يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"A. K. Lobanova"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Исследование не имело спонсорской поддержки

    المصدر: Medical Herald of the South of Russia; Том 13, № 1 (2022); 24-42 ; Медицинский вестник Юга России; Том 13, № 1 (2022); 24-42 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2022-13-1

    وصف الملف: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1463/867; https://www.medicalherald.ru/jour/article/downloadSuppFile/1463/543; Th ursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-1836. DOI:10.1042/BCJ20160510.; Gurung M, Li Z, You H, Rodrigues R, Jump DB, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. DOI:10.1016/j.ebiom.2019.11.051.; Lloyd-Price J, Abu-Ali G, Huttenhower C. Th e healthy human microbiome. Genome Med. 2016;8(1):51. DOI:10.1186/s13073-016-0307-y; Кожевников А.А., Раскина К.В., Мартынова Е.Ю., Тяхт А.В., Перфильев А.В., и др. Кишечная микробиота: современные представления о видовом составе, функциях и методах исследования. РМЖ. 2017;25(17):1244-1247. eLIBRARY ID: 30397484; Schmidt TS, Matias Rodrigues JF, von Mering C. Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput Biol. 2014;10(4):e1003594. DOI:10.1371/journal.pcbi.1003594; Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73-8. DOI:10.1097/MED.0b013e3282f43a73; Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. DOI:10.1016/j.molmet.2019.09.010; D’Alessio D. Is GLP-1 a hormone: Whether and When? J Diabetes Investig. 2016;7 Suppl 1(Suppl 1):50-5. DOI:10.1111/jdi.12466; Holst JJ. Th e incretin system in healthy humans: Th e role of GIP and GLP-1. Metabolism. 2019;96:46-55. DOI:10.1016/j.metabol.2019.04.014.; Howick K, Griffi n BT, Cryan JF, Schellekens H. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci. 2017;18(2):273. DOI:10.3390/ijms18020273; Тихоненко Е.В., Цой У.А., Васильева Е.Ю., Бабенко А.Ю. Характеристики пищевого поведения и уровень гормонов, регулирующих аппетит, у пациентов с сахарным диабетом 2 типа и индексом массы тела выше 35 кг/м2. Ожирение и метаболизм. 2018;15(1):30-38. DOI:10.14341/omet2018130-38; Цыганкова О.В., Веретюк В.В., Аметов А.С. Инкретины сегодня: множественные эффекты и терапевтический потенциал. Сахарный диабет. 2019;22(1):70-78. DOI:10.14341/DM9841; Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как эндокринный орган. Ожирение и метаболизм. 2020;17(3):299-306. DOI:10.14341/omet12457; Rehfeld JF. Th e Origin and Understanding of the Incretin Concept. Front Endocrinol (Lausanne). 2018;9:387. DOI:10.3389/fendo.2018.00387; Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, et al. Incretin eff ects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492-8. DOI:10.1210/jcem-63-2-492; Nauck MA, Quast DR, Wefers J, Pfeiff er AFH. Th e evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab. 2021;23 Suppl 3:5-29. DOI:10.1111/dom.14496; Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019;128:94-105. DOI:10.1016/j.neuint.2019.04.010; Pala L, Ciani S, Dicembrini I, Bardini G, Cresci B, et al. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in diff erent glucose tolerance conditions. Diabet Med. 2010;27(6):691-5. DOI:10.1111/j.1464-5491.2010.03010.x; Rask E, Olsson T, Söderberg S, Holst Jj Jj, Tura A, et al. Insulin secretion and incretin hormones aft er oral glucose in nonobese subjects with impaired glucose tolerance. Metabolism. 