يعرض 1 - 20 نتائج من 806 نتيجة بحث عن '"A. A. Andrievskaya"', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    Relation: Стрижонок, Е. А. Иррациональные установки, гендерные стереотипы личности и отношение к телесному «Я» (на примере старших подростков) / Е. А. Стрижонок, С. В. Андриевская // Вестник Полоцкого государственного университета. Серия E, Педагогические науки. - 2024. - № 2(40). - С. 93-100. – DOI 10.52928/2070-1640-2023-40-2-93-100.; https://elib.psu.by/handle/123456789/41386

  15. 15
    Academic Journal

    Relation: Рачицкая, Н. В. Толерантность к неопределенности и профессиональное выгорание у педагогов / Н. В. Рачицкая, С. В. Андриевская // Вестник Полоцкого государственного университета. Серия E, Педагогические науки. - 2023. - № 1 (39). - С. 72-79. DOI:10.52928/2070-1640-2023-39-1-72-79; https://elib.psu.by/handle/123456789/38611

  16. 16
    Academic Journal

    المساهمون: The article was published as part of the research topic No. FGUS-2022-0004 of the state assignment of the V.M. Gorbatov Federal Research Center for Food Systems of RAS., Работа выполнена в рамках выполнения исследований по государственному заданию FGUS-2022-0004 Федерального научного центра пищевых систем им. В.М. Горбатова РАН.

    المصدر: Food systems; Vol 5, No 4 (2022); 298-307 ; Пищевые системы; Vol 5, No 4 (2022); 298-307 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-4

