org/10.1073/pnas.82.22.7580.; Winearls CG, Oliver DO, Pippard MJ, Reid C, Downing MR, Cotes PM. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet. 1986;2(8517): 1175–1178. https://doi.org/10.1016/s0140-6736(86)92192-6.; Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73–78. https://doi.org/10.1056/NEJM198701083160203.; Park H, Liu X, Henry L, Harman J, Ross EA. Trends in anemia care in nondialysis-dependent chronic kidney disease (CKD) patients in the United States (2006–2015). BMC Nephrol. 2018;19(1):318. https://doi.org/10.1186/s12882-018-1119-7.; De Cock E, Dellanna F, Khellaf K, Klatko W, Maduell F, Raluy-Callado M, Villa G. Time savings associated with C.E.R.A. once monthly: a time-andmotion study in hemodialysis centers in five European countries. J Med Econ. 2013;16(5):648–656. https://doi.org/10.3111/13696998.2013.775133.; Halstenson CE, Macres M, Katz SA, Schnieders JR, Watanabe M, Sobota JT, Abraham PA. Comparative pharmacokinetics and pharmacodynamics of epoetin alfa and epoetin beta. Clin Pharmacol Ther. 1991;50(6):702–712. https://doi.org/10.1038/clpt.1991.210.; Besarab A, Flaharty KK, Erslev AJ, McCrea JB, Vlasses PH, Medina F et al. Clinical pharmacology and economics of recombinant human erythropoietin in end-stage renal disease: the case for subcutaneous administration. J Am Soc Nephrol. 1992;2(9):1405–1416. https://doi.org/10.1681/ASN.V291405.; Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, Vaamonde CA. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med. 1998;339(9):578–583. https://doi.org/10.1056/NEJM199808273390902.; Locatelli F, Pisoni RL, Combe C, Bommer J, Andreucci VE, Piera L et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant. 2004;19(1):121–132. https://doi.org/10.1093/ndt/gfg458.; Abraham PA, Macres MG. Blood pressure in hemodialysis patients during amelioration of anemia with erythropoietin. J Am Soc Nephrol. 1991;2(4):927–936. https://doi.org/10.1681/ASN.V24927.; Bennett WM. A multicenter clinical trial of epoetin beta for anemia of endstage renal disease. J Am Soc Nephrol. 1991;1(7):990–998. https://doi.org/10.1681/ASN.V17990.; Kaizu K, Uriu K, Eto S. Effects of recombinant human erythropoietin (EPOCH) on the coagulation and fibrinolytic systems and platelet function in pre-dialysis patients with chronic renal failure. Nihon Jinzo Gakkai Shi. 1993;35(8):989–997. https://doi.org/10.14842/jpnjnephrol1959.35.989.; Weiss LG, Clyne N, Divino Fihlho J, Frisenette-Fich C, Kurkus J, Svensson B. The efficacy of once weekly compared with two or three times weekly subcutaneous epoetin beta: results from a randomized controlled multicentre trial. Nephrol Dial Transplant. 2000;15(12):2014–2019. https://doi.org/10.1093/ndt/15.12.2014.; Locatelli F, Baldamus CA, Villa G, Ganea A, Martín de Francisco AL. Onceweekly compared with three-times-weekly subcutaneous epoetin beta: results from a randomized, multicenter, therapeutic-equivalence study. Am J Kidney Dis. 2002;40(1):119–125. https://doi.org/10.1053/ajkd.2002.33920.; Lui SF, Law CB, Ting SM, Li P, Lai KN. Once weekly versus twice weekly subcutaneous administration of recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol. 1991;36(5):246–251. Available at: https://pubmed.ncbi.nlm.nih.gov/1752075.; Saleh A, Krane NK, Caballero M, Starks E. Once weekly subcutaneous erythropoietin is an effective maintenance therapy in the treatment of anemia of end stage renal disease in patients on CAPD. Adv Perit Dial. 1991;7: 288–291. Available at: https://pubmed.ncbi.nlm.nih.gov/1680448/.; Nomoto Y, Kawaguchi Y, Kubota M, Tagawa H, Kubo K, Ogura Y et al. A multicenter study with once a week or once every two weeks high-dose subcutaneous administration of recombinant human erythropoietin in continuous ambulatory peritoneal dialysis. Perit Dial Int. 1994;14(1):56–60. https://doi.org/10.1177/089686089401400111.; Frifelt JJ, Tvedegaard E, Bruun K, Steffensen G, Cintin C, Breddam M et al. Efficacy of recombinant human erythropoietin administered subcutaneously to CAPD patients once weekly. Perit Dial Int. 1996;16(6):594–598. https://doi.org/10.1177/089686089601600608.; Koch KM, Koene RA, Messinger D, Quarder O, Scigalla P. The use of epoetin beta in anemic predialysis patients with chronic renal failure. Clin Nephrol. 1995;44(3):201–208. Available at: https://pubmed.ncbi.nlm.nih.gov/8556837.; Albertazzi A, Di Liberato L, Daniele F, Battistel V, Colombi L. Efficacy and tolerability of recombinant human erythropoietin treatment in pre-dialysis patients: results of a multicenter study. Int J Artif Organs. 1998;21(1):12–18. Available at: https://pubmed.ncbi.nlm.nih.gov/9554820/.; Navarro JF, Teruel JL, Marcén R, Ortuño J. Improvement of erythropoietininduced hypertension in hemodialysis patients changing the administration route. Scand J Urol Nephrol. 1995;29(1):11–14. https://doi.org/10.3109/00365599509180532.; Besarab A, Reyes CM, Hornberger J. Meta-analysis of subcutaneous versus intravenous epoetin in maintenance treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40(3):439–446. https://doi.org/10.1053/ajkd.2002.34881.; Hynes DM, Stroupe KT, Greer JW, Reda DJ, Frankenfield DL, Kaufman JS et al. Potential cost savings of erythropoietin administration in end-stage renal disease. Am J Med. 2002;112(3):169–175. https://doi.org/10.1016/s0002-9343(01)01103-2.; Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–475. https://doi.org/10.1056/NEJMoa011931.; Bennett CL, Luminari S, Nissenson AR, Tallman MS, Klinge SA, McWilliams N et al. Pure red-cell aplasia and epoetin therapy. N Engl J Med. 2004;351(14):1403–1408. https://doi.org/10.1056/NEJMoa040528.; Locatelli F, Aljama P, Barany P, Canaud B, Carrera F, Eckardt KU et al. Erythropoiesis-stimulating agents and antibody-mediated pure red-cell aplasia: here are we now and where do we go from here? Nephrol Dial Transplant. 2004;19(2):288–293. https://doi.org/10.1093/ndt/gfg489.; https://www.med-sovet.pro/jour/article/view/8228

