يعرض 1 - 20 نتائج من 20 نتيجة بحث عن '"5-aminopyrazoles"', وقت الاستعلام: 0.70s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Журнал органічної та фармацевтичної хімії; Том 16 № 4(64) (2018); 3-10 ; Journal of Organic and Pharmaceutical Chemistry; Vol. 16 No. 4(64) (2018); 3-10 ; Журнал органической и фармацевтической химии; Том 16 № 4(64) (2018); 3-10 ; 2518-1548 ; 2308-8303

    Time: 2

    وصف الملف: application/pdf

  9. 9
  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis

    المؤلفون: Lozano Oviedo, John Jair

    المساهمون: Cuervo Prado, Paola Andrea, Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)

    وصف الملف: 143 páginas; application/pdf

    Relation: Olsen, R. W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60 (3), 243–260. https://doi.org/10.1124/pr.108.00505.; Medel, J.; Cortijo, L.; Gasca, E.; Tepetlan, P.; Pérez, A.; Ramos, F. Receptor GABAA: Implicaciones Farmacológicas a Nivel Central. Arch. neurociencias (México, D.F.) 2011, 16 (1), 40–45.; Phulera, S.; Zhu, H.; Yu, J.; Claxton, D. P.; Yoder, N.; Yoshioka, C.; Gouaux, E. Cryo-EM Structure of the Benzodiazepine-Sensitive Α1β1γ2S Tri-Heteromeric GABAA Receptor in Complex with GABA. Elife 2018, 7. https://doi.org/10.7554/eLife.39383.; Cedillo Ildefonso, B. Generalidades de La Neurobiología de La Ansiedad. Rev. Electrónica Psicol. Iztacala 2017, 20 (1), 239.; Botto, A.; Acuña, J.; Jiménez, J. P. La Depresión Como Un Diagnóstico Complejo: Implicancias Para El Desarrollo de Recomendaciones Clínicas. Rev. Med. Chil. 2014, 142 (10), 1297–1305. https://doi.org/10.4067/S0034-98872014001000010.; Sullivan, P. F.; Neale, M. C.; Kendler, K. S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157 (10), 1552–1562. https://doi.org/10.1176/APPI.AJP.157.10.1552.; Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H. L.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science (80-. ). 2003, 301 (5631), 386–389. https://doi.org/10.1126/SCIENCE.1083968.; Diaz Villa, B. A.; González González, C. Actualidades En Neurobiología de La Depresión. Rev Lationam Psiquitría 2012, 11 (3), 106–115.; Heim, C.; Nemeroff, C. B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biol. Psychiatry 2001, 49 (12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X.; Gavernet, L. Introducción a La Química Medicinal; Editorial de la Universidad Nacional de La Plata (EDULP): Ciudad de la plata, 2021. https://doi.org/10.35537/10915/114312.; Medina-Franco, J. L.; Fernán-Dezde Gortari, E.; Jesús Naveja, J. Avances En El Diseño de Fármacos Asistido Por Computadora. Educ. Química 2015, 26 (3), 180–186. https://doi.org/10.1016/J.EQ.2015.05.002.; Saldívar-González, F.; Prieto-Martínez, F. D.; Medina-Franco, J. L. Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educ. Química 2017, 28 (1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002.; Rojas, W. M.; Oviedo, K. N. Acoplamiento Inverso Y Mapeo De Farmacóforo Como Herramientas Para Encontrar Nuevos Blancos Farmacológicos De Compuestos Naturales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2012, 36 (140), 411–420.; Claudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.; Umar, T.; Shalini, S.; Raza, M. K.; Gusain, S.; Kumar, J.; Seth, P.; Tiwari, M.; Hoda, N. A Multifunctional Therapeutic Approach: Synthesis, Biological Evaluation, Crystal Structure and Molecular Docking of Diversified 1H-Pyrazolo[3,4-b]Pyridine Derivatives against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038.; Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16–41. https://doi.org/10.1039/c6nj03181a.; Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. MDPI AG 2018. https://doi.org/10.3390/molecules23010134.; Tripathi, A. C.; Upadhyay, S.; Paliwal, S.; Saraf, S. K. Derivatives of 4,5-Dihydro (1H) Pyrazoles as Possible MAO-A Inhibitors in Depression and Anxiety Disorders: Synthesis, Biological Evaluation and Molecular Modeling Studies. Med. Chem. Res. 2018, 27 (5), 1485–1503. https://doi.org/10.1007/s00044-018-2167-z.; Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131 (8). https://doi.org/10.1007/s12039-019-1646-1.; Yadav, J. S.; Purushothama Rao, P.; Sreenu, D.; Rao, R. S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A. R. Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46 (42), 7249–7253. https://doi.org/10.1016/j.tetlet.2005.08.042.; Gervasini, G.; Carrillo, J.; Benitez, J. Importancia Del Citocromo P-450 En Terapéutica Farmacológica. 2022.; Ritchie, T. J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16 (1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002.; Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I. H.; Frearson, J.; Wyatt, P. G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3 (3), 435–444. https://doi.org/10.1002/cmdc.200700139.; Smith, G. B.; Olsen, R. W. Functional Domains of GABAA Receptors. Trends Pharmacol. Sci. 1995, 16 (5), 162–168. https://doi.org/10.1016/S0165-6147(00)89009-4.; Nitro bioisosteres. %7C News %7C Cambridge MedChem Consulting https://www.cambridgemedchemconsulting.com/news/index_files/e257c4796cad57a277e5b735ea47bf96-136.html (accessed May 4, 2022).; Hügel, H. Microwave Multicomponent Synthesis. Molecules 2009, 14 (12), 4936–4972. https://doi.org/10.3390/molecules14124936.; Alegre, J. V.; Marqués, E.; Herrera, R. P. Introduction. In Multicomponent Reactions; John Wiley & Sons, Inc: Hoboken, NJ, 2015; pp 1–15. https://doi.org/10.1002/9781118863992.ch1.; Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637. https://doi.org/10.1039/c1cc15238f.; Alcázar, J.; de M. Muñoz, J. Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 2, pp 1173–1204. https://doi.org/10.1002/9783527651313.ch25.; Perreux, L.; Loupy, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves Org. Synth. Second Ed. 2008, 1, 134–218. https://doi.org/10.1002/9783527619559.ch4.; Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley Blackwell, 2006; Vol. 25. https://doi.org/10.1002/3527606556.; Parada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18 (11), 2719–2725. https://doi.org/10.1021/cm0511365.; Leadbeater, N. E. Organic Synthesis Using Microwave Heating. In Comprehensive Organic Synthesis: Second Edition; Elsevier Ltd., 2014; Vol. 9, pp 234–286. https://doi.org/10.1016/B978-0-08-097742-3.00920-4.; Kappe, C. O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chemie Int. Ed. 2013, 52 (4), 1088–1094. https://doi.org/10.1002/anie.201204103.; Perreux, L.; Loupy, A.; Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 1, pp 127–207. https://doi.org/10.1002/9783527651313.ch4.; Corey, E. . (harvard university); Li, J. Name Reactions in Heterocyclic Chemistry; Li, J., Ed.; 2004.; paquette, L. Fundamentos de Química Heterocíclica; Universidad estatal de Ohio, Ed.; Limusa Noriega, 2000.; Lager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-Acyl Substituted 4-Quinolones at the Benzodiazepine Site of GABAA Receptors. Bioorg. Med. Chem. 2008, 16 (14), 6936–6948. https://doi.org/10.1016/j.bmc.2008.05.049.; Shi, F.; Zhang, J.; Tu, S.; Jia, R.; Zhang, Y.; Jiang, B.; Jiang, H. An Efficient Synthesis of New Class of Pyrazolo[3,4- b ]Pyridine-6-One Derivatives by a Novel Cascade Reaction. J. Heterocycl. Chem. 2007, 44 (5), 1013–1017. https://doi.org/10.1002/jhet.5570440506.; Chen, Z.; Shi, Y.; Shen, Q.; Xu, H.; Zhang, F. Facile and Efficient Synthesis of Pyrazoloisoquinoline and Pyrazolopyridine Derivatives Using Recoverable Carbonaceous Material as Solid Acid Catalyst. Tetrahedron Lett. 2015, 56 (33), 4749–4752. https://doi.org/10.1016/j.tetlet.2015.06.044.; Shi, C.-L.; Chen, H.; Shi, D.-Q. An Efficient One-Pot Synthesis of Pyrazolo[3,4-b]Pyridinone Derivatives Catalyzed by L-Proline. J. Heterocycl. Chem. 2011, 48 (2), 351–354. https://doi.org/10.1002/jhet.573.; Orlov, V. D.; Kiroga, K.; Kolos, N. N. Synthesis of Aromatic Pyrazolo[4,5-b]Pyridine Derivatives. Chem. Heterocycl. Compd. 