    وصف الملف: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/203/206; Оганесянц, Л. А., Песчанская, В. А., Осипова, В. П., Дубинина, Е. В., Алиева, Г. А. (2013). Качественный и количественный состав летучих компонентов плодовых водок. Виноделие и виноградарство, 6, 22–24.; Дубинина, Е. В., Алиева, Г. А. (2015). Исследование корреляционной зависимости между органолептической оценкой и содержанием летучих компонентов плодовых водок. Виноделие и виноградарство, 3, 29–34.; Оганесянц, Л. А., Лорян, Г. В. (2015). Летучие компоненты шелковичных дистиллятов. Виноделие и виноградарство, 2, 17–20.; Трофимченко, В. А., Севостьянова, Е. М., Осипова, В. П., Преснякова, О. П. (2019). Критерии оценки подготовленной воды при производстве плодовых водок. Пиво и напитки, 4, 10–14. https://doi.org/10.24411/2072–9650–2019–10011; Дубинина, Е. В., Севостьянова, Е. М., Крикунова, Л. Н., Ободеева, О. Н. (2021). Влияние минерального состава умягченной воды на качественные показатели спиртных напитков из растительного сырья. Ползуновский вестник, 1, 11–19. https://doi.org/10.25712/ASTU.2072–8921.2021.01.002; Белкин, Ю. Д., Пастухова, В. О. (20 января 2018). Новые подходы к идентификации и экспертизе качества плодовых водок. Инновационные технологии в науке и образовании. Сборник статей VII Международной научно-практической конференции: в 2 частях. Пенза, 2018.; Baldovini, N., Chaintreau, A. (2020). Identification of key odorants in complex mixtures occurring in nature. Natural Product Reports, 37(12), 1589–1626. https://doi.org/10.1039/d0np00020e; Magdas, D. A., David, M., Berghian-Grosan, C. (2022). Fruit spirits fingerprint pointed out through artificial intelligence and FT-Raman spectroscopy. Food Control, 133, Article 108630. https://doi.org/10.1016/j.foodcont.2021.108630; Popović, B. T., Mitrović, O.V., Leposavić, A. P., Paunović, S. A., Jevremović, D. R., Nikićević, N. J. et al. (2019). Chemical and sensory characterization of plum spirits obtained from cultivar Čačanska Rodna and its parent cultivars. Journal of the Serbian Chemical Society, 84(12), 1381–1390. https://doi.org/10.2298/JSC190307061P; Jakubíková, M., Sádecká, J., Kleinová, A. (2018). On the use of the fluorescence, ultraviolet–visible and near infrared spectroscopy with chemometrics for the discrimination between plum brandies of different varietal origins. Food Chemistry, 239, 889–897. http://doi.org/10.1016/j.foodchem.2017.07.008; Jakubíková, M., Sádecká, J., Hroboňová, K. (2019). Classification of plum brandies based on phenol and anisole compounds using HPLC. European Food Research and Technology, 245(8), 1709–1717. https://doi.org/10.1007/s00217–019–03291–3; Kamiloglu, S. (2019). Authenticity and traceability in beverages. Food Chemistry, 277, 2–24. https://doi.org/10.1016/j.foodchem.2018.10.091; Coldea, T. E, Socaciu, C., Moldovan, Z., Mudura, E. (2014). Minor volatile compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607; Bajer, T., Hill, M.,Ventura, K., Bajerova, P. (2020). Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Scientific Reports, 10(1), Article 18965. https://doi.org/10.1038/s41598–020–75939–0; Winterová, R., Mikulicova, R., Mazac, J., Havelec, P. (2008). Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio Czech Journal of Food Sciences, 26(5), 368–375. https://doi.org/10.17221/1610-CJFS; Śliwińska, M., Wisniewska, P., Dymerski, T., Wardencki, W., Namiesnik, J. (2015) The flavour of fruit spirits and fruit liqueurs: A review. Flavour and Fragrance Journal, 30(3), 197–207. https://doi.org/10.1002/ffj.3237; Coldea, T. E., Mudura, E., Socaciu, C. (2017). Advances in distilled beverages authenticity and quality testing. Chapter in a book: Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis. IntechOpen, United Kingdom, 2017. http://doi.org/10.5772/intechopen.72041; Zhang, X., Wang, C., Wang, L., Chen, S., Xu, Y. (2020). Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). Journal of Chromatography A, 1610, Article 460584. https://doi.org/10.1016/j.chroma.2019.460584; Wiśniewska, P., Śliwińska, M., Dymerski, T., Wardencki, W., Namieśnik, J. (2016). The analysis of raw spirits — A review of methodology. Journal of the Institute of Brewing, 122(1), 5–10. https://doi.org/10.1002/jib.288; Egea, M. B., Bertolo, M. R. V., Filho, J. G. O., Lemes, A. C. (2021). A narrative review of the current knowledge on fruit active aroma using gas chromatography — olfactometry (GC-O) analysis. Molecules, 26(17), Article 5181. https://doi.org/10.3390/molecules26175181; Guillot, S., Peytavi, L., Bureau, S., Boulanger, R., Lepoutre, J.