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: V. S. Soloviev

    المصدر: История: факты и символы, Vol 0, Iss 2, Pp 92-98 (2021)

    وصف الملف: electronic resource

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: V. S. Soloviev

    المصدر: История: факты и символы, Vol 0, Iss 1, Pp 158-160 (2021)

    مصطلحات موضوعية: History (General), D1-2009

    وصف الملف: electronic resource

  11. 11
    Academic Journal

    المؤلفون: V. S. Soloviev

    المصدر: История: факты и символы, Vol 3, Iss 3, Pp 142-143 (2021)

    مصطلحات موضوعية: History (General), D1-2009

    وصف الملف: electronic resource

  12. 12
  13. 13
  14. 14
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 58, No 4 (2020); 353-367 ; Научно-практическая ревматология; Vol 58, No 4 (2020); 353-367 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2923/1981; Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VE, et al. Viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012; 84(10):1680-96. doi:10.1002/jmv.23354; Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019; 133(9):906-918. doi:10.1182/blood-2018-11-882993 3. Karbach S, Lagrange J, Wenzel P. Thromboinflammation and Vascular Dysfunction. Hamostaseologie. 2019; 39(2):180-187. doi:10.1055/s-0038-1676130; Palankar R, Greinacher A. Challenging the concept of immunothrombosis. Blood. 2019; 133(6):508-509. doi:10.1182/blood2018-11-886267; Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration. 2017; 93(3):212-225. doi:10.1159/000453002; Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, et al. Behçet’s syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol. 2019; 195(3): 322–333. doi:10.1111/cei.13243; Emmi G, Becatti M, Bettiol A, Hatemi G, Prisco D, Fiorillo C. Behçet’s Syndrome as a Model of Thrombo-Inflammation: The Role of Neutrophils. Front Immunol. 2019; 10:1085. doi:10.3389/fimmu.2019.01085; Tamaki H, Khasnis A. Venous thromboembolism in systemic autoimmune diseases: A narrative review with emphasis on primary systemic vasculitides. Vasc Med. 2015; 20(4):369-76. doi:10.1177/1358863X15573838; Emmi G, Silvestri E, Squatrito D, et al. Thrombosis in vasculitis: from pathogenesis to treatment. Thromb J. 2015;13:15. Published 2015 Apr 16. doi:10.1186/s12959-015-0047-z; Claudel SE, Tucker BM, Kleven DT, Pirkle JL Jr, Murea M. Narrative Review of Hypercoagulability in Small-Vessel Vasculitis. Kidney Int Rep. 2020;5(5):586-599. Published 2020 Jan 13. doi:10.1016/j.ekir.2019.12.018; Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14 doi:10.26442/00403660.2020.05.000697; Masias C, Vasu S, Cataland SR. None of the above: thrombotic microangiopathy beyond TTP and HUS. Blood. 2017; 129(21):2857-2863. doi:10.1182/blood-2016-11-743104; Libby L, Loscalzo J, Ridker P, еt al. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018; 72(17): 2071–2081. doi:10.1016/j.jacc.2018.08.1043; Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. Paediatric Respiratory Reviews (IF 2.615): 2020-06-11.doi:10.1016/j.prrv.2020.06.004; Ehrenfeld M, Tincani A, Andreoli L, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020 Jun 11: 102597. doi:10.1016/j.autrev.2020.102597; Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020; 58(2):123-132 doi:10.14412/1995-4484-2020-123-132; Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020; 507: 167–173. doi:10.1016/j.cca.2020.04.027; Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559- 1561. doi:10.1111/jth.14849; Du F, Liu B, Zhang S. COVID-19: the role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness [published online ahead of print, 2020 Jul 16]. J Thromb Thrombolysis. 2020;1-17. doi:10.1007/s11239-020-02224-2; McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 May 7 doi:10.1016/S2665-9913(20)30121-1; Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;1-9. doi:10.1038/s41584-020-0474-5; Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22:95–97; Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of Coronavirus Disease 2019. Crit Care Med. 2020 May 26. doi:10.1097/CCM.0000000000004458; Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020 May 15: 1–14. doi:10.1007/s11239-020-02134-.; Joly RS, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020 May 15 : 1–4. doi:10.1007/s00134-020-06088-1; Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020 May 22:10.1002/jmv.26050. doi:10.1002/jmv.26050; Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145-148. doi:10.1016/j.cca.2020.03.022; Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145–147.doi:10.1016/j.thromres.2020.04.013; Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18:844–847. doi:10.1111/jth.14768; Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-1120. doi:10.1515/cclm-2020-0188; Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid19. N Engl J Med. 2020;383(2):120-128. doi:10.1056/NEJMoa2015432; Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed [published correction appears in Nat Rev Immunol. 2020 Jun 4]. Nat Rev Immunol. 2020; 20(7):389-391. doi:10.1038/s41577-020-0343-0; Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417– 1418. doi:10.1016/S0140-6736(20)30937-5; Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020; 7(8):e575-e582. doi:10.1016/S2352-3026(20)30216-7; Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6):e46-e47. doi:10.1016/S2213-2600(20)30216-2; Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0; Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020; 130(5):2202-2205. doi:10.1172/JCI137647; Henderson LA, Canna SW, Schulert GS, et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020; 72(7):1059-1063. doi:10.1002/art.41285; Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-474. doi:10.1126/science.abb8925; Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017; 69(6):1135-43. doi:10.1002/art.40071; England JT, Abdulla A, Biggs CM, et al. Weathering the COVID19 storm: Lessons from hematologic cytokine syndromes [published online ahead of print, 2020 May 15]. Blood Rev. 2020;100707. doi:10.1016/j.blre.2020.100707; Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID19: Current State of the Science. Immunity. 2020;52(6):910-941. doi:10.1016/j.immuni.2020.05.002; Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013; 11:185. doi:10.1186/1741-7015-11-185; Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome?. Autoimmun Rev. 2020;19(7):102573. doi:10.1016/j.autrev.2020.102573; Fogarty H, Townsend L, Ni Cheallaigh C, et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol. 2020;189(6):1044- 1049. doi:10.1111/bjh.16749; Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4)):586–590. doi:10.1007/s00134-020-05985-9; Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the ReninAngiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10):1456-1474. doi:10.1161/CIRCRESAHA.120.317015; Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020 Apr 23:S0163-4453(20)30234-6. doi:10.1016/j.jinf.2020.04.021; Catanzaro M, Fagiani F, Racchi M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther. 2020; 5: 84. doi:10.1038/s41392-020-0191-1; Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. doi:10.14412/1995-4484-2017-590-599; Савушкина НМ, Галушко EА, Демидова НВ, Гордеев АВ. Ангиотензины и ревматоидный артрит. Научнопрактическая ревматология. 