1988 239 1987, 23 (9), 997–1001. https://doi.org/10.1007/BF00475369.; Daniela Ahumada, C.; Segovia-Paccini, A.; Navas, G. R. S. Los 5-Aminopirazoles Como Bloque de Construcción de Compuestos Heterocíclicos Fusionados. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2019, 43 (168), 531–538. https://doi.org/10.18257/RACCEFYN.762.; Gálvez, J.; Quiroga, J.; Insuasty, B.; Abonia, R. Microwave-Assisted and Iodine Mediated Synthesis of 5-n-Alkyl-Cycloalkane[d]-Pyrazolo[3,4-b]Pyridines from 5-Aminopyrazoles and Cyclic Ketones. Tetrahedron Lett. 2014, 55 (12), 1998–2002. https://doi.org/10.1016/j.tetlet.2014.02.015.; Chu, X. Q.; Wang, S. Y.; Ji, S. J. Recyclable NaHSO 4 Catalyzed Alkylation of Tert-Enamides with Indoles or Amines in Water: Facile Construction of Pharmaceutically Analogous Bis-Alkaloid Scaffolds. RSC Adv. 2013, 3 (22), 8380–8387. https://doi.org/10.1039/c3ra40833g.; Ziyaei Halimehjani, A.; Goudarzi, M.; Lotfi Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.; Zaytsev, V. P.; Zubkov, F. I.; Toze, F. A. A.; Orlova, D. N.; Eliseeva, M. N.; Grudinin, D. G.; Nikitina, E. V.; Varlamov, A. V. 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]Tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity. J. Heterocycl. Chem. 2013, 50 (SUPPL.1). https://doi.org/10.1002/jhet.1024.; Khadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. One-Pot Construction of Isoindolo[2,1-a]Quinoline System. Tetrahedron Lett. 2009, 50 (48), 6661–6664. https://doi.org/10.1016/j.tetlet.2009.09.075.; Dagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Chiral Brønsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of Anti-1,3-Diamines Using Enecarbamates as Nucleophiles. Org. Lett. 2009, 11 (23), 5546–5549. https://doi.org/10.1021/ol9023985; Terada, M.; Sorimachi, K. Enantioselective Friedel-Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc. 2007, 129 (2), 292–293. https://doi.org/10.1021/ja0678166.; Halimehjani, A. Z.; Dadras, A.; Ramezani, M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc. 2015, 26 (7), 1500–1508. https://doi.org/10.5935/0103-5053.20150119.; Halimehjani, A.; Goudarzi, M.; Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.; Tamaddon, F.; Khoobi, M.; Keshavarz, E. (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction. Tetrahedron Lett. 2007, 48 (21), 3643–3646. https://doi.org/10.1016/J.TETLET.2007.03.134.; Reddy, P. N.; Reddy, B. V. S.; Padmaja, P. Current Organic Synthesis Current Organic Synthesis SCIENCE BENTHAM Send Orders for Reprints to Reprints@benthamscience.Ae Emerging Role of Green Oxidant I 2 /DMSO in Organic Synthesis. Curr. Org. Synth. 2018, 15, 815–838. https://doi.org/10.2174/1570179415666180530121312.; Becerra-Rivas, C.; Cuervo-Prado, P.; Orozco-Lopez, F. Efficient Catalyst-Free Tricomponent Synthesis of New Spiro[Cyclohexane-1,4′-Pyrazolo[3,4- e ][1, 4]Thiazepin]-7′(6′ H )-Ones. Synth. Commun. 2019, 49 (3), 367–376. https://doi.org/10.1080/00397911.2018.1554143.; Breugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. - A Eur. J. 2018, 24 (37), 9187–9199. https://doi.org/10.1002/chem.201706136.; Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35 (6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY70; Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.; Morris, G. M.; Ruth, H.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785. https://doi.org/10.1002/JCC.21256.; Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/JCC.23905.; LADIN, J. J. H.; Fabian Orozco López. DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC), Universidad Nacional de Colombia, 2019.; Bamoniri, A.; Mirjalili, B. B. F.; Jafari, A. A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5.SiO2. Iran. J. Catal. 2012, 2 (2), 75–78. https://doi.org/10.31857/s042485702109005x.; https://repositorio.unal.edu.co/handle/unal/82230; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
    Academic Journal
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20