2004;53(5):624-31. DOI:10.1016/j.metabol.2003.11.011; Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2020;100(1):171-210. DOI:10.1152/physrev.00041.2018; Röder PV, Geillinger KE, Zietek TS, Th orens B, Koepsell H, Daniel H. Th e role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9(2):e89977. DOI:10.1371/journal.pone.0089977; Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res. 2009;30(3):149-56. DOI:10.2220biomedres.30.149; Herrmann C, Göke R, Richter G, Fehmann HC, Arnold R, Göke B. Glucagon-like peptide-1 and glucose-dependent insulinreleasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56(2):117-26. DOI:10.1159/000201231; Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep. 2018;6(17):e13852. DOI:10.14814/phy2.13852; El K, Gray SM, Capozzi ME, Knuth ER, Jin E, et al. GIP mediates the incretin eff ect and glucose tolerance by dual actions on α cells and β cells. Sci Adv. 2021;7(11):eabf1948. DOI:10.1126/sciadv.abf1948; Reed J, Bain S, Kanamarlapudi V. Recent advances in understanding the role of glucagon-like peptide 1. F1000Res. 2020;9:F1000 Faculty Rev-239. DOI:10.12688/f1000research.20602.1; de Heer J, Rasmussen C, Coy DH, Holst JJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia. 2008;51(12):2263-70. DOI:10.1007/s00125-008-1149-y; Ahrén B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm. 2010;84:203-20. DOI:10.1016/B978-0-12-381517-0.00007-2; Tura A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, et al. Impaired beta cell sensitivity to incretins in type 2 diabetes is insuffi ciently compensated by higher incretin response. Nutr Metab Cardiovasc Dis. 2017;27(12):1123-1129. DOI:10.1016/j.numecd.2017.10.006; Tura A, Muscelli E, Gastaldelli A, Ferrannini E, Mari A. Altered pattern of the incretin eff ect as assessed by modelling in individuals with glucose tolerance ranging from normal to diabetic. Diabetologia. 2014;57(6):1199-203. DOI:10.1007/s00125-014-3219-7; Knop FK, Vilsbøll T, Madsbad S, Holst JJ, Krarup T. Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin eff ect in type 2 diabetes mellitus. Diabetologia. 2007;50(4):797-805. doi:10.1007/s00125-006-0566-z; Kozawa J, Okita K, Imagawa A, Iwahashi H, Holst JJ, et al. Similar incretin secretion in obese and non-obese Japanese subjects with type 2 diabetes. Biochem Biophys Res Commun. 2010;393(3):410-3. DOI:10.1016/j.bbrc.2010.01.134; Laakso M, Zilinskaite J, Hansen T, Boesgaard TW, Vänttinen M, et al. Insulin sensitivity, insulin release and glucagonlike peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia. 2008;51(3):502-11. DOI:10.1007/s00125-007-0899-2; Oh TJ, Kim MY, Shin JY, Lee JC, Kim S, et al. Th e incretin eff ect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin Endocrinol (Oxf). 2014;80(2):221-7. DOI:10.1111/cen.12167; Yabe D, Kuroe A, Watanabe K, Iwasaki M, Hamasaki A, et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia aft er ingestion of nutrients. J Diabetes Complications. 2015;29(3):413-21. DOI:10.1016/j.jdiacomp.2014.12.010; Th eodorakis MJ, Carlson O, Muller DC, Egan JM. Elevated plasma glucose-dependent insulinotropic polypeptide associates with hyperinsulinemia in impaired glucose tolerance. Diabetes Care. 2004;27(7):1692-8. DOI:10.2337/diacare.27.7.1692; Faerch K, Vaag A, Holst JJ, Glümer C, Pedersen O, BorchJohnsen K. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but diff erential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853-61. DOI:10.1007/s00125-008-0951-x; Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):2941. DOI:10.1111/1462-2920.13589; Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Infl ammatory Bowel Diseases. Front Immunol. 2019;10:277. DOI:10.3389/fimmu.2019.00277. Erratum in: Front Immunol. 