يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"非對稱通道"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
  2. 2

    المؤلفون: 吳睿中, Wu,Jui-Chung

    المساهمون: 呂忠津, Lu,Chung-Chin

    Time: 45

    وصف الملف: 155 bytes; text/html

    Relation: [1] J.F.F.Sellers,“Bit loss and gain correction code,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 35–38, Jan. 1962. [2] V.I.Levenshtein,“Binary codes capable of correcting deletions,insertions and reversals (english translation),” Soviet Physics Doklady, vol.10,no.8,Feb.1966. [3] N.J.A.Sloane,“On single-deletion-correcting codes,” Ray-Chaudhuri Festschrift[online], 2001. [4] G.Tenengolts,“Nonbinary codes,correcting single deletion or insertion,” IEEE Transactions on Information Theory, vol. 30, no. 5, pp.766–769,Sep.1984. [5] Z.Liu and M.Mitzenmacher,“Codes for deletion and insertion channels with segmented errors,” ISIT 2007, pp. 846–850, Jun. 2007. [6] L.Calabi and W.Hartnett,“A family of codes for the correction of substitution and synchronization errors,” IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 102–106, Jan. 1969. [7] E.Tanaka and T.Kasai,“Synchronization and substitution error-correcting codes for the levenshtein metric,” IEEE Transactions on Information Theory, vol. 22, no. 2, pp. 156–162, Mar. 1976. [8] K.A.S.Abdel-Ghaffar,H.C.Ferreira,and L.Cheng,“On linear and cyclic codes for correcting deletions,” ISIT 2007, pp.851–855, Jun.2007. [9] J.Ullman,“On the capabilities of codes to correct synchronization errors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp.95–105,Jan.1967. [10] M.Davey and D.Mackay,“Reliable communication over channels with insertions,deletions,and substitutions,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001. [11] M.Mitzenmacher and E.Drinea,“A simple lower bound for the capacity of the deletion channel,” IEEE Transactions on Information Theory,vol.52,no.10,pp.4657–4660,Oct.2006. [12] E.Drinea and M.Mitzenmacher,“On lower bounds for the capacity of deletion channels,” IEEE Transactions on Information Theory, vol. 52,no.10,pp.4648–4657,Oct.2006. [13] E.Drinea and M.Mitzenmacher,“Improved lower bounds for the capacity of i.i.d. deletion and duplication channels,” IEEE Transactions on Information Theory, vol. 53,no.8,pp.2693–2714,Aug.2007. [14] E.Drinea and A.Kirsch,“Directly lower bounding the information capacity for channels with i.i.d. deletions and duplications,” ISIT 2007,pp.1731–1735,Jun.2007. [15] S.Diggavi, M.Mitzenmacher, and H.D.Pfister,“Capacity upper bounds for the deletion channel,” ISIT 2007, pp. 1716–1720, Jun. 2007. [16] I.Csiszar and J.Korner, Information Theory:Coding Theorems For Discrete Memoryless Systems. New York: Academic, 1981, pp. 29–46,99–122. [17] I.Csiszar,“The method of types,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2505–2523, Oct. 1998. [18] R.J.McEliece, Theory of Information and Coding:A Mathematical Framework for Communication. Addison-Wesley, 1977. [19] R.G.Gallager, Information Theory and Reliable Communication. Wiley,1968. [20] S.Verdu,“On channel capacity per unit cost,” IEEE Transactionson Information Theory, vol. 36, no. 5, pp. 1019–1030, Sep. 1990. [21] M.Jimbo and K.Kunisawa,“An iteration method for calculating the relative capacity,” Information and Control, vol. 43, pp. 216–233, 1979. [22] M.Mitzenmacher,“Capacity bounds for sticky channels,” IEEE Transactions on Information Theory, vol. 54, no. 1, pp. 72–77, Jan. 2008. [23] C.Shannon,“The zero error capacity of a noisy channel,” IRE Transactions on Information Theory, vol. 2, no. 3, pp. 8–19, Sep. 1956.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29828