يعرض 1 - 20 نتائج من 31 نتيجة بحث عن '"24148"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
  2. 2

    المؤلفون: Bizjak, I., 24084, Abe, K., 24085, 24086, Aihara, H., 24087, Asano, Y., 24088, Bahinipati, S., 24089, Bakich, A. M., 24090, Ban, Y., 24091, Barberio, E., 24092, Barbero, M., 24093, Bay, A., 24094, Sumiyoshi, T., 24095, Drutskoy, A., 24096, Suzuki, S., 24097, Suzuki, S. Y., 24098, Tajima, O., 24099, Bozek, A., 24100, Takasaki, F., 24101, Tamai, K., 24102, Tamura, N., 24103, Tanaka, M., 24104, Hou, S., 24105, Teramoto, Y., 24106, Tian, X. C., 24107, Eidelman, S., 24108, Tsuboyama, T., 24109, Tsukamoto, T., 24110, Uehara, S., 24111, Uglov, T., 24112, Bračko, M., 24113, Ueno, K., 24114, Uno, S., 24115, Natkaniec, Z., 24116, Urquijo, P., 24117, Varner, G., 24118, Varvell, K. E., 24119, Enari, Y., 24120, Villa, S., 24121, Wang, C. C., 24122, Wang, C. H., 24123, Watanabe, Y., 24124, Xie, Q. L., 24125, Brodzicka, J., 24126, Hou, W. -S., 24127, Yabsley, B. D., 24128, Yamaguchi, A., 24129, Yamashita, Y., 24130, Yamauchi, M., 24131, Fang, F., 24132, Yang, Heyoung, 24133, Zhang, L. M., 24134, Zhang, Z. P., 24135, Zhilich, V., 24136, Žontar, D., 24137, Iijima, T., 24138, Browder, T. E., 24139, Chao, Y., 24140, Chen, A., 24141, Chen, W. T., 24142, Cheon, B. G., 24143, Fratina, S., 24144, Chistov, R., 24145, Choi, S. -K., 24146, Choi, Y., 24147, Choi, Y. K., 24148, Imoto, A., 24149, Chuvikov, A., 24150, Cole, S., 24151, Dalseno, J., 24152, Danilov, M., 24153, Dash, M., 24154, Gabyshev, N., 24155, Garmash, A., 24156, Gershon, T., 24157, Gokhroo, G., 24158, Nakao, M., 24159, Inami, K., 24160, Golob, B., 24161, Gorišek, A., 24162, Haba, J., 24163, Hara, T., 24164, Hayashii, H., 24165, Hazumi, M., 24166, Hinz, L., 24167, Hokuue, T., 24168, Hoshi, Y., 24169, Ishikawa, A., 24170, Itoh, R., 24171, Iwasaki, M., 24172, Iwasaki, Y., 24173, Sagawa, H., 24174, Kang, J. H., 24175, Kang, J. S., 24176, Nishida, S., 24177, Kapusta, P., 24178, Katayama, N., 24179, Kawai, H., 24180, Kawasaki, T., 24181, Khan, H. R., 24182, Kichimi, H., 24183, Kim, H. J., 24184, Blyth, S., 24185, Kim, S. M., 24186, Kinoshita, K., 24187, Korpar, S., 24188, Nitoh, O., 24189, Križan, P., 24190, Krokovny, P., 24191, Kulasiri, R., 24192, Kumar, S., 24193, Kuo, C. C., 24194, Kuzmin, A., 24195, Sakai, Y., 24196, Kwon, Y. -J., 24197, Leder, G., 24198, Lee, S. E., 24199, Lesiak, T., 24200, Nozaki, T., 24201, Li, J., 24202, Limosani, A., 24203, Lin, S. -W., 24204, Liventsev, D., 24205, MacNaughton, J., 24206, Sato, N., 24207, Majumder, G., 24208, Mandl, F., 24209, Matsumoto, T., 24210, Matyja, A., 24211, Mikami, Y., 24212, Ogawa, S., 24213, Mitaroff, W., 24214, Miyabayashi, K., 24215, Miyake, H., 24216, Miyata, H., 24217, Schietinger, T., 24218, Mizuk, R., 24219, Nagamine, T., 24220, Nagasaka, Y., 24221, Nakamura, I., 24222, Nakano, E., 24223, Ohshima, T., 24224, Okabe, T., 24225, Okuno, S., 24226, Olsen, S. L., 24227, Bitenc, U., 24228, Schneider, O., 24229, Onuki, Y., 24230, Ostrowicz, W., 24231, Pakhlov, P., 24232, Park, H., 24233, Parslow, N., 24234, Peak, L. S., 24235, Pestotnik, R., 24236, Piilonen, L. E., 24237, Rozanska, M., 24238, Schönmeier, P., 24239, Schwanda, C., 24240, Senyo, K., 24241, Sevior, M. E., 24242, Dong, L. Y., 24243, Shibuya, H., 24244, Shwartz, B., 24245, Bondar, A., 24246, Sidorov, V., 24247, Somov, A., 24248, Soni, N., 24249, Stamen, R., 24250, Stanič, S., 24251, Starič, M., 24252

    مصطلحات موضوعية: Tamura, Norio, 田村, 詔生

    وصف الملف: application/pdf

    Relation: Physical Review Letters; 241801; 95; AA00773679; https://niigata-u.repo.nii.ac.jp/record/2410/files/241801.pdf

  3. 3
  4. 4
    Image

    المؤلفون: 24148 E. K. Balls

    المساهمون: (Robinson) E. Greene

    المصدر: Herbarium University of Lethbridge

    جغرافية الموضوع: United States, California

    Relation: University of Lethbridge Herbarium; Yes; http://digitallibrary.uleth.ca/cdm/ref/collection/herbarium/id/5314

  5. 5
  6. 6
    Academic Journal

    المساهمون: Dipartimento di Scienze Biologiche Geologiche e Ambientali, Università di Catania, 95129 Catania, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia, Institute of Geosciences, Kiel University, 24148 Kiel, Germany