2018;56(6):753-759. doi:10.14412/1995-4484-2018-753-759; Ranjbar R, Shafiee M, Hesari A, et al. The potential therapeutic use of renin-angiotensin system inhibitors in the treatment of inflammatory diseases. J Cell Physiol. 2019; 234(3):2277-2295. doi:10.1002/jcp.27205; Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98(2):314-322. doi:10.1016/j.kint.2020.05.013; Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis?. Circulation. 2020;141(22):1739-1741. doi:10.1161/CIRCULATIONAHA.120.047419; Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. 2020;130(8):3950-3953. doi:10.1172/JCI140183; Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? [published correction appears in Nat Rev Immunol. 2020 Jul;20(7):448]. Nat Rev Immunol. 2020;20(6):343-344. doi:10.1038/s41577-020-0320-7; Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017; 31(4): 213–223. doi:10.1016/j.blre.2017.02.003; Wong EKS, Kavanagh D. Diseases of complement dysregulation—an overview. Semin Immunopathol. 2018; 40(1): 49–64. doi:10.1007/s00281-017-0663-8; Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020.03.29.20041962. doi:10.1101/2020.03.29.20041962; Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13. doi:10.1016/j.trsl.2020.04.007; Giani M, Seminati D, Lucchini A, Foti G, Pagni F. Exuberant Plasmocytosis in Bronchoalveolar Lavage Specimen of the First Patient Requiring Extracorporeal Membrane Oxygenation for SARS-CoV-2 in Europe. J Thorac Oncol. 2020;15(5):e65-e66. doi:10.1016/j.jtho.2020.03.008; Oku K, Nakamura H, Kono M, et al. Complement and thrombosis in the antiphospholipid syndrome. Autoimmun Rev. 2016; 15(10):1001-1004. doi:10.1016/j.autrev.2016.07.020; Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017; 13(9):538- 547. doi:10.1038/nrrheum.2017.125; Kotzen ES, Roy S, Jain K. Antiphospholipid Syndrome Nephropathy and Other Thrombotic Microangiopathies Among Patients With Systemic Lupus Erythematosus. Adv Chronic Kidney Dis. 2019; 26(5):376-386. doi:10.1053/j.ackd.2019.08.012; Насонов ЕЛ. Антифосфолипидный синдром. Москва: Литтерра; 2004. 424 с. [Nasonov EL. Antifosfolipidnyi sindrom (Antiphospholipid syndrome). Moscow: Litterra; 2004. 424 p. (In Russ.)]; Garcia D, Erkan D. Diagnosis and Management of the Antiphospholipid Syndrome. N Engl J Med. 2018; 378(21):2010- 2021. doi:10.1056/NEJMra1705454.; Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011; 7(6):330-339. doi:10.1038/nrrheum.2011.52; Espinosa G, Rodríguez-Pintó I, Gomez-Puerta JA, Pons-Estel G, Cervera R; Catastrophic Antiphospholipid Syndrome (CAPS) Registry Project Group (European Forum on Antiphospholipid Antibodies). Relapsing catastrophic antiphospholipid syndrome potential role of microangiopathic hemolytic anemia in disease relapses. Semin Arthritis Rheum. 2013;42(4):417-23. doi:10.1016/j.semarthrit.2012.05.005; Cervera R, Rodríguez-Pintó I, Espinosa G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J Autoimmun. 2018;92:1-11. doi:10.1016/j.jaut.2018.05.007; Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2019;135(4):239-251. doi:10.1182/blood.2019003863; Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575; Hossri S, Shadi M, Hamarsha Z, Schneider R, El-Sayegh D. Clinically significant anticardiolipin antibodies associated with COVID-19 [published online ahead of print, 2020 May 29]. J Crit Care. 2020;59:32-34. doi:10.1016/j.jcrc.2020.05.017; Sung J, Anjum S. Coronavirus Disease 2019 (COVID-19) Infection Associated With Antiphospholipid Antibodies and Four-Extremity Deep Vein thrombosis in a Previously Healthy Female. Cureus. 2020;12(6):e8408. Published 2020 Jun 2. doi:10.7759/cureus.8408; Sieiro Santos C, Nogal Arias C, Moriano Morales C, Ballesteros Pomar M, Diez Alvarez E, Perez Sandoval T. Antiphospholipid antibodies in patient with acute lower member ischemia and pulmonary thromboembolism as a result of infection by SARSCoV2. Clin Rheumatol. 2020;39(7):2105-2106. doi:10.1007/s10067-020-05194-1; Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889-891. doi:10.1136/jnnp-2020-323586; Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi:10.1016/j.thromres.2020.04.014; Xiao M, Zhang Y, Zhang S, et al. Brief Report: Anti-phospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol. 2020; doi:10.1002/art.41425; Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020;18(8):2064-2065. doi:10.1111/jth.14867; Bertin D, Brodovitch A, Beziane A, et al. Anti-cardiolipin IgG autoantibodies are an independent risk factor of COVID-19 severity [published online ahead of print, 2020 Jun 21]. Arthritis Rheumatol. 2020;10.1002/art.41409. doi:10.1002/art.41409; Previtali G, Seghezzi M, Moioli V, et al. The pathogenesis of thromboembolic disease in COVID-19 patients: could be catastrophic antiphospholipid syndrom? medRxiv 2020.04.30.20086397. doi:10.1101/2020.04.30.20086397; Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies [published online ahead of print, 2020 May 7]. J Thromb Haemost. 2020; doi:10.1111/jth.14893; Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation?. J Thromb Haemost. 2020;10.1111/ jth.14994. doi:10.1111/jth.14994; Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020; 1-7. doi:10.1007/s11239-020-02182-9; Amezcua-Guerra LM, Rojas-Velasco G, Brianza-Padilla M, et al. Presence of antiphospholipid antibodies in COVID-19: case series study. Ann Rheum Dis. 2020; doi:10.1136/annrheumdis-2020-218100; Pineton de Chambrun M, Frere C, Miyara M, et al. High frequency of antiphospholipid antibodies in critically ill COVID19 patients: a link with hypercoagulability? J Intern Med. 2020;10.1111/joim.13126. doi:10.1111/joim.13126; Zuo Yu, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020.06.15.20131607; doi: https://doi.org/10.1101/2020.06.15.20131607; Mendoza-Pinto C, García-Carrasco M, Cervera R. Role of Infectious Diseases in the Antiphospholipid Syndrome (Including Its Catastrophic Variant). Curr Rheumatol Rep. 2018;20(10):62. doi:10.1007/s11926-018-0773-x; Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27(4):572-583. doi:10.1177/0961203317731532; Pignatelli P, Ettorre E, Menichelli D, et al. Seronegative antiphospholipid syndrome: refining the value of «non-criteria» antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945; Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13. doi:10.1177/1756286420932036; Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024. doi:10.1016/j.ijantimicag.2020.106024; Manalo IF, Smith MK, Cheeley J, Jacobs R. A dermatologic manifestation of COVID-19: Transient livedo reticularis. J Am Acad Dermatol. 2020;83(2):700. doi:10.1016/j.jaad.2020.04.018; Llamas-Velasco M, Muñoz-Hernández P, Lázaro-González J, et al. Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID-19 [published online ahead of print, 2020 May 14]. Br J Dermatol. 2020; doi:10.1111/bjd.19222; Liu T, Gu J, Wan L, et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res Ther. 2020;22(1):33. doi:10.1186/s13075-020-2131-4; Mekinian A, Bourrienne MC, Carbillon L, et al. Nonconventional antiphospholipid antibodies in patients with clinical obstetrical APS: Prevalence and treatment efficacy in pregnancies. Semin Arthritis Rheum.2016;46(2):232–237. doi:10.1016/j.semarthrit.2016.05.006; Oku K, Amengual O, Atsumi T. Antiphospholipid scoring: significance in diagnosis and prognosis. Lupus.2014; 23(12):1269–1272. doi:10.1177/0961203314561284; Schouwers SME, Delanghe JR, Devreese KMJ. Lupus Anticoagulant (LAC) Testing in Patients With Inflammatory Status: Does C-reactive Protein Interfere With LAC Test Results? Thromb Res 2010;125(1):102-4. doi:10.1016/j.thromres.2009.09.001; Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6):e20200652. doi:10.1084/jem.20200652; Bravo-Barrera J. Kourilovitch M. Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel). 2017; 6: 4. doi:10.3390/antib6010004; Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999; Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv 2020.04. doi:10.1101/2020.04.30.20086736; Yalavarthi S, Gould TJ, Rao AN, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11):2990-3003. doi:10.1002/art.39247; Meng H, Yalavarthi S, Kanthi Y, et al. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69(3):655-667. doi:10.1002/art.39938; Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi:10.1016/j.clim.2020.108480; Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019; 11(8):762. doi:10.3390/v11080762; Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5. doi:10.1038/s41423-020-0402-2; Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi:10.1038/s41423-020-0401-3; Pender MP. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012: 189096. doi:10.1155/2012/189096; Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93- e95. doi:10.1016/j.jinf.2020.05.065; Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. doi:10.1016/j.jinf.2020.04.010; Du RH, Liu LM, Yin W, et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020;17(7):839-846. doi:10.1513/AnnalsATS.202003-225OC; Argenziano MG, Bruce SL, Slater CL. Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv. 2020;2020 04.20.20072116; Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ. 2020;368:m1091. Published 2020 Mar 26. doi:10.1136/bmj.m1091; Wang L, He W, Yu X. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-645. doi:10.1016/j.jinf.2020.03.019; Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andres E. Immune thrombocytopenic purpura in a patient with Covid-19. N. Engl. J Med. 2020, 382, e43. doi:10.1056/NEJMc2010472; Albiol N, Awol R, Martino R. Autoimmune thrombotic thrombocytopenic putpura (TTP) associated with COVID-19. Ann Hematol. 2020, 28 May, htts://doi.org/10.1007/s00277-020-04097-0; Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191; Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi:10.1212/NXI.0000000000000781; Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794; Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis. 2020. doi:10.1136/annrheumdis-2020-217573.; Allez M, Denis B, Bouaziz J-D, et al. Covid-19 related IgA vasculitis. Arthritis Rheum 2020. doi:10.1002/ART.41428; Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453-454. doi:10.1038/s41577-020-0367-5; Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413-414. doi:10.1038/s41584-020-0448-7; Gagiannis D, Steinestel J, Hackenbroch C, et al. COVID-19- induced acute respiratory failure: an exacerbation of organ-specific autoimmunity? medRxiv 2020.04.27.20077180; doi: https://doi.org/10.1101/2020.04.27.20077180; Didier K, Bolko L, Giusti D, et al. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018;9:541. doi:10.3389/fimmu.2018.00541; Gazzaruso C, Carlo Stella N, Mariani G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097. doi:10.1007/s10067-020-05180-7; Zhou Y, Han T, Chen J, et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020; doi:10.1111/cts.12805; Atzeni F, Gerardi MC, Barilaro G, et al. Interstitial lung disease in systemic autoimmune rheumatic diseases: a comprehensive review. Expert Rev Clin Immunol. 2018;14(1):69-82. doi:10.1080/1744666X.2018.1411190; Mira-Avendano I, Abril A, Burger CD, et al. Interstitial Lung Disease and Other Pulmonary Manifestations in Connective Tissue Diseases. Mayo Clin Proc. 2019; 94(2):309-325. doi:10.1016/j.mayocp.2018.09.002; Акулкина ЛА, Бровко МЮ, Шоломова ВИ, Янакаева АШ, Моисеев СВ. Интерстициальная пневмония с аутоиммунными признаками (ИПАП): мультидисциплинарный диагноз в пульмонологии и ревматологии. Клиническая фармакология и терапия. 2018;18 (27):5-10.; Graney BA, Fischer A. Interstitial Pneumonia with Autoimmune Features. Ann Am Thorac Soc. 2019; 16(5): 525–533. doi:10.1513/AnnalsATS.201808-565CME.; Riemekasten G, Cabral-Marques O. Antibodies against angiotensin II type 1 receptor (AT1R) and endothelin receptor type A (ETAR) in systemic sclerosis (SSc)-response. Autoimmun Rev. 2016; 15(9):935. doi:10.1016/j.autrev.2016.04.004; Becker MO, Kill A, Kutsche M, et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Amer J Resp Crit Care Med 2014; 190(7), 808–817. 10.1164/rccm.201403-0442OC; Avouac J, Riemekasten G, Meune C, et al. Autoantibodies against Endothelin 1 Type A Receptor Are Strong Predictors of Digital Ulcers in Systemic Sclerosis. J Rheum 2014; 42(10), 1801–1807. doi:10.3899/jrheum.150061; Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther 2014; 16(1), R29. doi:10.1186/ar4457; İlgen U, Yayla ME, Düzgün N. Anti-angiotensin II type 1 receptor autoantibodies (AT1R-AAs) in patients with systemic sclerosis: lack of association with disease manifestations. Rheumatol Int. 2017; 37(4):593-598. doi:10.1007/s00296-016- 3639-4; Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950- 2973. doi:10.1016/j.jacc.2020.04.031; Unlu O, Erkan D. Catastrophic Antiphospholipid Syndrome: Candidate Therapies for a Potentially Lethal Disease. Annu Rev Med. 2017;68:287-296. doi:10.1146/annurev-med-042915-102529; Tektonidou MG, Andreoli L, Limper M, Tincani A, Ward MM. Management of thrombotic and obstetric antiphospholipid syndrome: a systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults. RMD Open. 2019;5(1):e000924. doi:10.1136/rmdopen-2019-000924; Shi C, Wang C, Wang H, et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. 2020.03.28.20046144; doi: https://doi.org/10.1101/2020.03.28.20046144; Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost. 2020;18(7):1752-1755. doi:10.1111/jth.14828; Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi:10.1038/s41584-020-0372-x; Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020; 34(5):6027-6037. doi:10.1096/fj.202000919; Sarma P, Kaur H, Kumar H, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J Med Virol. 