2019;10:1486.; Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323-35. DOI:10.1038/ismej.2014.14. Erratum in: ISME J. 2014;8(6):1352.; Bilotta AJ, Cong Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precis Clin Med. 2019;2(2):110-119. DOI:10.1093/pcmedi/pbz008; Mishra SP, Karunakar P, Taraphder S, Yadav H. Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines. 2020;8(6):154. DOI:10.3390/biomedicines8060154; Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, et al. Th e short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-9. DOI:10.1038/ijo.2014.153; Lee EY, Zhang X, Miyamoto J, Kimura I, Taknaka T, et al. Gut carbohydrate inhibits GIP secretion via a microbiota/SCFA/ FFAR3 pathway. J Endocrinol. 2018;239(3):267-276. DOI:10.1530/JOE-18-0241; Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ. Th e impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G53-G65. DOI:10.1152/ajpgi.00346.2017; Gérard C, Vidal H. Impact of Gut Microbiota on Host Glycemic Control. Front Endocrinol (Lausanne). 2019;10:29. DOI:10.3389/fendo.2019.00029; Tolhurst G, Heff ron H, Lam YS, Parker HE, Habib AM, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-71. DOI:10.2337/db11-1019; Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-17. DOI:10.2337/db08-1637; Blachier F, Andriamihaja M, Larraufi e P, Ahn E, Lan A, Kim E. Production of hydrogen sulfi de by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol. 2021;320(2):G125-G135. DOI:10.1152/ajpgi.00261.2020. Erratum in: Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G484.; Xiao A, Liu C, Li J. The Role of H2S in the Gastrointestinal Tract and Microbiota. Adv Exp Med Biol. 2021;1315:67-98.: 10.1007/978-981-16-0991-6_4; Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. Th e Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol. 2021;12:720703. DOI:10.3389/fphar.2021.720703; Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfi de and Sulfate Prebiotic Stimulates the Secretion of GLP1 and Improves Glycemia in Male Mice. Endocrinology. 2017;158(10):3416-3425. DOI:10.1210/en.2017-00391; Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8(1):46. DOI:10.1186/s13073-016-0296-x; Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202-8. DOI:10.1016/j.celrep.2014.10.032; Winston JA, Th eriot CM. Diversifi cation of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158171. DOI:10.1080/19490976.2019.1674124; Xie C, Huang W, Young RL, Jones KL, Horowitz M, et al. Role of Bile Acids in the Regulation of Food Intake, and Th eir Dysregulation in Metabolic Disease. Nutrients. 2021;13(4):1104. DOI:10.3390/nu13041104; Ma Q, Li Y, Li P, Wang M, Wang J, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal fl ora. Biomed Pharmacother. 2019;117:109138. DOI:10.1016/j.biopha.2019.109138; Kaska L, Sledzinski T, Chomiczewska A, Dettlaff -Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698-8719. DOI:10.3748/wjg.v22.i39.8698; Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acidstimulated glucagon-like peptide-1 secretion. Br J Pharmacol. 2012;165(2):414-23. DOI:10.1111/j.1476-5381.2011.01561.x; Li P, Zhu L, Yang X, Li W, Sun X, et al. Farnesoid X receptor interacts with cAMP response element binding protein to modulate glucagon-like peptide-1 (7-36) amide secretion by intestinal L cell. J Cell Physiol. 