    وصف الملف: application/pdf

    Relation: Geosciences; /12 (2022); Branca, S.; Coltelli, M.; De Beni, E.; Wijbrans, J. Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Geol. Rundsch. 2007, 97, 135–152. https://doi.org/10.1007/s00531-006-0152-0. 2. Barreca, G.; Branca, S.; Monaco, C. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance. Tectonics 2018, 37, 842–857. https://doi.org/10.1002/2017tc004851. 3. Monaco, C.; Tapponier, P.; Tortorici, L.; Gillot, P.Y. Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth Planet. Sc. Lett. 1997, 147, 125–139. 4. Giacomoni, P.P.; Ferlito, C.; Alesci, G.; Coltorti, M.; Monaco, C.; Viccaro, M.; Cristofolini, R. A common feeding system of the NE and S rifts as revealed by the bilateral 2002/2003 eruptive event at Mt. Etna (Sicily, Italy). Bull. Volcanol. 2012, 74, 2415–2433. https://doi.org/10.1007/s00445-012-0672-3. 5. Bruno, V.; Ferlito, C.; Mattia, M.; Monaco, C.; Rossi, M.; Scandura, D. Evidence of a shallow magma intrusion beneath the NE Rift system of Mt. Etna during 2013. Terra Nova 2016, 28, 356–363. https://doi.org/10.1111/ter.12228. 6. Branca, S.; Coltelli, M.; Groppelli, G.; Lentini, F. Geological map of Etna volcano, 1:50,000 scale. Ital. J. Geosci. 2011, 130, 265–291. https://doi.org/10.3301/ijg.2011.15. 7. Monaco, C.; Catalano, S.; Cocina, O.; De Guidi, G.; Ferlito, C.; Gresta, S.; Musumeci, C.; Tortorici, L. Tectonic control on the eruptive dynamics at Mt. Etna volcano (eastern Sicily during the 2001 and 2002–2003 eruptions. J. Volcanol. Geother. Res. 2005, 144, 221–233. 8. Gambino, S.; Barreca, G.; Gross, F.; Monaco, C.; Gutscher, M.; Alsop, G.I. Assessing the rate of crustal extension by 2D sequential restoration analysis: A case study from the active portion of the malta escarpment. Basin Res. 2022, 34, 321–341. https://doi.org/10.1111/bre.12621. 9. Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; et al. The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophys. 2016, 675, 69–90. https://doi.org/10.1016/j.tecto.2016.03.016. 10. Gutscher, M.-A.; Dominguez, S.; de Lepinay, B.M.; Pinheiro, L.; Gallais, F.; Babonneau, N.; Cattaneo, A.; Le Faou, Y.; Barreca, G.; Micallef, A.; et al. Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics 2016, 35, 39–54. https://doi.org/10.1002/2015tc003898. 11. Palano, M.; Ferranti, L.; Monaco, C.; Mattia, M.; Aloisi, M.; Bruno, V.; Cannavò, F.; Siligato, G. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean. J. Geophys. Res. Earth Surf. 2012, 117, 07401. https://doi.org/10.1029/2012jb009254. 12. De Guidi, G.; Lanzafame, G.; Palano, M.; Puglisi, G.; Scaltrito, A.; Scarfì, L. Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa–Eurasia convergent boundary. Tectonophys. 2013, 588, 1–17. https://doi.org/10.1016/j.tecto.2012.11.021. 13. D’Agostino, N.; Selvaggi, G. Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J. Geophys. Res. Earth Surf. 2004, 109. https://doi.org/10.1029/2004jb002998. 14. Serpelloni, E.; Bürgmann, R.; Anzidei, M.; Baldi, P.; Ventura, B.M.; Boschi, E. Strain accumulation across the Messina Straits and kinematics of Sicily and Calabria from GPS data and dislocation modeling. Earth Planet. Sci. Lett. 2010, 298, 347–360. https://doi.org/10.1016/j.epsl.2010.08.005. 15. Lo Giudice, E.; Rasà, R. Very shallow earthquakes and brittle deformation in active volcanic areas: The Etnean region as an example. Tectonophysics 1992, 202, 257–262. 16. De Guidi, G.; Brighenti, F.; Carnemolla, F.; Cataldo, D.; Piro, A.G. New rapid vertical deformation of Santa Tecla Fault scarp (Mt. Etna volcano, Sicily) by lichenometry method. Quaternary Int. 2019, 525, 78–88. https://doi.org/10.1016/j.quaint.2019.07.031. 17. Gresta, S.; Bella, D.; Musumeci, C.; Carveni, P. Some efforts on active faulting processes (earthquake and aseismic creep) acting on the eastern flank of Mt. Etna (Sicily). Acta Vulcanol. 1997, 9, 101–107. 18. Monaco, C.; De Guidi, G.; Ferlito, C. The Morphotectonic map of Mt. Etna. Ital. J. Geosci. 2010, 129, 408–428. https://doi.org/10.3301/ijg.2010.11. 19. Azzaro, R. Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 1999, 28, 193–213. https://doi.org/10.1016/s0264-3707(98)00037-4. 20. Azzaro, R. Seismicity and Active Tectonics in the Etna Region: Constraints for a Seismotectonic Model. In Mt. Etna: Volcano Laboratory; Geophysical Monograph Series; Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., Eds.; AGU: Washington, DC, USA, 2004; Volume 143, pp. 205–220. 21. Azzaro, R.; Branca, S.; Gwinner, K.; Coltelli, M. The volcano-tectonic map of Etna volcano, 1:100.000 scale: An integrated approach based on a morphotectonic analysis from high-resolution DEM constrained by geologic, active faulting and seismotectonic data. Ital. J. Geosci. 2012, 131, 153–170. https://doi.org/10.3301/ijg.2011.29. 22. Barreca, G.; Bonforte, A.; Neri, M. A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation. J. Volcanol. Geotherm. Res. 2013, 251, 170–186. https://doi.org/10.1016/j.jvolgeores.2012.08.013. 23. Hirn, A.; Nicolich, R.; Gallart, J.; Laigle, M.; Cernobori, L.; ETNASEIS Scientific Group. Roots of Etna volcano in faults of great earthquakes. Earth Planet. Sci. Lett. 1997, 148, 171–191. https://doi.org/10.1016/s0012-821x(97)00023-x. Geosciences 2022, 12, 128 22 of 25 24. Gvirtzman, Z.; Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 1999, 401, 782–785. https://doi.org/10.1038/44555. 25. Doglioni, C.; Innocenti, F.; Mariotti, G. Why Mt Etna? Terra Nova 2001, 13, 25–31. 26. Argnani, A.; Mazzarini, F.; Bonazzi, C.; Bisson, M.; Isola, I. The deformation offshore of Mount Etna as imaged by multichannel seismic reflection profiles. J. Volcanol. Geotherm. Res. 2013, 251, 50–64. https://doi.org/10.1016/j.jvolgeores.2012.04.016. 27. Maesano, F.E.; Tiberti, M.M.; Basili, R. Deformation and Fault Propagation at the Lateral Termination of a Subduction Zone: The Alfeo Fault System in the Calabrian Arc, Southern Italy. Front. Earth Sci. 2020, 8, 107. https://doi.org/10.3389/feart.2020.00107. 