2020; 92(7):776-785. doi:10.1002/jmv.25898; Yu B, Li C, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci. 2020 May 15:1-7. doi:10.1007/s11427-020-1732-2; Membrillo de Novales FJ, Ramírez-Olivencia G, Estébanez M, Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study. 2020, 2020050057. doi:10.20944/preprints202005.0057.v1; Espinola RG, Pierangeli SS, Gharavi AE, Harris EN, Ghara AE. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002; 87: 518–522; Rand JH, Wu X-X, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010; 115: 2292–2299. 10.1182/blood-2009-04-213520; Urbanski G, Caillon A, Poli C, et al. Hydroxychloroquine partially prevents endothelial dysfunction induced by anti-beta-2-GPI antibodies in an in vivo mouse model of antiphospholipid syndrome. PLoS One. 2018; 13(11): e0206814. doi:10.1371/journal.pone.0206814; Miranda S, Billoir P, Damian L, et al. Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One. 2019; 14(3): e0212614. doi:10.1371/ journal.pone.0212614; Schmidt-Tanguy A, Voswinkel J, Henrion D, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11: 1927–1929. doi:10.1111/jth.12363; Schreiber K, Breen K, Parmar K, Rand JH, Wu XX, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi:10.1093/rheumatology/kex378; Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-8. doi:10.1136/ard.2008.101766; Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2019;78(6):736-745. doi:10.1136/annrheumdis-2019-215089; Infante M, Ricordi C, Fabbri A. Antihyperglycemic Properties of Hydroxychloroquine in Patients With Diabetes: Risks and Benefits at the Time of COVID-19 Pandemic. J Diabetes 2020 May 13;10.1111/1753-0407.13053. doi:10.1111/1753-0407.13053; Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-475. doi:10.1016/S0140-6736(20)30317-2; Veronese N, Demurtas J, Yang L, et al. Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front Med (Lausanne). 2020 Apr 24;7:170. doi:10.3389/fmed.2020.00170; Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi:10.3389/fimmu.2019.01744; Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol. 2020;16(3):133-144. doi:10.1038/s41584-020-0371-y; Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017; 17(4):233-247. doi:10.1038/nri.2017.1; Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457- 65. doi:10.1517/14740338.2016.1140743; WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020); Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):1-11. doi:10.1001/jamainternmed.2020.0994; Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020; 5(1):18. doi:10.1038/s41392-020-0127-9; Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther. 2020; 5(1):57. doi:10.1038/s41392-020-0158-2; RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report [published online ahead of print, 2020 Jul 17]. N Engl J Med. 2020; 10.1056/NEJMoa2021436. doi:10.1056/NEJMoa2021436; Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017; 139:S1-46. doi:10.1016/j.jaci.2016.09.023; Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016; 15(3):226-35. doi:10.1016/j.autrev.2015.11.009; Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARSCoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?. Autoimmun Rev. 2020;19(7):102559. doi:10.1016/j.autrev.2020.102559; Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020; 81(2):318-356. doi:10.1016/j.jinf.2020.03.044; Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020; 7(3):ofaa102. doi:10.1093/ofid/ofaa102; Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi:10.1101/2020.04.07.029017; Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020; 19(7):102554. doi:10.1016/j.autrev.2020.102554; Насонов ЕЛ. Иммунофармакология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология 2020;58(3):245-261. doi:10.14412/1995-4484-2020-245-261; Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID19-a systematic review of current evidence. Ecancermedicalscience. 2020; 14:1022. Published 2020 Mar 27. doi:10.3332/ecancer.2020.1022; Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020; 24(7):4040-7. doi:10.26355/eurrev_202004_20875; Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020; 215:108450. doi:10.1016/j.clim.2020.108450; Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016; 11:e0164646. doi:10.1371/journal.pone.0164646; Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017; 28(9):2756-67. doi:10.1681/ASN.2016111179; Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019; 49(1):74-83. doi:10.1016/j.semarthrit.2018.11.005; Levi M. Tocilizumab for severe COVID-19: A promising intervention affecting inflammation and coagulation. Eur J Intern Med. 2020; 76: 21–22. doi:10.1016/j.ejim.2020.05.018; Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FN. A novel role of T cells and IL-6 in angiotensin-II induced microvascular dysfunction. Hypertension 2020; 73(4):829-838. doi:10.1161/HYPERTENSIONAHA.118.12286; Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2(6):e325-e331. doi:10.1016/S2665-9913(20)30127-2; Dimopoulos G, de Mast Q, Markou N, et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020; 28(1):117-123.e1. doi:10.1016/j.chom.2020.05.007; Navarro-Millán I, Sattui SE, Lakhanpal A, Zisa D, Siegel CH, Crow MK. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol. 2020; doi:10.1002/art.41422; Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol. 2020; 2 (8):e452-e454. doi:10.1016/S2665-9913(20)30167-3; Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12):1119-1131. doi:10.1056/NEJMoa1707914; Насонов ЕЛ, Попкова ТВ. Противовоспалительная терапия атеросклероза – вклад и уроки ревматологии. Научнопрактическая ревматология. 2017; 55(5):465-473. doi:10.14412/1995-4484-2017-465-473; Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499-3507. doi:10.1093/eurheartj/ehy310; Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019; 50(4):1033- 1042.e6. doi:10.1016/j.immuni.2019.03.003; Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40. doi:10.14412/1995-4484-2019-3-40.; Woodruff M, Ramonell R, Cashman K, et al. Critically ill SARSCoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020.04.29.20083717. doi:10.1101/2020.04.29.20083717; Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020; 146(1):211-213.e4. doi:10.1016/j.jaci.2020.04.013; Pecoraro A, Crescenzi L, Galdiero MR, et al. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy. 2019; 17:9. doi:10.1186/s12948-019-0113-3; George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020; 8(8):807-815. doi:10.1016/S2213-2600(20)30225-3; Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020; 8(8):750-752. doi:10.1016/S2213-2600(20)30222-8; Duarte AC, Cordeiro A, Fernandes BM, et al. Rituximab in connective tissue disease-associated interstitial lung disease. Clin Rheumatol. 2019; 38(7):2001-2009. doi:10.1007/s10067-019-04557-7; Turgutkaya A, Yavaşoğlu İ, Bolaman Z. Application of plasmapheresis for Covid-19 patients [published online ahead of print, 2020 Jun 8]. Ther Apher Dial. 2020; doi:10.1111/1744-9987.13536; https://rsp.mediar-press.net/rsp/article/view/2923