2019;234(8):12839-12846. DOI:10.1002/jcp.27940; Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629. DOI:10.1038/ncomms8629; Cunningham AL, Stephens JW, Harris DA. Gut microbiota infl uence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021;13(1):50. DOI:10.1186/s13099-021-00446-0; Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362-369. DOI:10.1016/j.micpath.2017.08.038; Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526-537. DOI:10.1007/s12020-019-02103-8; Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. Th e role of gut microbiota in obesity, diabetes mellitus, and eff ect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;49:1-5. DOI:10.1016/j.coph.2019.03.011; Gu Y, Wang X, Li J, Zhang Y, Zhong H, et al. Analyses of gut microbiota and plasma bile acids enable stratifi cation of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. DOI:10.1038/s41467-017-01682-2; Olivares M, Neyrinck AM, Pötgens SA, Beaumont M, Salazar N, et al. Th e DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61(8):1838-1848. DOI:10.1007/s00125-018-4647-6; Zhang M, Feng R, Yang M, Qian C, Wang Z, et al. Eff ects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care. 2019;7(1):e000717. DOI:10.1136/bmjdrc-2019-000717; Zhang Q, Xiao X, Li M, Yu M, Ping F, et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS One. 2017;12(10):e0184735. DOI:10.1371/journal.pone.0184735; Yan X, Feng B, Li P, Tang Z, Wang L. Microfl ora Disturbance during Progression of Glucose Intolerance and Eff ect of Sitagliptin: An Animal Study. J Diabetes Res. 2016;2016:2093171. DOI:10.1155/2016/2093171; Ryan PM, Patterson E, Carafa I, Mandal R, Wishart DS, et al. Metformin and Dipeptidyl Peptidase-4 Inhibitor Diff erentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice. Can J Diabetes. 2020;44(2):146-155.e2. DOI:10.1016/j.jcjd.2019.05.008; Zhao L, Chen Y, Xia F, Abudukerimu B, Zhang W, et al. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Front Endocrinol (Lausanne). 2018;9:233. DOI:10.3389/fendo.2018.00233; Zhang Q, Xiao X, Zheng J, Li M, Yu M, et al. Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp Biol Med (Maywood). 2018;243(1):3444. DOI:10.1177/1535370217743765; Liu Q, Cai BY, Zhu LX, Xin X, Wang X, et al. Liraglutide modulates gut microbiome and attenuates nonalcoholic fatty liver in db/db mice. Life Sci. 2020;261:118457. DOI:10.1016/j.lfs.2020.118457; Moreira GV, Azevedo FF, Ribeiro LM, Santos A, Guadagnini D, et al. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem. 2018;62:143-154. DOI:10.1016/j.jnutbio.2018.07.009; Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep. 2016;6:33251. DOI:10.1038/srep33251; Mrozinska S., Gosiewski T., Sroka-Oleksiak A., Szopa M, Bulanda M., et al. Th e eff ect of linagliptin treatment on gut microbiota in patients with HNF1A-MODY or type 2 diabetes — a preliminary cohort study. Clinical Diabetology. 2019;8(6):263-270. DOI:10.5603/DK.2019.0024; Wang Z, Saha S, Van Horn S, Th omas E, Traini C, Sathe G, et al. Gut microbiome diff erences between metformin- and liraglutide-treated T2DM subjects. Endocrinol Diabetes Metab. 2017;1(1):e00009. DOI:10.1002/edm2.9; Shang J, Liu F, Zhang B, Dong K, Lu M, et al. Liraglutideinduced structural modulation of the gut microbiota in patients with type 2 diabetes mellitus. PeerJ. 2021;9:e11128. DOI:10.7717/peerj.11128; Smits MM, Fluitman KS, Herrema H, Davids M, Kramer MHH, et al. Liraglutide and sitagliptin have no eff ect on intestinal microbiota composition: A 12-week randomized placebocontrolled trial in adults with type 2 diabetes. Diabetes Metab. 2021;47(5):101223. DOI:10.1016/j.diabet.2021.101223; Allin KH, Nielsen T, Pedersen O. Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2015;172(4):R167-77. DOI:10.1530/EJE-14-0874; https://www.medicalherald.ru/jour/article/view/1463

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 7 (2021); 184-191 ; Медицинский Совет; № 7 (2021); 184-191 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6153/5602; Griffin M.E., Coffey M., Johnson H., Scanlon P., Foley M., Stronge J. et al. Universal vs. risk factor-based screening for gestational diabetes mellitus: detection rates, gestation at diagnosis and outcome. Diabet Med. 2000;17(1):26-32. doi:10.1046/j.1464-5491.2000.00214.x.; Langer O., Umans J.G., Miodovnik M. Perspectives on the proposed gestational diabetes mellitus diagnostic criteria. Obstet Gynecol. 2013;121(1):177-182. doi:10.1097/aog.0b013e31827711e5.; International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger B.E., Gabbe S.G., Persson B., Buchanan T.A., Catalano P.A., Damm P. et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676-682. doi:10.2337/dc09-1848.; HAPO Study Cooperative Research Group, Metzger B.E., Lowe L.P., Dyer A.R., Trimble E.R., Chaovarindr U., Coustan D.R. et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991-2002. doi:10.1056/NEJMoa0707943.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й вып. (доп.). М.; 2019. 216 с.; Дедов И.И., Краснопольский В.И., Сухих Г.Т. Российский национальный консенсус гестационный сахарный диабет: диагностика, лечение, послеродовое наблюдение? Сахарный диабет. 2012;15(4):4-10. doi:10.14341/2072-0351-5531.; American Diabetes Association. Position statement: standards of medical care in diabetes - 2012. Diabetes Care. 2012;35(1 Suppl.):11-63. doi:10.2337/dc12-s011.; Eades C.E., Cameron D.M., Evans J.M.M. Prevalence of gestational diabetes mellitus in Europe: A meta-analysis. Diabetes Res Clin Pract. 2017;129: 173-181. doi:10.1016/j.diabres.2017.03.030.; Lee K.W., Ching S.M., Ramachandran V., Yee A., Hoo F.K. Chia Y.Ch. et al. Prevalence and risk factors of gestational diabetes mellitus in Asia: a systematic review and meta-analysis. BMC Pregnancy and Childbirth. 2018;18:494. doi:10.1186/s12884-018-2131-4.; Fetita L.S., Sobngwi E., Serradas P., Calvo F., Gautier J.F. Consequences of Fetal Exposure to Maternal Diabetes in Offspring. J Clin Endocrinol Metab. 2006;91(10):3718-3724. doi:10.1210/jc.2006-0624.; Scholtens D.M., Kuang A., Lowe L.P., Hamilton J., Lawrence J.M., Lebenthal Y. et. al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Glycemia and Childhood Glucose Metabolism. Diabetes Care. 2019;42(3):381-392. doi:10.2337/dc18-1646.; Rayanagoudar G., Hashi A.A., Zamora J., Khan K.S., Hitman G.A., Thangaratinam S. Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia. 2016;59(7):1403-1411. doi:10.1007/s00125-016-3927-2.; Burlina S., Dalfra M.G., Chilelli N.C., Lapolla A. Gestational Diabetes Mellitus and Future Cardiovascular Risk: An Update. Int J Endocrinol. 2016;2016:2070926. doi:10.1155/2016/2070926.; Sullivan S.D., Umans J.G., Ratner R. Gestational diabetes: implications for cardiovascular health. Curr Diab Rep. 2012;12(1):43-52. doi:10.1007/s11892-011-0238-3.; Harreiter J., Dovjak G., Kautzky-Willer A. Gestational diabetes mellitus and cardiovascular risk after pregnancy. Womens Health (Lond). 2014;10(1): 91-108. doi:10.2217/whe.13.69.; Coustan D.R. Gestational diabetes mellitus. Clin Chem. 2013;59(9):1310-1321. doi:10.1373/clinchem.2013.203331.; Bellamy L., Casas J.P., Hingorani A.D., Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773-1779. doi:10.1016/S0140-6736(09)60731-5.; Kim C., Newton K.M., Knopp R.H. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862-1868. doi:10.2337/diacare.25.10.1862.; Schneider S., Bock C., Wetzel M., Maul H., Loerbroks A. The prevalence of gestational diabetes in advanced economies. J Perinat Med. 2012;40(5): 511-520. doi:10.1515/jpm-2012-0015.; Sahu M.T., Das V., Mittal S., Agarwal A., Sahu M. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. Arch Gynecol Obstet. 2010;281(2):215-220. doi:10.1007/s00404-009-1105-1.; Tudela C.M., Casey B.M., McIntire D.D., Cunningham F.G. Relationship of subclinical thyroid disease to the incidence of gestational diabetes. Obstet Gynecol. 2012;119(5):983-988. doi:10.1515/jpm-2012-0015.; Nelson D.B., Casey B.M., McIntire D.D., Cunningham F.G. Subsequent pregnancy outcomes in women previously diagnosed with subclinical hypothyroidism. Am J Perinatol. 2014;31(1):77-84. doi:10.1055/s-0033-1334457.; Mannisto T., Mendola P., Grewal J., Xie Y., Chen Z., Laughon S.K. Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort. J Clin Endocrinol Metab. 2013;98(7):2725-2733. doi:10.1210/jc.2012-4233.; Casey B.M., Dashe J.S., Spong C.Y., McIntire D.D., Leveno K.J., Cunningham G.F. Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy. Obstet Gynecol. 2007;109(5):1129-1135. doi:10.1097/01.AOG.0000262054.03531.24.; O'Sullivan E.P., Avalos G., O'Reilly M., Dennedy M.C., Gaffney G., Dunne F. Atlantic Diabetes in Pregnancy (DIP): the prevalence and outcomes of gestational diabetes mellitus using new diagnostic criteria. Diabetologia. 2011;54(7):1670-1675. doi:10.1007/s00125-011-2150-4.; Lapolla A., Dalfra M.G., Ragazzi E., De Cata A.P., Fedele D. New International Association of the Diabetes and Pregnancy Study Groups (IADPSG) recommendations for diagnosing gestational diabetes compared with former criteria: a retrospective study on pregnancy outcome. Diabet Med. 2011;28(9): 1074-1077. doi:10.1111/j.1464-5491.2011.03351.x.; Black M.H., Sacks D.A., Xiang A.H., Lawrence J.M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care. 2013;36(1):56-62. doi:10.2337/dc12-0741.; Practice bulletins No. 139: premature rupture of membranes. Obstetrics and Gynecology. 2013;122(4):918-930. doi:10.1097/01.AOG.0000435415.21944.8f.; https://www.med-sovet.pro/jour/article/view/6153

  4. 4
  5. 5
    Academic Journal

    المصدر: Priority directions of science and education development; № 4; 107-109 ; Приоритетные направления развития образования и науки; № 4; 107-109

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6040397-8-6; https://interactive-plus.ru/e-articles/452/Action452-467767.pdf; Добрынина Е. Половина россиян владеет иностранными языками / Е. Добрынина // Российская газета. – 2013 [Электронный ресурс] – Режим доступа: https://rg.ru/2013/07/24/yazik-site.html.; Когда искусственный интеллект заменит человека? // Ведомости. Специальный проект «Цифровая трансформация бизнеса» [Электронный ресурс] – Режим доступа: http://sap-tech.vedomosti.ru/ai.; Кочнева Е.Д. Современные тренды студенческой мобильности /Е.Д. Кочнева // Дискурс*Пи: Научный журнал. – 2013. – Вып. 15. – С. 36–39.; Музашвили М. 10 самых востребованных языков в мире, которые надо изучить / М. Музашвили [Электронный ресурс] – Режим доступа: http://fb.ru/post/languages/2017/10/1/17450; Русакова О.Ф. Дискурс мобильности в современных коммуникациях / О.Ф. Русакова // Научные ведомости. – 2014. – №13 (184). Вып. 22. – С. 245–252. – (Гуманитарные науки).; Урри Дж. Мобильности /Дж. Урри; пер. с англ. А.В. Лазарева, вступ. статья Н.А. Харламова. – М.: Праксис, 2012. – 576 с.; https://interactive-plus.ru/files/Books/Cover-452.jpg?req=467767; https://interactive-plus.ru/article/467767/discussion_platform

  6. 6
  7. 7