28. Barreca, G.; Branca, S.; Corsaro, R.A.; Scarfì, L.; Cannavò, F.; Aloisi, M.; Monaco, C.; Faccenna, C. Slab Detachment, Mantle Flow, and Crustal Collision in Eastern Sicily (Southern Italy): Implications on Mount Etna Volcanism. Tectonics 2020, 39, e2020TC006188. https://doi.org/10.1029/2020tc006188. 29. Sgroi, T.; Polonia, A.; Barberi, G.; Billi, A.; Gasperini, L. New seismological data from the Calabrian arc reveal arc-orthogonal extension across the subduction zone. Sci. Rep. 2021, 11, 473. https://doi.org/10.1038/s41598-020-79719-8. 30. Monaco, C.; Barreca, G.; Bella, D.; Brighenti, F.; Bruno, V.; Carnemolla, F.; De Guidi, G.; Mattia, M.; Menichetti, M.; Roccheggiani, M.; et al. The seismogenic source of the 2018 December 26th earthquake (Mt. Etna, Italy): A shear zone in the unstable eastern flank of the volcano. J. Geodyn. 2021, 143, 101807. https://doi.org/10.1016/j.jog.2020.101807. 31. Sgroi, T.; Lavecchia, G.; De Nardis, R. Crustal structure and seismotectonics of central Sicily (southern Italy): New constraints from instrumental seismicity. Geophys. J. Int. 2012, 189, 1237–1252. https://doi.org/10.1111/j.1365-246x.2012.05392.x. 32. De Guidi, G.; Barberi, G.; Barreca, G.; Bruno, V.; Cultrera, F.; Grassi, S.; Imposa, S.; Mattia, M.; Monaco, C.; Scarfì, L.; et al. Geological, seismological and geodetic evidence of active thrusting and folding south of Mt. Etna (eastern Sicily): Revaluation of “seismic efficiency” of the Sicilian Basal Thrust. J. Geodyn. 2015, 90, 32–41. https://doi.org/10.1016/j.jog.2015.06.001. 33. Scarfì, L.; Barberi, G.; Barreca, G.; Cannavò, F.; Koulakov, I.; Patanè, D. Slab narrowing in the Central Mediterranean: The Calabro-Ionian subduction zone as imaged by high resolution seismic tomography. Sci. Rep. 2018, 8, 5178. https://doi.org/10.1038/s41598-018-23543-8. 34. Barreca, G.; Scarfì, L.; Gross, F.; Monaco, C.; De Guidi, G. Fault pattern and seismotectonic potential at the south-western edge of the Ionian Subduction system (southern Italy): New field and geophysical constraints. Tectonophysics 2019, 761, 31–45. https://doi.org/10.1016/j.tecto.2019.04.020. 35. Azzaro, R.; Bonforte, A.; Branca, S.; Guglielmino, F. Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). J. Volcanol. Geotherm. Res. 2013, 251, 5–15. https://doi.org/10.1016/j.jvolgeores.2012.10.001. 36. Mattia, M.; Bruno, V.; Caltabiano, T.; Cannata, A.; Cannavò, F.; D’Alessandro, W.; Di Grazia, G.; Federico, C.; Giammanco, S.; La Spina, A.; et al. A comprehensive interpretative model of slow slip events on Mt. Etna’s eastern flank. Geochem. Geophys. Geosystems 2015, 16, 635–658. https://doi.org/10.1002/2014gc005585. 37. Corsaro, R.A.; Neri, M.; Pompilio, M. Paleo-environmental and volcano-tectonic evolution of the southern flank of Mt. Etna during the last 225 ka inferred from the volcanic succession of the «Timpe», Acireale, Sicily. J. Volcanol. Geother. Res. 2002, 113, 289–306. 38. Azzaro, R.; D’Amico, S.; Tuvè, T. Estimating the Magnitude of Historical Earthquakes from Macroseismic Intensity Data: New Relationships for the Volcanic Region of Mount Etna (Italy). Seism. Res. Lett. 2011, 82, 533–544. https://doi.org/10.1785/gssrl.82.4.533. 39. Scarfì, L.; Messina, A.; Cassisi, C. Sicily and southern Calabria focal mechanism database: A valuable tool for local and regional stress-field determination. Ann. Geophys. 2013, 56, D0109. https://doi.org/10.4401/ag-6109. 40. Scarfì, L.; Langer, H.; Messina, A.; Musumeci, C. Tectonic Regimes Inferred from Clustering of Focal Mechanisms and Their Distribution in Space: Application to the Central Mediterranean Area. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020519. https://doi.org/10.1029/2020jb020519. 41. Alparone, S.; Barberi, G.; Bonforte, A.; Maiolino, V.; Ursino, A. Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004. Bull. Volcanol. 2011, 73, 869–885. https://doi.org/10.1007/s00445-011-0456-1. 42. De Guidi, G.; Scudero, S.; Gresta, S. New insights into the local crust structure of Mt. Etna volcano from seismological and morphotectonic data. J. Volcanol. Geotherm. Res. 2012, 223–224, 83–92. https://doi.org/10.1016/j.jvolgeores.2012.02.001. 43. Bonaccorso, A.; Aloisi, M.; Mattia, M. Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data. Geophys. Res. Lett. 2002, 29, 1–4. https://doi.org/10.1029/2001gl014397. 44. Bonanno, A.; Palano, M.; Privitera, E.; Gresta, S.; Puglisi, G. Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997–1998). Terra Nova 2011, 23, 339–348. https://doi.org/10.1111/j.1365-3121.2011.01019.x. 45. Bonforte, A.; Guglielmino, F.; Puglisi, G. Large dyke intrusion and small eruption: The December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data. Terra Nova 2019, 31, 405–412. https://doi.org/10.1111/ter.12403. 46. De Novellis, V.; Atzori, S.; De Luca, C.; Manzo, M.; Valerio, E.; Bonano, M.; Cardaci, C.; Castaldo, R.; Di Bucci, D.; Manunta, M.; et al. DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano-Tectonic Crisis. Geophys. Res. Lett. 2019, 46, 5817–5827. https://doi.org/10.1029/2019gl082467. 47. Barreca, G.; Corradino, M.; Monaco, C.; Pepe, F. Active Tectonics along the South East Offshore Margin of Mt. Etna: New Insights from High-Resolution Seismic Profiles. Geosciences 2018, 8, 62. https://doi.org/10.3390/geosciences8020062. Geosciences 2022, 12, 128 23 of 25 48. Cocina, O.; Neri, G.; Privitera, E.; Spampinato, S. Stress tensor computations in the Mount Etna area (Southern Italy) and tectonic implications. J. Geodyn. 1997, 23, 109–127. https://doi.org/10.1016/s0264-3707(96)00027-0. 49. Lanzafame, G.; Neri, M.; Coltelli, M.; Lodato, L.; Rust, D. North–South compression in the Mt. Etna region (Sicily): Spatial and temporal distribution. Acta Vulcanol. 1997, 9, 121–133. 50. Patanè, D.; Privitera, E. Seismicity related to 1989 and 1991–1993 Mt. Etna (Italy) eruptions: Kinematic constraints by FPS analysis. J. Volcanol. Geother. Res. 2001, 109, 77–98. 51. Labaume, P.; Bousquet, J.C.; Lanzafame, G. Early deformation at a submarinecompressive front: The Quaternary Catania foredeep south of Mt. Etna, Sicily, Italy. Tectonophysics 1990, 177, 349–366. 