-P., Crouzet, J. et al. (2006). Aroma characterization of various apricot varieties using head-space–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96(1), 147–155. https://doi.org/10.1016/j.foodchem.2005.04.016; Wang, H., Ma, Y., Li, M., Shi, L., Zhang, S., Wang, W. et al. (2018). Volatiles of ripe fruit Prunus salicina L. cv. Friar as determined by gas chromatography-mass spectrophotometry as developed during cold storage. International Journal of Food Properties, 21(1), 2622–2631. https://doi.org/10.1080/10942912.2018.1536149; Дубинина, Е. В., Крикунова, Л. Н., Песчанская, В. А., Тришканева, М. В. (2021). Научные аспекты разработки идентификационных критериев дистиллятов из фруктового сырья. Техника и технология пищевых производств, 51(3), 480–491. https://doi.org/10.21603/2074–9414–2021–3–480–491; Charapica, S., Sytova, S., Kavalenko,A., Sobolenko, L., Shauchenka, Y.,Kostyk, N. et al. (2021). The method for direct gas chromatographic determination of acetaldehyde, methanol, and other volatiles using ethanol as a reference substance: Application for a wide range of alcoholic beverages. Food Analytical Methods, 14(10), 2088–2100. https://doi.org/10.1007/s12161–021–02047–8; Черепица, С. В., Сытова, С. Н., Корбан, А. Л., Соболенко, Л. Н., Егоров, В. В., Лещев, С. М. и др. (2020). Метод определения содержания летучих компонентов в алкогольной продукции с использованием этанола в качестве внутреннего стандарта: результаты межлабораторных испытаний. Журнал Белорусского государственного университета. Химия, 1, 74–87. https://doi.org/10.33581/2520–257X-2020–1–74–87; Charapitsa, S. V., Sytova, S. N., Korban, A. L., Sobolenko, L. N. (2019) Single-laboratory validation of a gas chromatographic method of direct determination of volatile compounds in spirit drinks: need for an improved interlaboratory study. Journal of AOAC International, 102(2), 669–672. https://doi.org/10.5740/jaoacint.18–0258; Charapitsa, S., Sytova, S., Korban, A., Sobolenko, L., Egorov, V., Leschev, S. et al. (October 23, 2019). Interlaboratory study of ethanol usage as an internal standard in direct determination of volatile compounds in alcoholic products. Web of Conferences, 15, Article 02030. https://doi.org/10.1051/bioconf/20191502030; Черепица, С. В., Сытова, С. Н., Егорова, В. В., Лещев, С. М., Корбан, А. Л., Собаленко, Л. Н. и др. (2019). Валидация метода прямого определения количественного содержания летучих компонентов в спиртосодержащей продукции. Пиво и напитки, 4, 41–45. https://doi.org/10.24411/2072–9650–2019–10005; Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Kostyuk, N., Egorov, V.et al. The study of the matrix effect on the method of direct determination of volatile compounds in a wide range of alcoholic beverages. Food Control, 120, Article 107528. https://doi.org/10.1016/j.foodcont.2020.107528; Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Shauchenka, Ya., Kostyuk, N. et al. (2021). Development of a quality control material for the analysis of volatile compounds in alcoholic beverages. Journal of Chemical Metrology, 15(2), 113–123. http://doi.org/10.25135/jcm.66.2111.2259; Черепица, С. В., Сытова, С. Н., Коваленко, А. Н. (2021, 24–25 июня) Референтный метод определения количественного содержания летучих компонентов в алкогольной продукции. Наука, питание и здоровье: Сборник научных трудов в 2 частях. Минск: Издательский дом «Беларуская навука», 2021.; Tomková, M., Sádecká, J., Hrobonová, K. (2015). Synchronous fluorescence spectroscopy for rapid classification of fruit spirits. Food Analytical Methods, 8(5), 1258–1267. https://doi.org/10.1007/s12161–014–0010–9; Feng, J.-R., Xi, W.-P., Li, W.-H., Liu, H.-N., Liu, X.-F., Lu, X.-Y. (2015). Volatile characterization of major apricot cultivars of southern Xinjiang region of China. Journal of the American Society for Horticultural Science, 140(5), 466–471. https://doi.org/10.21273/JASHS.140.5.466; Fratianni, F., Cozzolino, R., d’Acierno, A., Ombra, M. N., Spigno, P., Riccardi, R. et al. (2022). Biochemical characterization of some varieties of apricot present in the Vesuvius area, Southern Italy. Frontiers in Nutrition, 9, Article 854868. https://doi.org/10.3389/fnut.2022.854868; Coldea, T. E., Socaciu, C., Moldovan, Z., Mudura E. (2014). Minor volatile compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607; Tesevic, V., Nikicevic, N., Milosavljevic, S., Bajic, D., Vajs, V., Vuckovic, I. et al. (2009). Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry. Journal of the Serbian Chemical Society, 74(2), 117–128. https://doi.org/10.2298/JSC0902117T; Vyviurska, O., Matura, F., Furdíková, K., Špánik, I. (2017). Volatile fingerprinting of the plum brandies produced from different fruit varieties. Journal of Food Science and Technology, 54(13), 4284–4301. https://doi.org/10.1007/s13197–017–2900–5; Puškaš, V., Miljić, U., Vučurović, V., Muzalevski, A. (2017). Aromatic compounds of brandies produced from three apricot varieties cultured in Serbia. Journal on Processing and Energy in Agriculture, 21(2), 101–103. https://doi.org/10.5937/jpea1702101p; Uwineza, P. A., Waśkiewicz, A. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials.Molecules, 25(17), Article 25173847. https://doi.org/10.3390/molecules25173847; Hererro, M., Mendiola, J. A., Cifuentes, A., Ibanez, E. (2010) Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019; Dziekońska-Kubczak, U., Pielech-Przybylska, K., Patelski, P., Balcerek, M. (2020). Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS–SPME/ GC–MS. Molecules, 25(5), Article 1232. https://doi.org/10.3390/molecules25051232; Vyviurska, O., Zvrškovcová, H., I. Špánik, I. (2017). Distribution of enantiomers of volatile organic compounds in selected fruit distillates. Chirality, 29(1), 14–18. https://doi.org/10.1002/chir.22669; Stuff, J., Whitecavage, J. A., Linthicum, S. J., Pawliszyn, J. (2018). Analysis of beverage samples using Thin Film Solid Phase Microextraction (TF-SPME) and Thermal Desorption GC/MS. GERSTEL Application Note, 200, 1–9.; Muñoz-Redondo, J. M., Valcárcel-Muñoz, M. J., Rodríguez Solana, R., Puertas, B., Cantos-Villar, E., Moreno-Rojas, J. M. (2022). Development of a methodology based on headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of esters in brandies. Journal of Food Composition and Analysis, 108, Article 104458. https://doi.org/10.1016/j.jfca.2022.104458; Bajer, T., Bajerová, P., Surmová, S., Kremr, D., Ventura, K., Eisner, A. (2017). Chemical profiling of volatile compounds of various home-made fruit spirits using headspace solid-phase microextraction. Journal of the Institute of Brewing, 123(1), 105–112. https://doi.org/10.1002/jib.386; Cvetković, D., Stajilcovic, P., Zvezdanovich, J.B., Stanojevic, J., Stanojevic, L., Karabegovic-Stanisavljevic, I. T. (2020). The identification of volatile aroma compounds from local fruit based spirits using a head-space solid-phase microextraction technique coupled with the gas chromatography-mass spectrometry. Advanced Technologies, 9(2), 19–28. https://doi.org/10.5937/savteh2002019C; Pour Nikfardjam, M., Schäfer, L., Schips, C., Farr, T., Endres, A., Hirn, S. et al. (2022). Ethyl carbamate and aroma compounds in distilled spirits from different stone fruits. Mitteilungen Klosterneuburg, 72(1), 37–50.; Pati, S., Tufariello, M., Crupi, P., Coletta, A., Grieco, F., Losito, I. (2021). Quantification of volatile compounds in wines by HS-SPME-GC/MS: critical issues and use of multivariate statistics in method optimization. Processes, 9(4), Article 662. https://doi.org/10.3390/pr9040662; Niimi, J., Guixer, B., Splivallo, R. (2020) Odour active compounds determined in the headspace of yellow and black plum wines (Prunus domestica L.). LWT, 130, Article 109702. https://doi.org/10.1016/j.lwt.2020.109702; Pino, J. A., Quijano, C. E. (2012). Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Ciencia e Tecnologia de Alimentos, 32(1), 76–83. http://doi.org/10.1590/S0101–20612012005000006; Заяц, М. Ф., Юрченко, Р. А., Лещев, С. М., Винирский, В.А., Зубкевич, А.Л. (2012). Об основных принципах пробоподготовки водочной продукции при определении ее подлинности путем газохроматографического анализа равновесной паровой фазы. Вестник БГУ. Серия 2: Химия. Биология. География, 1, 23–28.; Liu, S., Huang, Y., Qian, C., Xiang, Z., Ouyang, G. (2020). Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 128, Article 115916. https://doi.org/10.1016/j.trac.2020.115916; Zhakupbekova, A., Baimatova, N., Kenessov, B. (2019). A critical review of vacuumassisted headspace solid-phase microextraction for environmental analysis. Trends in Environmental Analytical Chemistry, 22, Article e00065. https://doi.org/10.1016/j.teac.2019.e00065; Sajid, M., Płotka-Wasylka, J. (2018). Combined extraction and microextraction techniques: recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 103, 74–86. https://doi.org/10.1016/j.trac.2018.03.013; Wang, H., Ding, J., Ren, N. (2016). Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC — Trends in Analytical Chemistry, 75, 197–208. https://doi.org/10.1016/j.trac.2015.05.005; Fernández-Amado, M., Prieto-Blanco, M. C., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D. (2016). Strengths and weaknesses of in-tube solidphase microextraction: A scoping review. Analytica Chimica Acta, 906, 41–57. https://doi.org/10.1016/j.aca.2015.12.007; Mei, M., Huang, X., Luo, Q., Yuan, D. (2016). Magnetism-enhanced monolith-based in-tube solid phase microextraction. Analytical Chemistry, 88(3), 1900–1907. https://doi.org/10.1021/acs.analchem.5b04328; Zhou, Q., Qian, Y., Qian, M. C. (2015). Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1390, 22–27. https://doi.org/10.1016/j.chroma.2015.02.064; Barba, C., Thomas-Danguin, T., Guichard, E. (2017). Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT, 85, 334–344. http://doi.org/10.1016/j.lwt.2016.09.015; https://www.fsjour.com/jour/article/view/203

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal