يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"A. Jukova E."', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2021); 108-113 ; Медицинский Совет; № 9 (2021); 108-113 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6253/5667; Du Toit A. Outbreak of a Novel Coronavirus. Nat Rev Microbiol. 2020;18:123. https://doi.org/10.1038/s41579-020-0332-0.; Zhou P., Yang X., Wang X., Hu B., Zhang L., Zhang W. et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat origin. Nature. 2020;579:270–273. https://doi.org/10.1038/s41586-020-2012-7.; Bertuzzi A.F., Marrari A., Gennaro N., Cariboni U., Ciccarelli M., Giordano L. et al. Low Incidence of SARS-CoV-2 in Patients with Solid Tumours on Active Treatment: An Observational Study at a Tertiary Cancer Centre in Lombardy, Italy. Cancers (Basel). 2020;12(9):2352. https://doi.org/10.3390/cancers12092352.; Wang Q., Berger N.A., Xu R. Analyses of Risk, Racial Disparity, and Outcomes Among US Patients With Cancer and COVID-19 Infection. JAMA Oncol. 2021;7(2):220–227. https://doi.org/10.1001/jamaoncol.2020.6178.; Liang W., Guan W., Chen R., Wang W., Li J., Xu K. et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–337. https://doi.org/10.1016/S1470-2045(20)30096-6.; Giannakoulis V.G., Papoutsi E., Siempos I.I. Effect of Cancer on Clinical Outcomes of Patients With COVID-19: A Meta-Analysis of Patient Data. JCO Glob Oncol. 2020;6:799–808. https://doi.org/10.1200/GO.20.00225.; Williamson E.J., Walker A.J., Bhaskaran K., Bacon S., Bates C., Morton C.E. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–436. https://doi.org/10.1038/s41586-020-2521-4.; Docherty A.B., Harrison E.M., Green C.A., Hardwick H.E., Pius R., Norman L. et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. https://doi.org/10.1136/bmj.m1985.; Kuderer N.M., Choueiri T.K., Shah D.P., Shyr Y., Rubinstein S.M., Rivera D.R. et al. COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907– 1918. https://doi.org/10.1016/S0140-6736(20)31187-9.; Mehta V., Goel S., Kabarriti R., Cole D., Goldfinger M., Acuna-Villaorduna A. et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020;10(7):935–941. https://doi.org/10.1158/2159-8290.CD-20-0516.; Lunski M.J., Burton J., Tawagi K., Maslov D., Simenson V., Barr D. et al. Multivariate mortality analyses in COVID-19: Comparing patients with cancer and patients without cancer in Louisiana. Cancer. 2021;127(2):266– 274. https://doi.org/10.1002/cncr.33243.; Derosa L., Melenotte C., Griscelli F., Gachot B., Marabelle A., Kroemer G., Zitvogel L. The immuno-oncological challenge of COVID-19. Nat Cancer. 2020;1:946–964. Available at: https://www.nature.com/articles/s43018-020-00122-3?error=cookies_not_supported&code=66955eff-548b-4bb7-8885-e78f30bb5078.; Murdoch C., Muthana M., Coffelt S.B., Lewis C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618– 631. https://doi.org/10.1038/nrc2444.; Hagemann T., Lawrence T., McNeish I., Charles K.A., Kulbe H., Thompson R.G. et al. “Re-educating” tumor-associated macrophages by targeting NF κB. J Exp Med. 2008;205(6):1261–1268. https://doi.org/10.1084/jem.20080108.; Oh H., Grinberg-Bleyer Y., Liao W., Maloney D., Wang P., Wu Z., Ghosh S. An NF κB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 2017;47(3):450–465. https://doi.org/10.1016/j.immuni.2017.08.010.; Dai M., Liu D., Liu M., Zhou F., Li G., Chen Z. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discov. 2020;10(6);783–791. https://doi.org/10.1158/2159-8290.CD-20-0422.; Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014;11:141–149. https://doi.org/10.1038/cmi.2013.61.; Versteeg G.A., Bredenbeek P.J., van den Worm S.H., Spaan W.J. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 2007;361(1):18–26. https://doi.org/10.1016/j.virol.2007.01.020.; Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D.B. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802. https://doi.org/10.1371/journal.pone.0030802.; Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C.T.K., Makino S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008;82(9):4471–4479. https://doi.org/10.1128/JVI.02472-07.; Frieman M., Ratia K., Johnston R.E., Mesecar A.D., Baric R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009;83(13):6689–6705. https://doi.org/10.1128/JVI.02220-08.; Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. https://doi.org/10.1093/cid/ciaa248.; Xie J., Fan H.W., Li T.S., Qiu Z.F., Han Y. Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients. Chinese Academy of Medical Science. 2006;28(2):253–255. Available at: https://pubmed.ncbi.nlm.nih.gov/16733915/.; Li T., Qiu Z., Zhang L., Han Y., He W., Liu Z. et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. The Journal of Infectious Diseases. 2004;189(4):648– 651. https://doi.org/10.1086/381535.; Wong R.S., Wu A., To K.F., Lee N., Lam C.W., Wong C.K. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003;326:1358–1362. https://doi.org/10.1136/bmj.326.7403.1358.; Cui W., Fan Y., Wu W., Zhang F., Wang J.Y., Ni A.P. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clinical infectious diseases. 2003;37(6):857–859. https://doi.org/10.1086/378587.; Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–543. https://doi.org/10.1038/s41423-020-0401-3.; Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. https://doi.org/10.1084/jem.20050828.; Cheung C.Y., Poon L.L., Ng I.H., Luk W., Sia S.F., Wu M.H. et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005;79(12):7819–7826. https://doi.org/10.1128/JVI.79.12.7819-7826.2005.; Yilla M., Harcourt B.H., Hickman C.J., McGrew M., Tamin A., Goldsmith C.S. et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus research. 2005;107(1):93–101. https://doi.org/10.1016/j.virusres.2004.09.004.; Tseng C.T.K., Perrone L.A., Zhu H., Makino S., Peters C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005;174(12):7977–7985. https://doi.org/10.4049/jimmunol.174.12.7977.; Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W. et al. Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human dendritic cells. Blood. 2005;106(7):2366–2374. https://doi.org/10.1182/blood-2004-10-4166.; Tavakkoli M., Wilkins C.R., Mones J.V., Mauro M.J. A novel paradigm between leukocytosis, G-CSF secretion, neutrophil-to-lymphocyte ratio, myeloid-derived suppressor cells, and prognosis in non-small cell lung cancer. Front Oncol. 2019;9:295. https://doi.org/10.3389/fonc.2019.00295.; Clift A.K., Coupland C.A., Keogh R.H., Diaz-Ordaz K., Williamson E., Harrison E.M. et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ. 2020;371:m3731. https://doi.org/10.1136/bmj.m3731.; Yekedüz E., Utkan G., Ürün Y. A systematic review and meta-analysis: the effect of active cancer treatment on severity of COVID-19. Eur J Cancer. 2020;141:92–104. https://doi.org/10.1016/j.ejca.2020.09.028.; Lee L.Y., Cazier J.B., Starkey T., Turnbull C.D., Team U.C.C.M.P., Kerr R. et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020;395(10241): 1919–1926. https://doi.org/10.1016/S0140-6736(20)31173-9.; Tini G., Sarocchi M., Tocci G., Arboscello E., Ghigliotti G., Novo G. et al. Arterial hypertension in cancer: the elephant in the room. Int J Cardiol. 2019;281:133–139. https://doi.org/10.1016/j.ijcard.2019.01.082.; Jee J., Foote M., Lumish M., Stonestrom A., Wills B., Narendra V. et al. Chemotherapy and COVID-19 Outcomes in Patients With Cancer. J Clin Oncol. 2020;38(30):3538–3546. https://doi.org/10.1200/JCO.20.01307.; Pinato D., Zambelli A., Aguilar-Company J., Bower M., Sng C., Salazar R. et al. Clinical Portrait of the SARS-CoV-2 Epidemic in European Patients with Cancer. Cancer Discov. 2020;10(10):1465–1474. https://doi.org/10.1158/2159-8290.CD-20-0773.; Curigliano G., Banerjee S., Cervantes A., Garassino M., Garrido P., Girard N. et al. Managing cancer patients during the COVID-19 pandemic: an ESMO multidisciplinary expert consensus. Ann Oncol. 2020;31(10):1320–1335. https://doi.org/10.1016/j.annonc.2020.07.010.; Weisberg E., Parent A., Yang P., Sattler M., Liu Q., Liu Q. et al. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res. 2020;37:167. https://doi.org/10.1007/s11095-020-02851-7.; Luo J., Rizvi H., Egger J.V., Preeshagul I.R., Wolchok J.D., Hellmann M.D. Impact of PD-1 Blockade on Severity of COVID-19 in Patients with Lung Cancers. Cancer Discov. 2020;10(8):1121–1128. https://doi.org/10.1158/2159-8290.CD-20-0596.; Vardhana S.A., Wolchok J.D. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6):e20200678. https://doi.org/10.1084/jem.20200678.; Garassino M.C., Whisenant J.G., Huang L.C., Trama A., Torri V., Agustoni F. et al. COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study. Lancet Oncol. 2020;21(7):914–922. https://doi.org/10.1016/S1470-2045(20)30314-4.; Robilotti E.V., Babady N.E., Mead P.A., Rolling T., Perez-Johnston R., Bernardes M. et al. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 2020;26:1218–1223. https://doi.org/10.1038/s41591-020-0979-0.; Vordermark D. Shift in indications for radiotherapy during the COVID-19 pandemic? A review of organ-specific cancer management recommendations from multidisciplinary and surgical expert groups. Radiat Oncol. 2020;15:140. https://doi.org/10.1186/s13014-020-01579-3.; Joseph N., Choudhury A. Lymphocytopenia and Radiotherapy Treatment Volumes in the Time of COVID-19. Clin Oncol. 2020;32(7):420–422. https://doi.org/10.1016/j.clon.2020.04.011.; Wild A., Herman J., Dholakia A., Moningi S., Lu Y., Rosati L. et al. Lymphocyte-Sparing Effect of Stereotactic Body Radiation Therapy in Patients With Unresectable Pancreatic Cancer. Int J Radiat Oncol. 2016;94(3):571–579. https://doi.org/10.1016/j.ijrobp.2015.11.026.; https://www.med-sovet.pro/jour/article/view/6253

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Doklady Biological Sciences; Oct2009, Vol. 428 Issue 1, p467-470, 4p

  4. 4