52. Ristuccia, G.M.; Di Stefano, A.; Gueli, A.M.; Monaco, C.; Stella, G.; Troja, S.O. OSL chronology of Quaternary terraced deposits outcropping between Mt. Etna volcano and the Catania Plain (Sicily, southern Italy). Phys. Chem. Earth Parts 2013, 63, 36–46. https://doi.org/10.1016/j.pce.2013.03.002. 53. Bonforte, A.; Guglielmino, F.; Coltelli, M.; Ferretti, A.; Puglisi, G. Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geochem. Geophys. Geosyst. 2011, 12, 1–19. https://doi.org/10.1029/2010gc003213. 54. Gross, F.; Krastel, S.; Geersen, J.; Behrmann, J.H.; Ridente, D.; Chiocci, F.L.; Bialas, J.; Papenberg, C.; Cukur, D.; Urlaub, M.; et al. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data. Tectonophysics 2016, 667, 63–76. https://doi.org/10.1016/j.tecto.2015.11.011. 55. Branca, S.; De Guidi, G.; Lanzafame, G.; Monaco, C. Holocene vertical deformation along the coastal sector of Mt. Etna volcano (eastern Sicily, Italy): Implications on the time–space constrains of the volcano lateral sliding. J. Geodyn. 2014, 82, 194–203. https://doi.org/10.1016/j.jog.2014.07.006. 56. Govers, R.; Wortel, M. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett. 2005, 236, 505–523. https://doi.org/10.1016/j.epsl.2005.03.022. 57. Gambino, S.; Barreca, G.; Gross, F.; Monaco, C.; Krastel, S.; Gutscher, M.-A. Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications. Front. Earth Sci. 2021, 8, 1–20. https://doi.org/10.3389/feart.2020.594176. 58. Musumeci, C.; Scarfì, L.; Palano, M.; Patanè, D. Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations. Tectonophysics 2014, 630, 137–149. https://doi.org/10.1016/j.tecto.2014.05.017. 59. Chiocci, F.L.; Coltelli, M.; Bosman, A.; Cavallaro, D. Continental margin large-scale instability controlling the flank sliding of Etna volcano. Earth Planet. Sci. Lett. 2011, 305, 57–64. https://doi.org/10.1016/j.epsl.2011.02.040. 60. C.N.R. Geological Map of Mt. Etna. Scale 1:50,000; L.A.C.: Florence, Italy, 1979. 61. Mattia, M.; Bruno, V.; Montgomery-Brown, E.; Patanè, D.; Barberi, G.; Coltelli, M. Combined seismic and geodetic analysis before, during and after the 2018 Mt. Etna eruption. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009218. https://doi.org/10.1029/2020gc009218. 62. Civico, R.; Pucci, S.; Nappi, R.; Azzaro, R.; Villani, F.; Pantosti, D.; Cinti, F.R.; Pizzimenti, L.; Branca, S.; Brunori, C.A.; et al. Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy). J. Maps 2019, 15, 831–837. https://doi.org/10.1080/17445647.2019.1683476. 63. Rasà, R.; Azzaro, R.; Leonardi, O. Aseismic Creep on Faults and Flank Instability at Mt. Etna Volcano, Sicily. In Volcano Instability on the Earth and Other Planets; McGuire, W.C., Jones, A.P., Neuberg, J., Eds.; Geological Society Special Publication; The Geological Society: London, UK, 1996; Volume 110, pp. 179–192. 64. Azzaro, R.; D’Amico, S.; Mostaccio, A.; Scarfì, L.; Tuvè, T. Terremoti con effetti macrosismici in Sicilia orientale nel periodo Gennaio 2002–Dicembre 2005. Quad. Geof. 2006, 41, 62. 65. De Guidi, G.; Brighenti, F.; Carnemolla, F.; Imposa, S.; Marchese, S.A.; Palano, M.; Scudero, S.; Vecchio, A. The unstable eastern flank of Mt. Etna volcano (Italy): First results of a GNSS-based network at its southeastern edge. J. Volcanol. Geotherm. Res. 2018, 357, 418–424. https://doi.org/10.1016/j.jvolgeores.2018.04.027. 66. Carlino, M.F.; Cavallaro, D.; Coltelli, M.; Cocchi, L.; Zgur, F.; Patanè, D. Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics. Sci. Rep. 2019, 9, 12125. https://doi.org/10.1038/s41598-019-48550-1. 67. Bruno, V.; Mattia, M.; Aloisi, M.; Palano, M.; Cannavo’, F.; Holt, W.E. Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008. J. Geophys. Res. Earth Surf. 2012, 117, 1–23. https://doi.org/10.1029/2011jb009114. 68. Aloisi, M.; Mattia, M.; Ferlito, C.; Palano, M.; Bruno, V.; Cannavò, F. Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy). Geophys. Res. Lett. 2011, 38, L16306. https://doi.org/10.1029/2011gl048488. 69. Bruno, V.; Mattia, M.; Montgomery-Brown, E.; Rossi, M.; Scandura, D. Inflation Leading to a Slow Slip Event and Volcanic Unrest at Mount Etna in 2016: Insights from CGPS Data. Geophys. Res. Lett. 2017, 44, 12–141. https://doi.org/10.1002/2017gl075744. 70. Herring, T.A.; Floyd, M.A.; King, R.W.; McClusky, S.C. GLOBK: Global Kalman Filter VLBI and GPS Analysis Program. In Reference Manual; Massachusetts Institute of Technology: Cambridge, UK, 2015. 71. Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. GPS Analysis at MIT. In GAMIT Reference Manual; Massachusetts Institute of Technology: Cambridge, UK, 2018. 72. Haines, A.J.; Holt, W.E. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res. Earth Surf. 1993, 98, 12057–12082. https://doi.org/10.1029/93jb00892. Geosciences 2022, 12, 128 24 of 25 73. Holt, W.E.; Haines, A.J. The kinematics of northern South Island, New Zealand, determined from geologic strain rates. J. Geophys. Res. Earth Surf. 1995, 100, 17991–18010. https://doi.org/10.1029/95jb01059. 74. Haines, A.J.; Jackson, A.; Holt, W.E.; Agnew, D.C. Representing Distributed Deformation by Continuous Velocity Fields; Science Report 1998, 98/5; Institute of Geology and Nuclear Science: Wellington, New Zeland, 1998. 75. Krastel, S. Short cruise report: MAGOMET—Offshore Flank Movement of Mount Etna and Associated Landslide Hazard in the Ionian Sea (Mediterranean Sea). In Proceedings of the RV Poseidon-Cruise POS496, Malaga, Catania, 24 March–4 April 2016; Christian-Albrechts-Universität zu Kiel, Institute of Geosciences: Kiel, Germany, 2016; 8p. 76. Gutscher, M.-A.; Kopp, H.; Krastel, S.; Bohrmann, G.; Garlan, T.; Zaragosi, S.; Klaucke, I.; Wintersteller, P.; Loubrieu, B.; Le Faou, Y.; et al. Active tectonics of the Calabrian subduction revealed by new multi-beam bathymetric data and high-resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth Planet. Sci. Lett. 2017, 461, 61–72. https://doi.org/10.1016/j.epsl.2016.12.020. 77. Camerlenghi, A.; Del Ben, A.; Hübscher, C.; Forlin, E.; Geletti, R.; Brancatelli, G.; Micallef, A.; Saule, M.; Facchin, L. Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Res. 2020, 32, 716–738. https://doi.org/10.1111/bre.12392. 