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 57, No 2 (2019); 218-221 ; Научно-практическая ревматология; Vol 57, No 2 (2019); 218-221 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2708/1831; Houssiau FA, Vasconcelos C, D’Cruz D, et al. The 10-year follow-up data of the Euro-Lupus Nephritis Trial comparing lowdose and high-dose intravenous cyclophosphamide. Ann Rheum Dis. 2010;69:61-4. doi:10.1136/ard.2008.102533; Bexelius C, Wachtmeister K, Skare P,et al. Drivers of cost and health-related quality of life in patients with systemic lupus erythematosus (SLE): a Swedish nationwide study based on patient reports. Lupus. 2013;22:793-801. doi:10.1177/0961203313491849; Eder L, Urowitz MB, Gladman DD. Damage in lupus patients – what have we learned so far? Lupus. 2013 Oct;22(12):1225-31.; Rahman P, Gladman DD, Urowitz MB, et al. Early damage as measured by the SLICC/ACR damage index is a predictor of mortality in systemic lupus erythematosus. Lupus. 2001;10(2):93-6. doi:10.1191/096120301670679959; Wilhelm TR, Magder LS, Petri M. Remission in systemic lupus erythematosus: durable remission is rare. Ann Rheum Dis. 2017 Mar;76(3):547-53. doi:10.1136/annrheumdis-2016-209489; Dubois EL. Lupus Erythematosus. 2 nd ed. Los Angeles: University of Southern California Press; 1976. 243 p.; Van Vollenhoven RF, Mosca M, Bertsias G, et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis. 2014;73:958-67. doi:10.1136/annrheumdis-2013-205139; Steiman AJ, Urowitz MB, Ibanez D, et al. Prolonged clinical remission in patients with systemic lupus erythematosus. J Rheumatol. 2014;41:1808-16. doi:10.3899/jrheum.131137; Van Vollenhoven R, Voskuyl A, Bertsias G, et al. A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS). Ann Rheum Dis. 2017 Mar;76(3):554-61. doi:10.1136/annrheumdis-2016-209519. Epub 2016 Nov 24.; Franklyn K, Lau CS, Navarra SV, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis. 2016 Sep;75(9):1615-21. doi:10.1136/annrheumdis-2015-207726; Heller CA, Schur PH. Serological and clinical remission in systemic lupus erythematosus. J Rheumatol. 1985 Oct;12(5):916-8.; Drenkard C, Villa AR, Garcia-Padilla C, et al. Remission of systematic lupus erythematosus. Medicine (Baltimore). 1996;75:88-98. doi:10.1097/00005792-199603000-00005; Urowitz MB, Feletar M, Bruce IN, et al. Prolonged remission in systemic lupus erythematosus. J Rheumatol. 2005 Aug;32(8):1467-72.; Medina-Quinones CV, Ramos-Merino L, Ruiz-Sada P, Isenberg D. Analysis of complete remission in systemic lupus erythematosus patients over a 32-year period. Arthritis Care Res (Hoboken). 2016 Jul;68(7):981-7. doi:10.1002/acr.22774; Zen M, Iaccarino L, Gatto M, et al. Prolonged remission in Caucasian patients with SLE: prevalence and outcomes. Ann Rheum Dis. 2015;74:2117-22. doi:10.1136/annrheumdis-2015-207347; Tselios K, Gladman DD, Touma Z, et al. Clinical remission and low disease activity have comparable outcomes over 10 years in systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2018 Jul 28. doi:10.1002/acr.23720; Aljohani R, Gladman DD, Su J, Urowitz MB. Comparison of systemic lupus erythematosus (SLE) patients managed early after diagnosis in specialty versus community care clinics. Clin Rheumatol. 2017 Aug;36(8):1773-8. doi:10.1007/s10067-017-3713-7; Mok CC, Wong RW, Lau CS. Lupus nephritis in Southern Chinese patients: clinic-pathologic findings and long-term outcome. Am J Kidney Dis. 1999;34:315-23. doi:10.1016/S0272-6386(99)70361-6; Illei GG, Takada K, Parkin D, et al. Renal flares are common in patients with severe proliferative lupus nephritis treated with pulse immunosuppressive therapy: long-term follow-up of a cohort of 145 patients participating in randomized controlled studies. Arthritis Rheum. 2002;46:995-1002. doi:10.1002/art.10142; Lee BS, Cho HY, Kim EJ, et al. Clinical outcomes of childhood lupus nephritis: a single center’s experience. Pediatr Nephrol. 2007;22:222-31. doi:10.1007/s00467-006-0286-0; So MW, Koo BS, Kim YG, et al. Predictive value of remission status after 6 months induction therapy in patients with proliferative lupus nephritis: a retrospective analysis. Clin Rheumatol. 2011;30:1399-405.; Fernandes das Neves M, Irlapati RV, Isenberg D. Assessment of long-term remission in lupus nephritis patients: a retrospective analysis over 30 years. Rheumatology (Oxford). 2015;54:1403-7. doi:10.1093/rheumatology/kev003; Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016 Oct;12(10):605-20.; Ruiz-Irastorza G, Danza A, Khamashta M. Glucocorticoid use and abuse in SLE. Rheumatology (Oxford). 2012 Jul;51(7):1145-53. doi:10.1093/rheumatology/ker410; Iaccarino L, Andreoli L, Bartoloni Bocci L, et al. Clinical predictors of response and discontinuation of belimumab in patients with systemic lupus erythematosus in real life setting. Results of a large, multicentric, nationwide study. J Autoimmun. 2018;86:1-8. doi:10.1016/j.jaut.2017.09.004; Kraaij T, Kamerling WA, de Rooij NM, et al. The NET-effect of combining rituximab with belimumab in severe systemic lupus erythematosus. J Autoimmun. 2018;91:45-54. doi:10.1016/j.jaut.2018.03.003; Bruce IN, Urowitz M, van Vollenhoven R, et al. Long-term organ damage accrual and safety in patients with SLE treated with belimumab plus standard of care. Lupus. 2016 Jun;25(7):699-709.; Doria A, Bass D, Schwarting A, et al. A 6-month open-label extension study of the safety and efficacy of subcutaneous belimumab in patients with systemic lupus erythematosus. Lupus. 2018 Aug;27(9):1489-98. doi:10.1177/0961203318777634; Beckwith H, Lightstone L. Rituximab in systemic lupus erythematosus and lupus nephritis. Nephron Clin Pract.2014;128(3-4):250-4. doi:10.1159/000368585; Alshaiki F, Obaid E, Almuallim A, et al. Outcomes of rituximab therapy in refractory lupus: A meta-analysis. Eur J Rheumatol. 2018 Jul;5(2):118-26. doi:10.5152/eurjrheum.2018.17096; Gracia-Tello B, Ezeonyeji A, Isenberg D. The use of rituximab in newly diagnosed patients with systemic lupus erythematosus: longterm steroid saving capacity and clinical effectiveness. Lupus Sci Med. 2017;4:e000182. doi:10.1136/lupus-2016-000182; Меснянкина АА, Соловьев СК, Асеева ЕА, Насонов ЕЛ. Эффективность генно-инженерной биологической терапии и особенности гуморального иммунитета у больных системной красной волчанкой. Научно-практическая ревматология. 2018;56(3):302-9. doi:10.14412/1995-4484-2018-302-309; https://rsp.mediar-press.net/rsp/article/view/2708