78. Micallef, A.; Camerlenghi, A.; Garcia-Castellanos, D.; Otero, D.C.; Gutscher, M.-A.; Barreca, G.; Spatola, D.; Facchin, L.; Geletti, R.; Krastel, S.; et al. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Sci. Rep. 2018, 8, 1078. https://doi.org/10.1038/s41598-018-19446-3. 79. Gaillot, A.; Gutscher, M.A.; Murphy, S.; Klingelhoefer, F. Micro-Bathymetric Mapping of the North Alfeo Strike-Slip Fault (Offshore Catania Sicily): Preliminary Results from the FocusX1 Expedition. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; EGU21-2731. https://doi.org/10.5194/egusphere-egu21-2731. 80. Scandone, P.; Patacca, E.; Radoicic, R.; Ryan, W.B.F.; Cita, M.B.; Rawson, M.; et al. Mesozoic and Cenozoic rocks from Malta escarpment (Central Mediterranean). AAPG Bull. 1981, 65, 1299–1319. 81. Catalano, R.; Franchino, A.; Merlini, S.; Sulli, A. A crustal section on the eastern Algerian basin to the Ionian ocean (central Mediterranea). Mem. Soc. Geol. It. 2000, 55, 71–85. 82. Barreca, G. Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications. J. Geodyn. 2014, 82, 168–177. https://doi.org/10.1016/j.jog.2014.02.003. 83. Polonia, A.; Torelli, L.; Gasperini, L.; Cocchi, L.; Muccini, F.; Bonatti, E.; Hensen, C.; Schmidt, M.; Romano, S.; Artoni, A.; et al. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nat. Commun. 2017, 8, 1–13. https://doi.org/10.1038/s41467-017-02273-x. 84. Woodcock, N.H.; Fischer, M. Strike-slip duplexes. J. Struct. Geol. 1986, 8, 725–735. https://doi.org/10.1016/0191-8141(86)90021-0. 85. Amato, A.; Azzara, R.; Basili, A.; Chiarabba, C.; Cocco, M.; Di Bona, M.; Selvaggi, G. Decembr 13, 1990 Eastern Sicily earthquake. Ann. Geofis. 1995, 38, 255–266. 86. Zhang, H.; Thurber, C.; Bedrosian, P. Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem. Geophys. Geosystems 2009, 10, Q11002. https://doi.org/10.1029/2009gc002709. 87. De Guidi, G.; Caputo, R.; Scudero, S. Regional and local stress field orientation inferred from quantitative analyses of extension joints: Case study from southern Italy. Tectonics 2013, 32, 239–251. 88. Fossen, H. Structural Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016; 524p. ISBN 9781107057647. 89. Woodcock, N.H.; Schubert, C. Continental Strike-Slip Tectonics. In Continental Deformation; Hancock, P.L., Ed.; Pergamon Press: New York, NY, USA, 1994; pp. 251–263. 90. Sylvester, A.G. Strike-slip faults. Geol. Soc. of Am. Bull. 1988, 100, 1666–1703. 91. Spampinato, C.R.; Scicchitano, G.; Ferranti, L.; Monaco, C. Raised Holocene paleo-shorelines along the Capo Schisò coast, Taormina: New evidence of recent co-seismic deformation in northeastern Sicily (Italy). J. Geodyn. 2012, 55, 18–31. https://doi.org/10.1016/j.jog.2011.11.007. 92. Murru, M.; Montuori, C.; Wyss, M.; Privitera, E. The locations of magma chambers at Mt. Etna, Italy, mapped byb-values. Geophys. Res. Lett. 1999, 26, 2553–2556. https://doi.org/10.1029/1999gl900568. 93. Patanè, D.; Chiarabba, C.; De Gori, P.; Bonaccorso, A. Magma ascent and the pressurization of Mt. Etna’s volcanic system. Science 2003, 299, 2061–2063. 94. Patanè, D.; Mattia, M.; Aloisi, M. Shallow intrusive processes during 2002–2004 and current volcanic activity on Mt. Etna. Geophys. Res. Lett. 2005, 32, L06302. https://doi.org/10.1029/2004gl021773. 95. Patanè, D.; Barberi, G.; Cocina, O.; De Gori, P.; Chiarabba, C. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science 2006, 313, 821–823. https://doi.org/10.1126/science.1127724. 96. De Gori, P.; Chiarabba, C.; Patanè, D. Qpstructure of Mount Etna: Constraints for the physics of the plumbing system. J. Geophys. Res. Earth Surf. 2005, 110, B05303. https://doi.org/10.1029/2003jb002875. 97. Mazzarini, F.; Armienti, P. Flank Cones at Mount Etna Volcano: Do they have a power-law distribution? Bull. Volcanol. 2001, 62, 420–430. https://doi.org/10.1007/s004450000109. 98. Favalli, M.; Karátson, D.; Mazzarini, F.; Pareschi, M.T.; Boschi, E. Morphometry of scoria cones located on a volcano flank: A case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J. Volcanol. Geotherm. Res. 2009, 186, 320–330. https://doi.org/10.1016/j.jvolgeores.2009.07.011. 99. Ferlito, C. Mount Etna volcano (Italy). Just a giant hot spring!. Earth-Sci. Rev. 2018, 177, 14–23. https://doi.org/10.1016/j.earscirev.2017.10.004. Geosciences 2022, 12, 128 25 of 25 100. Ferlito, C.; Viccaro, M.; Cristofolini, R. Volatile-rich magma injection into the feeding system during the 2001 eruption of Mt. Etna (Italy): Its role on explosive activity and change in rheology of lavas. Bull. Volcanol. 2009, 71, 1149–1158. https://doi.org/10.1007/s00445-009-0290-x. 101. Ferlito, C.; Coltorti, M.; Lanzafame, G.; Giacomoni, P.P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184–187, 447–455. https://doi.org/10.1016/j.lithos.2013.10.030. 102. Uslular, G.; Le Corvec, N.; Mazzarini, F.; Legrand, D.; Gençalioğlu-Kuşcu, G. Morphological and multivariate statistical analysis of quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey): Implications for the volcano-tectonic evolution. J. Volcanol. Geotherm. Res. 2021, 416, 107280. https://doi.org/10.1016/j.jvolgeores.2021.107280. 103. Mazzuoli, R.; Tortorici, L.; Ventura, G. Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian islands, southern Italy). Terra Nova 1995, 7, 444–452. https://doi.org/10.1111/j.1365-3121.1995.tb00540.x. 104. Vries, B.V.W.D.; Merle, O. Extension induced by volcanic loading in regional strike-slip zones. Geology 1998, 26, 983–986. https://doi.org/10.1130/0091-7613(1998)0262.3.co;2. 105. Alaniz-Álvarez, S.; Nieto-Samaniego, A.; Morán-Zenteno, D.; Aldave, L.A.A. Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico. J. Volcanol. Geotherm. Res. 2002, 118, 1–14. https://doi.org/10.1016/s0377-0273(02)00247-0. 106. Di Giuseppe, P.; Agostini, S.; Lustrino, M.; Karaoğlu, Ö.; Savaşçın, M.Y.; Manetti, P.; Ersoy, Y. Transition from Compression to Strike-slip Tectonics Revealed by Miocene–Pleistocene Volcanism West of the Karlıova Triple Junction (East Anatolia). J. Pet. 2017, 58, 2055–2087. https://doi.org/10.1093/petrology/egx082.

  7. 7
    Academic Journal

    المساهمون: King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia., Physical Science and Engineering (PSE) Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany., Institute of Geosciences, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany.

    وصف الملف: application/pdf

    Relation: https://linkinghub.elsevier.com/retrieve/pii/S0009254120301388; Long, X., van der Zwan, F. M., Geldmacher, J., Hoernle, K., Hauff, F., Garbe-Schönberg, C.-D., & Augustin, N. (2020). Insights into the petrogenesis of an intraplate volcanic province: Sr-Nd-Pb-Hf isotope geochemistry of the Bathymetrists Seamount Province, eastern equatorial Atlantic. Chemical Geology, 544, 119599. doi:10.1016/j.chemgeo.2020.119599; Chemical Geology; 119599; http://hdl.handle.net/10754/666861; 544

  8. 8
    Academic Journal

    المساهمون: Department of Earth and Environmental Sciences, Dalhousie University, Department of Oceanography, Dalhousie University, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany, Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS), Institut des Sciences de la Terre de Paris (iSTeP), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)

    المصدر: ISSN: 2169-9313 ; EISSN: 2169-9356.

  9. 9
    Academic Journal

    المساهمون: Institute of Marine Sciences / Institut de Ciències del Mar Barcelona (ICM), Consejo Superior de Investigaciones Científicas Madrid (CSIC), Sorbonne Université (SU), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

    المصدر: ISSN: 2041-4927.

    مصطلحات موضوعية: [SDU]Sciences of the Universe [physics]

  10. 10
    Academic Journal

    المساهمون: Biological and Environmental Sciences and Engineering (BESE) Division, Red Sea Research Center (RSRC), Australian Institute of Marine Science, PMB No 3, Townsville, Queensland, 4810, , Australia, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24148, , Germany

    وصف الملف: application/pdf

    Relation: https://www.sciencedirect.com/science/article/pii/S0304420318300471; http://oceanrep.geomar.de/45847/1/Loenborg%20et.al.pdf; Lønborg C, Calleja ML, Fabricius KE, Smith JN, Achterberg EP (2019) The Great Barrier Reef: A source of CO2 to the atmosphere. Marine Chemistry 210: 24–33. Available: http://dx.doi.org/10.1016/j.marchem.2019.02.003.; Marine Chemistry; http://hdl.handle.net/10754/653030

  11. 11
    Conference

    المساهمون: King Abdullah University of Science and Technology, Thuwal 23955-6900 Kingdom of Saudi Arabia, Physical Science and Engineering (PSE) Division, Earth Science and Engineering Program, Red Sea Research Center (RSRC), GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany

    Relation: https://goldschmidtabstracts.info/abstracts/abstractView?doi=10.46427/gold2022.11378; Follmann, J., van der Zwan, F., Petersen, S., & Frische, M. (2022). Hydrothermal mineralization at continental breakup - geochemical insights from sulfide minerals from the South China Sea. Goldschmidt2022 Abstracts. https://doi.org/10.46427/gold2022.11378; Goldschmidt2022 abstracts; http://hdl.handle.net/10754/687327

  12. 12
    Academic Journal

    المساهمون: Biological and Environmental Science and Engineering (BESE) Division, Center for Desert Agriculture, Hirt Lab, Marine Science Program, Plant Science, Plant Science Program, Red Sea Research Center (RSRC), Reef Genomics Lab, Institute of General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany, Institute of Theoretical Physics and Astrophysics, Kiel University, Leibnizstraße 15, 24098 Kiel, Germany, GEOMAR Helmholtz Centre for Ocean Research, Wischhofstraße 1-3, 24148 Kiel, Germany

    وصف الملف: application/pdf

    Relation: http://www.sciencedirect.com/science/article/pii/S0944200618300199; Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, et al. (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology. Available: http://dx.doi.org/10.1016/j.zool.2018.02.004.; Zoology; http://hdl.handle.net/10754/627175

  13. 13
    Academic Journal

    المساهمون: GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany, Institute of Geosciences, Kiel University, 24118 Kiel, Germany, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia

    Relation: Science advances; /4 (2018); 1. J. G. Moore, D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normark, M. E. Torresan, Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94, 17465–17484 (1989). 2. J. K. Morgan, G. F. Moore, D. J. Hills, S. Leslie, Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data. Geology 28, 667–670 (2000). 3. R. P. Denlinger, J. K. Morgan, Instability of Hawaiian volcanoes, in Characteristics of Hawaiian Volcanoes, M. P. Poland, T. J. Takahashi, C. M. Landowski, Eds. (Professional Paper 1801, U.S. Geological Survey, 2014). 4. B. H. Keating, W. J. McGuire, Island edifice failures and associated tsunami hazards. Pure Appl. Geophys. 157, 899–955 (2000). 5. R. S. Ramalho, G. Winckler, J. Madeira, G. R. Helffrich, A. Hipólito, R. Quartau, K. Adena, J. M. Schaefer, Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv. 1, e1500456 (2015). 6. P. Lundgren, F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, R. Lanari, Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys. Res. Lett. 31, L04602 (2004). 7. V. Acocella, B. Behncke, M. Neri, S. D’Amico, Link between major flank slip and 2002–2003 eruption at Mt. Etna (Italy). Geophys. Res. Lett. 30, 2286 (2003). 8. V. Bruno, M. Mattia, E. Montgomery-Brown, M. Rossi, D. Scandura, Inflation leading to a Slow Slip Event and volcanic unrest at Mt. Etna in 2016: Insights from CGPS data. Geophys. Res. Lett. 44, 12141–12149 (2017). 9. I. Stewart, W. J. McGuire, C. Vita-Finzi, C. Firth, R. Holmes, S. Saunders, Active faulting and neotectonic deformation on the eastern flank of Mount Etna, Sicily. Zeits. Geomorph. 94, 73–94 (1993). 10. A. Borgia, L. Ferrari, G. Pasquarè, Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231–235 (1992). 11. O. Merle, A. Borgia, Scaled experiments of volcanic spreading. J. Geophys. Res. 101, 13805–13817 (1996). 12. A. Bonforte, A. Bonaccorso, F. Guglielmino, M. Palano, G. Puglisi, Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J. Geophys. Res. 113, B05406 (2008). 13. F. L. Chiocci, M. Coltelli, A. Bosman, D. Cavallaro, Continental margin large-scale instability controlling the flank sliding of Etna volcano. Earth Planet Sci. Lett. 305, 57–64 (2011). 14. A. Bonforte, F. Guglielmino, Very shallow dyke intrusion and potential slope failure imaged by ground deformation: The 28 December 2014 eruption on Mount Etna. Geophys. Res. Lett. 42, 2727–2733 (2015). 15. B. van Wyk de Vries, P. W. Francis, Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387, 387–390 (1997). 16. J. Karstens, M. Urlaub, C. Berndt, S. F. L. Watt, A. Micaleff, I. Klaucke, D. Klaeschen, S. Brune, M. Kühn, The complex emplacement dynamics and tsunami genesis of the 1888 Ritter Island sector collapse from 3D seismic data, paper presented at the AGU Fall Meeting, New Orleans, LA, 11 to 15 December 2017. 17. A. Bonforte, F. Guglielmino, M. Coltelli, A. Ferretti, G. Puglisi, Structural assessment of Mount Etna volcano from permanent scatterers analysis. Geochem. Geophys. Geosyst. 12, Q02002 (2011). 18. D. Patanè, P. De Gori, C. Chiarabba, A. Bonaccorso, Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299, 2061–2063 (2003). 19. G. Puglisi, A. Bonforte, Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements. J. Geophys. Res. 109, B11404 (2004). 20. N. Houlié, P. Briole, A. Bonforte, G. Puglisi, Large scale ground deformation of Etna observed by GPS between 1994 and 2001. Geophys. Res. Lett 33, L02309 (2006). 21. J. J. McGuire, J. A. Collins, Millimeter-level precision in a seafloor geodesy experiment at the discovery transform fault, East Pacific Rise. Geochem. Geophys. Geosyst. 14, 4392–4402 (2013). 22. R. Bürgmann, D. Chadwell, Seafloor geodesy. Annu. Rev. Earth Planet Sci. 42, 509–534 (2014). 23. B. A. Brooks, J. H. Foster, J. J. McGuire, M. Behn, Submarine landslides and slow earthquakes: Monitoring motion with GPS and seafloor geodesy, in Encyclopedia of Complexity and System Science, W. Lee, Ed. (Springer, 2011), pp. 889–907. 24. F. Gross, S. Krastel, J. Geersen, J. H. Behrmann, D. Ridente, F. L. Chiocci, J. Bialas, C. Papenberg, D. Cukur, M. Urlaub, A. Micallef, The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high resolution 2D seismic data. Tectonophysics 667, 63–76 (2016). 25. A. Bonforte, F. Guglielmino, G. Puglisi, Interaction between magma intrusion and flank dynamics at Mt. Etna in 2008, imaged by integrated dense GPS and DInSAR data. Geochem. Geophys. Geosyst. 14, 2818–2835 (2013). 26. T. C. Hanks, H. Kanamori, H. A. Moment Magnitude Scale. J. Geophys. Res. 84, 2348–2350 (1979). 27. S. Alparone, A. Bonaccorso, A. Bonforte, G. Currenti, Long-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012. J. Geophys. Res. 18, 5098–5108 (2013). 28. F. Guglielmino, C. Bignami, A. Bonforte, P. Briole, F. Obrizzo, G. Puglisi, S. Stramondo, U. Wegmüller, Analysis of satellite and in situ ground deformation data integrated by the SISTEM approach: The April 3, 2010 earthquake along the Pernicana fault (Mt. Etna - Italy) case study. Earth Planet. Sci. Lett. 312, 327–336 (2011). 29. C.H. Scholz, The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2002). 30. D. Elsworth, B. Voight, Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks. J. Geophys. Res. 100, 6005–6024 (1995). 31. S. Alparone, G. Barberi, A. Bonforte, V. Maiolino, A. Ursino, Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004. Bull. Volcanol. 73, 869–885 (2011). 32. N. Le Corvec, T. R. Walter, J. Ruch, A. Bonforte, G. Puglisi, Experimental study of the interplay between magmatic rift intrusion and flank instability with application to the 2001 Mount Etna eruption. J. Geophys. Res. 119, 5356–5368 (2014). 33. J. Hunt, M. Cassidy, P. J. Talling, Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions. Sci. Rep. 8, 1146 (2018). 34. F. Gross, S. Krastel, F. L. Chiocci, D. Ridente, J. Bialas, J. Schwab, J. Beier, D. Cukur, D. Winkelmann, Evidence for Submarine Landslides Offshore Mt. Etna, Italy, in 6th International Symposium. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, S. Krastel, J.-H. Behrmann, D. Völker, M. Stipp, C. Berndt, R. Urgeles, J. Chaytor, K. Huhn, M. Strasser, C. B. Harbitz, Eds. (Springer, 2014), vol. 37, pp. 307–316. 35. M. P. Poland, A. Peltier, A. Bonforte, G. Puglisi, The spectrum of persistent volcanic flank instability: A review and proposed framework based on Kīlauea, Piton de la Fournaise, and Etna. J. Volcanol. Geotherm. Res. 339, 63–80 (2017). 36. F. L. Chiocci, D. Ridente, Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts). Mar. Geophys. Res. 32, 13–23 (2011). 37. V. Leroy, A. Strybulevych, J. H. Page, M. G. Scanlon, Sound velocity and attenuation in bubbly gels measured by transmission experiments. J. Acoust. Soc. Am. 123, 1931–1940 (2008). 38. G. Barreca, A. Bonforte, M. Neri, A pilot GIS database of active faults of Mt. Etna (Sicily): A tool for integrated hazard evaluation. J. Volcanol. Geotherm. Res. 251, 170–186 (2013). 39. D. Massonnet, K. L. Feigl, Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36, 441–500 (1998).; http://hdl.handle.net/2122/12277