  19. 19
    Academic Journal

    المصدر: Rheumatology Science and Practice; Vol 57, No 2 (2019); 191-196 ; Научно-практическая ревматология; Vol 57, No 2 (2019); 191-196 ; 1995-4492 ; 1995-4484

    وصف الملف: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2705/1828; Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017.; Lahita RG, Tsokos G, Buyon J, Koike T, eds. Systemic lupus erythematosus. 5 th ed. London: Elsevier; 2011.; Dai C, Deng Y, Quinlan A, et al. Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Curr Opin Immunol. 2014 Dec;31:87-96. doi:10.1016/j.coi.2014.10.004. Epub 2014 Oct 25.; Odendahl M, Jacobi A, Hansen A, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000 Nov 15;165(10):5970-9. doi:10.4049/jimmunol.165.10.5970; Cervera R, Khamashta MA, Hughes GR. The Euro-lupus project: epidemiology of systemic lupus erythematosus in Europe. Lupus. 2009 Sep;18(10):869-74. doi:10.1177/0961203309106831; Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. doi:10.1002/art.1780400928; Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677-86. doi:10.1002/art.34473; Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288-91.; Gladman DD, Ginzler E, Goldsmith C, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for Systemic Lupus Erythematosus. Arthritis Rheum. 1996 Mar;39(3):363-9. doi:10.1002/art.1780390303; Tunnicliffe DJ, Singh-Grewal D, Kim S, et al. Diagnosis, Monitoring, and Treatment of Systemic Lupus Erythematosus: A Systematic Review of Clinical Practice Guidelines. Arthritis Care Res (Hoboken). 2015 Oct;67(10):1440-52. doi:10.1002/acr.22591; Weening JJ, D'Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 2004;65:521-30. doi:10.1111/j.1523-1755.2004.00443.x; Wilhelmus S, Alpers CE, Cook HT, et al. The Revisited Classification of GN in SLE at 10 Years: Time to Re-Evaluate Histopathologic Lesions. J Am Soc Nephrol. 2015;26(12):2938-46. doi:10.1681/ASN.2015040384; Van Vollenhoven RF, Mosca M, Bertsias G, et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis. 2014 Jun;73(6):958-67. doi:10.1136/annrheumdis-2013-205139. Epub 2014 Apr 16.; Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006 Feb;4(2):295-306. doi:10.1111/j.1538-7836.2006.01753.x; Mosca M, Tani C, Aringer M, et al. European League Against Rheumatism recommendations for monitoring patients with systemic lupus erythematosus in clinical practice and in observational studies. Ann Rheum Dis. 2010;69:1269-74. doi:10.1136/ard.2009.117200; Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64:797-808. doi:10.1002/acr.21664; Bertsias GK, Tektonidou M, Amoura Z, et al. Joint European League Against Rheumatism and European Renal AssociationEuropean Dialysis and Transplant Association (EULAR/ERAEDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis. 2012 Nov;71(11):1771-82. doi:10.1136/annrheumdis-2012-201940; Pamfil C, Fanouriakis A, Damian L, et al. EULAR recommendations for neuropsychiatric systemic lupus erythematosus vs usual care: results from two European centres. Rheumatology (Oxford). 2015 Jul;54(7):1270-8. doi:10.1093/rheumatology/keu482; Wilhelmus S, Bajema IM, Bertsias GK, et al. Lupus nephritis management guidelines compared. Nephrol Dial Transplant. 2016 Jun;31(6):904-13. doi:10.1093/ndt/gfv102; Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken). 2012 Jun;64(6):797-808. doi:10.1002/acr.21664; Keeling SO, Alabdurubalnabi Z, Avina-Zubieta A, et al. Canadian Rheumatology Association Recommendations for the Assessment and Monitoring of Systemic Lupus Erythematosus. J Rheumatol. 2018 Oct;45(10):1426-39. doi:10.3899/jrheum.171459; Barile-Fabris L, Hernandez-Cabrera MF, BarraganGarfias JA. Vasculitis in systemic lupus erythematosus. Curr Rheumatol Rep. 2014;16(9):440. doi:10.1007/s11926-014-0440-9; Wallace DJ, Navarra S, Petri MA, et al. Safety profile of belimumab: pooled data from placebo-controlled phase 2 and 3 studies in patients with systemic lupus erythematosus. Lupus. 2013 Feb;22(2):144-54. doi:10.1177/0961203312469259; Ginzler EM, Wallace DJ, Merrill JT, et al. Disease control and safety of belimumab plus standard therapy over 7 years in patients with systemic lupus erythematosus. J Rheumatol. 2014 Feb;41(2):300-9. doi:10.3899/jrheum.121368; Mok CC. Current role of rituximab in systemic lupus erythematosus. Int J Rheum Dis. 2015 Feb;18(2):154-63. doi:10.1111/1756-185X.12463; Chi-Ching Chang, Yu-Sheng Chang, Wei-Sheng Chen, et al. Effects of annual influenza vaccination on morbidity and mortality in patients with Systemic Lupus Erythematosus: A Nationwide Cohort Study. Sci Rep. 2016;6:37817. doi:10.1038/srep37817; Yun H, Yang S, Chen L, et al. Risk of Herpes Zoster in Autoimmune and Inflammatory Diseases: Implications for Vaccination. Arthritis Rheum. 2016 Sep;68(9):2328-37. doi:10.1002/art.39670; Белов БС, Соловьев СК, Тарасова ГМ, Асеева ЕА. Вакцинация у больных системной красной волчанкой: результаты и перспективы. Научно-практическая ревматология. 2018;56(3):373-9. doi:10.14412/1995-4484-2018-373-379; Kronbichler A, Brezina B, Quintana LF, Jayne DR. Efficacy of plasma exchange and immunoadsorption in systemic lupus erythematosus and antiphospholipid syndrome: A systematic review. Autoimmun Rev. 2016 Jan;15(1):38-49. doi:10.1016/j.autrev.2015.08.010; Smyth A, Oliveira GH, Lahr BD, et al. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol. 2010 Nov;5(11):2060-8. doi:10.2215/CJN.00240110; Ruiz-Irastorza G, Khamashta MA. Lupus and pregnancy: ten questions and some answers. Lupus. 2008;17(5):416-20. doi:10.1177/0961203308090027; Ostensen M, Khamashta M, Lockshin M, et al. Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther. 2006;8(3):209. doi:10.1186/ar1957; Кошелева НМ. Планирование беременности и наблюдение за беременными с ревматическими заболеваниями. В кн.: Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. С. 371-93.; https://rsp.mediar-press.net/rsp/article/view/2705