  14. 14

    المساهمون: Schindlbeck‐Belo, Julie C., 1 Institut für Geowissenschaften Universität Heidelberg, Im Neuenheimer Feld 234‐236 Germany, Kutterolf, Steffen, 2 GEOMAR Helmholtz Centre for Ocean Research Kiel SFB574, Wischhofstraße 1‐3 Kiel 24148 Germany, Danišík, Martin, 3 GeoHistory Facility, John de Laeter Centre, TIGeR Curtin University Perth WA 6845 Australia, Schmitt, Axel K., Freundt, Armin, Pérez, Wendy, Harvey, Janet C., Wang, Kuo‐Lung, 4 Institute of Earth Sciences, Academia Sinica Taipei 11529 Taiwan, Lee, Hao‐Yang

    المصدر: Journal of Quaternary Science. 36:169-179

    وصف الملف: text

  15. 15

    المساهمون: Department of Earth and Environmental Sciences, Dalhousie University, Department of Oceanography, Dalhousie University, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany, Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS), Institut des Sciences de la Terre de Paris (iSTeP), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE01-0002,RidgeFactory-Slow,Ridge Factory Slow : Interactions fluide-roche en contexte d'exhumation du manteau aux dorsales lentes. Etude d'un cas extrême peu magmatique.(2018)

    المصدر: Journal of Geophysical Research : Solid Earth
    Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2021, 126 (10), ⟨10.1029/2021JB022177⟩
    Journal Of Geophysical Research-solid Earth (2169-9313) (American Geophysical Union (AGU)), 2021-10, Vol. 126, N. 10, P. e2021JB022177 (24p.)
    Journal of Geophysical Research : Solid Earth, 2021, 126 (10), ⟨10.1029/2021JB022177⟩

    وصف الملف: application/pdf; text

  16. 16
    Academic Journal

    المساهمون: King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE) Division, Marine Science Program, Red Sea Research Center (RSRC), Reef Genomics Lab, Helmholtz Center for Ocean Research (GEOMAR), Wischhofstr. 1-3, 24148 Kiel, Germany, Ecological Modelling, Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany

    وصف الملف: application/pdf

    Relation: http://www.nature.com/doifinder/10.1038/srep08940; Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming 2015, 5:8940 Scientific Reports; Scientific Reports; http://hdl.handle.net/10754/346702

  17. 17

    المساهمون: Simonet Roda, Maria, 1Department of Earth and Environmental Sciences LMU München Munich 80333 Germany, Griesshaber, Erika, Angiolini, Lucia, 2Dipartimento di Scienze della Terra 'A. Desio' Università degli Studi di Milano Milano 20133 Italy, Harper, David A.T., 3Department of Earth Sciences Durham University Durham DH1 3LE UK, Jansen, Ulrich, 4Senckenberg Forschungsinstitut und Naturkundemuseum Frankfurt Frankfurt am Main 60325 Germany, Bitner, Maria Aleksandra, 5Institute of Paleobiology Polish Academy of Sciences Warsaw 00‐818 Poland, Henkel, Daniela, 6GEOMAR‐Helmholtz Centre for Ocean Research Kiel 24148 Germany, Manzanero, Eloy, 7Universidad Nacional de Educación a Distancia, UNED Madrid 28040 Spain, Müller, Tamás, 8Earth Science Institute Slovak Academy of Sciences Banská Bystrica 974 01 Slovakia, Tomašových, Adam, Eisenhauer, Anton, Ziegler, Andreas, 9Central Facility for Electron Microscopy University of Ulm Ulm 89081 Germany, Schmahl, Wolfgang W.

    المصدر: Lethaia, 2021, Vol.54(4), pp.558-577 [Peer Reviewed Journal]

    وصف الملف: application/pdf; text

  18. 18

    المساهمون: Taylor, Kevin, Böttner, Christoph, 1GEOMAR Helmholtz‐Centre for Ocean Research Kiel Wischhofstraße 1‐3 Kiel 24148 Germany, Callow, Ben J., 2Ocean and Earth Science University of Southampton University Road Southampton SO17 1BJ UK, Schramm, Bettina, Gross, Felix, 3Center for Ocean and Society University of Kiel Kiel Germany, Geersen, Jacob, Schmidt, Mark, Vasilev, Atanas, 4Institute of Oceanology – Bulgarian Academy of Sciences 40 Parvi may str. PO Box 152 Varna 9000 Bulgaria, Petsinski, Petar, Berndt, Christian

    المصدر: Sedimentology

    وصف الملف: text

  19. 19

    المساهمون: MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut de Recherche pour le Développement (IRD), GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

    المصدر: Frontiers in Microbiology
    Frontiers in Microbiology, 2020, 11, ⟨10.3389/fmicb.2020.502336⟩
    Frontiers In Microbiology (1664-302X) (Frontiers Media Sa), 2020-10, Vol. 11, P. 502336 (19p.)
    Frontiers in Microbiology, Frontiers Media, 2020, 11, ⟨10.3389/fmicb.2020.502336⟩
    Frontiers in Microbiology, Vol 11 (2020)

    وصف الملف: application/pdf; text; archive

  20. 20

    المساهمون: Institute of Marine Sciences / Institut de Ciències del Mar [Barcelona] (ICM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Sorbonne Université (SU), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

    المصدر: The Geological Society, London, Special Publications
    The Geological Society, London, Special Publications, Geological Society of London, 2020, 500 (1), pp.289-300. ⟨10.1144/SP500-2019-176⟩
    Geological Society, London, Special Publications