  20. 20
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2019); 86-91 ; Медицинский Совет; № 9 (2019); 86-91 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-9

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/3039/2964; Edwards C.J., Lian T.Y., Badsha H., et al. Hospitalization of individuals with systemic lupus erythematosus: characteristics and predictors of outcome. Lupus. 2003;12(9):672-6. https://doi.org/10.1191/0961203303lu452oa.; Aletaha D., Neogi T., Silman A.J., et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis.2010;69(9):1580-8.DOI:10.1136/ard.2010.138461.; Petri M., Orbai A.M., Alarcón G.S., et al. Derivation and validation of the Systemic Lupus Interna tional Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-86. doi:10.1002/art.34473.; van den Hoogen F., Khanna D., Fransen J., et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum.2013;65(11):2737-47. doi:10.1002/art.38098.; Российские клинические рекомендации. Ревматология. Под ред. Е.Л. Насонова. М.: ГЭОТАР-Медиа, 2017:142-143. [Russian clinical recommendations. Rheumatology. Edited by E.L. Nasonova. M.: GEOTAR-Media, 2017:142-143.] (In Russ.); Насонова ВА. Системная красная волчанка. М., 1972. [Nasonova VA. Systemic lupus erythematosus. М., 1972.] (In Russ.); Zink A., Manger B., Kaufmann J., et al. Evaluation of the RABBIT Risk Score for serious infections. Ann Rheum Dis. 2014 Sep;73(9):1673-6. doi:10.1136/annrheumdis-2013-203341.; Crowson C.S., Hoganson D.D., Fitz-Gibbon P.D., Matteson E.L. Development and validation of a risk score for serious infection in patients with rheumatoid arthritis. Arthritis Rheum. 2012 Sep;64(9):2847-55. doi:10.1002/art.34530.; Chen D., Xie J., Chen H., et al. Infection in Southern Chinese Patients with Systemic Lupus Erythematosus: Spectrum, Drug Resistance, Outcomes, and Risk Factors. J Rheumatol. 2016 Sep;43(9):1650-6. doi:10.3899/jrheum.151523.; Feldman C.H., Hiraki L.T., Winkelmayer W.C., et al. Serious infections among adult Medicaid beneficiaries with systemic lupus erythematosus and lupus nephritis. Arthritis Rheumatol. 2015 Jun;67(6):1577-85. doi:10.1002/art.39070.; Rúa-Figueroa Í., López-Longo J., GalindoIzquierdo M., et al., Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. Semin Arthritis Rheum. 2017 Aug;47(1):38-45. doi:10.1016/j.semarthrit.2017.01.010.; Smitten A.L., Choi H.K., Hochberg M.C., et al. The risk of hospitalized infection in patients with rheumatoid arthritis. J Rheumatol. 2008;35(3):387–93.; Doran M.F., Crowson C.S., Pond G.R., et al. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 2002 Sep;46(9):2287-93.; Teh C.L., Wan S.A., Ling G.R. Severe infections in systemic lupus erythematosus: disease pattern and predictors of infection-related mortality. Clin Rheumatol. 2018 Aug;37(8):2081-2086. doi:10.1007/s10067-018-4102-6.; Luijten R.K., Cuppen B.V., Bijlsma J.W., Derksen R.H. Serious infections in systemic lupus erythematosus with a focus on pneumococcal infections. Lupus. 2014 Dec;23(14):1512-6. doi:10.1177/0961203314543918.; Van Assen S., Agmon-Levin N., Elkayam O., et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis. 2011;70(3):414–22. DOI: http://dx.doi.org/10.1136/ard.2010.137216.; Тарасова Г.М., Белов Б.С., Буханова Д.В. и др. Изучение иммуногенности и безопасности 23-валентной полисахаридной пневмококковой вакцины у больных системной красной волчанкой. Научно-практическая ревматология. 2018;56(4):433-438. https://doi.org/10.14412/1995-4484-2018-433-438. [Tarasova G.M., Belov B.S., Bukhanova D.V., et al. Investigation of immunogenicity and safety of 23-valent polysaccharide pneumococcal vaccine in patients with systemic lupus erythematosus. Scientific and practical rheumatology [Nauchnoprakticheskaja revmatologija]. 2018; 56(4):433-438. https://doi.org/10.14412/1995-4484-2018-433-438.] (In Russ.); Буханова Д.В., Сергеева М.С., Белов Б.С. и др. Иммуногенность и эффективность 23-валент-ной пневмококковой вакцины у больных ревматоидным артритом: результаты 5-летнего наблюдения. Современная ревматология. 2018; 12(4):85-88. https://doi.org/10.14412/1996-7012-2018-4-85-88. [Bukhanova D.V., Sergeeva M.S., Belov B.S., et al. Immunogenicity and efficacy of 23-valent pneumococcal vaccine in patients with rheumatoid arthritis: results of 5-year observation. Modern rheumatology [Sovremennaja revmatologija].2018;12(4):85-88. https://doi.org/10.14412/1996-7012-2018-4-85-88.] (In Russ.); Chakravarty E.F. Incidence and Prevention of Herpes Zoster Reactivation in Patients with Autoimmune Diseases. Rheum Dis Clin North Am. 2017 Feb;43(1):111-121. doi:10.1016/j.rdc.2016.09.010.; https://www.med-sovet.pro/jour/article/view/3039