يعرض 1 - 20 نتائج من 63 نتيجة بحث عن '"電腦軟體"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Dissertation/ Thesis

    المؤلفون: 吳玉珍, Wu, Yu-Zhen

    المساهمون: 沈宗倫

    وصف الملف: 5191486 bytes; application/pdf

    Relation: 壹、中文資料(按作者姓氏筆畫排序) 一、書籍 (一)、IAN GOODFELLOW, et al.,深度學習(陳仁和;初版),2019年10月。 (二)、李馨,資料庫系統管理與實作:Access + Excel商務應用,4版, 2022年8月。 (三)、松尾豐,了解人工智慧的第一本書:機器人和人工智慧能否取代人類?(江裕真;初版), 2016年8月。 (四)、陳昇瑋 & 溫怡玲,人工智慧在台灣: 產業轉型的契機與挑戰,2019年6月。 (五)、陳家駿,AI/ChatGPT v.智慧財產權─美國生成式AI案例評析,2024年。 (六)、陳家駿,人工智能vs智慧財產權, 2021年9月。 (七)、謝銘洋,智慧財產權法,12版, 2023年。 二、期刊論文 (一)、吳漢傑、簡信裕,由智慧財產及商業法院判決探討我國人工智慧(AI)相關發明之進步性判斷,智慧財產權,302期,2024年2月。 (二)、李清祺、馮聖原,電腦軟體發明專利制度探討--我國與歐洲制度發展的演進,智慧財產權,201期,2015年9月。 (三)、沈宗倫,由電腦軟體相關發明論專利法之發明評價與界限,萬國法律,第 244 期,2022年8月。 (四)、沈宗倫,抗體相關發明下專利「可據以實現要件」之再詮釋 ─ 以美國聯邦最高法院 Amgen Inc. v. Sanofi 一案為思考起點,台灣法律人,33期,2024年3月。 (五)、沈宗倫,專利權之公示與公信--以我國專利法第26條第1項為中心,專利師,17期,2013年4月。 (六)、邱元玠、古文豪、陳麒文,論專利可據以實現要件─以請求項缺少必要技術特徵為探討核心,智慧財產權,第228期,2017年12月。 (七)、張濱璿,人工智慧演算法之法規與監理議題─自歐盟透明性要求之規範內涵談起,月旦法學雜誌,343期,2023年12月。 (八)、陳志遠,論專利說明書充分揭露之界線--以文獻種類對於「所屬技術領域中具有通常知識者」影響為核心,專利人,36期,2018年。 (九)、陳家駿、許正乾,從美國專利適格標的指南談AI相關發明審查原則暨近年專利申請重要案例,月旦法學雜誌,320期,2022年1月。 (十)、陳蕙君,論專利權範圍、專利權效力範圍與專利權保護範圍之區辨,智慧財產權,38期,2002年。 (十一)、馮聖原、高健忠,美日歐因應新興科技電腦軟體發明審查原則比較分析,智慧財產權,275期,2021年11月。 (十二)、馮震宇,論生成式 AI 時代著作權之保護與規範--從美國 DABUS 與 Goldsmith 案談起,月旦法學雜誌,341期,2023年10月。 (十三)、黃文儀,AI關連發明與專利,專利師,55期,2023年10月。 (十四)、黃雯琪、謝國廉,歐洲人工智慧專利保護要件之研究,科技法律評析,12期,2020年。 (十五)、楊智傑、鄭富源,歐盟人工智慧法與生成式AI規範,國會季刊,第52卷第1期,2024年3月。 (十六)、楊謹瑋、古文豪、陳麒文,論專利可據以實現要件─以申請專利範圍過廣為探討核心,智慧財產權,第228期,2017年12月。 (十七)、劉建偉、劉媛及羅雄麟,半監督學習方法,計算機學報,vol. 38 (8), 2015年。 (十八)、謝祖松,專利周邊限定主義及中心限定主義之辯與辨—兼論折衷主義,專利師,22期,2015年7月。 (十九)、謝國廉,論專利法對人工智慧之保護──歐美實務之觀點,高大法學論叢,15卷2期,2020年3月。 三、碩博士論文 (一)、黃雯琪,人工智慧專利保護要件之研究,國立高雄大學財經法律學系碩士論文,2020 年。 (二)、廖經翔,專利進步性審查門檻的變革?--論AI技術對PHOSITA概念之影響,國立臺北大學法律學系碩士論文,2022年。 (三)、鄭褘寧,專利法關於人工智慧發明重要議題之研究,國立政治大學,法律科際整合研究所碩士論文,2021年。 四、法院判決 (一)、智慧財產法院105年度行專訴字第3號判決。 (二)、智慧財產法院109年度行專訴字第20號。 (三)、智慧財產法院110年度行專訴字第23號。 五、報告或官方文件 (一)、中國國家知識產權局,專利審查指南,2023年12月。 (二)、經濟部智慧財產局,我國人工智慧相關專利申請概況及申請人常見核駁理由分析,2019年12月。 (三)、經濟部智慧財產局,專利審查基準彙編,2023年7月。 (四)、經濟部智慧財產局,資訊科技專利審查案例彙編,2022年1月。 六、網路資源 (一)、ChatGPT 引爆「生成式 AI 元年」強化自學力,讓你「役物,而不役於物」,TechNews,2023年4月18日,https://technews.tw/2023/04/18/chatgpt-work-application/ (最後檢視時間:2024/07/21)。 (二)、人工智慧加速科技奇點到來,軟體、金融、醫療、教育、製造產業樣貌將大不同,天下雜誌,2023年9月8日,https://www.cw.com.tw/article/5127084 (最後檢視時間:2024/07/21)。 貳、外文資料(按作者首字母排序) I.Books 1.Crevier, Daniel (1993), AI: THE TUMULTUOUS SEARCH FOR ARTIFICIAL INTELLIGENCE. New York, NY: Basic Books. 2.Hebb, D.O. (2002), THE ORGANIZATION OF BEHAVIOR: A NEUROPSYCHOLOGICAL THEORY. London: Psychology press. 3.McClelland, J. L., & Rumelhart, D. E. (1ed 1986), PARALLEL DISTRIBUTED PROCESSING: EXPLORATIONS IN THE MICROSTRUCTURE OF COGNITION: FOUNDATIONS. Cambridge, MA: MIT Press. 4.McClelland, J. L., & Rumelhart, D. E. (1ed 1986), PARALLEL DISTRIBUTED PROCESSING: EXPLORATIONS IN THE MICROSTRUCTURE OF COGNITION: PSYCHOLOGICAL AND BIOLOGICAL MODELS. Cambridge, MA: MIT Press. 5.McCorduck, Pamela & Cli Cfe (2ed 2004), MACHINES WHO THINK: A PERSONAL INQUIRY INTO THE HISTORY AND PROSPECTS OF ARTIFICIAL INTELLIGENCE. Boca Raton, FL:CRC Press. 6.Pearl, J. (1988), PROBABILISTIC REASONING IN INTELLIGENT SYSTEMS: NETWORKS OF PLAUSIBLE INFERENCE. San Francisco, CA: Morgan Kaufmann. 7.Russell, Stuart & Norvig, Peter (3ed 2018), ARTIFICIAL INTELLIGENCE: A MODERN APPROACH. New York, NY: Pearson Education. 8.Srinivas, M. & Sucharitha, G. & Matta, A. (2021). MACHINE LEARNING ALGORITHMS AND APPLICATIONS. New York, NY: John Wiley & Sons. 9.Wiener, N. (2019). CYBERNETICS OR CONTROL AND COMMUNICATION IN THE ANIMAL AND THE MACHINE. Cambridge, MA: MIT Press. II.Refereed Book Chapters 1.Corea, Francesco & Corea, Francesco, AI knowledge map: How to classify AI technologies, in AN INTRODUCTION TO DATA: EVERYTHING YOU NEED TO KNOW ABOUT AI, BIG DATA AND DATA SCIENCE (2019). 2.Tzoulia, Eleni, The Patentability of AI-Related Subject Matter According to the EPC as Implemented by the European Patent Office, in ARTIFICIAL INTELLIGENCE AND NORMATIVE CHALLENGES (2023). III.Conference Papers 1.Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J., Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, A FIELD GUIDE TO DYNAMICAL RECURRENT NEURAL NETWORKS (2001). 2.Lederberg, Joshua, How DENDRAL was conceived and born, A HISTORY OF MEDICAL INFORMATICS (1990). 3.Zha, D.& Bhat, Z. P. & Lai, K. H. & Yang, F. & Hu, X., Data-centric ai: Perspectives and challenges, PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (2023). IV.Journal papers 1.Abbott, Ryan, Everything is obvious, 66 UCLA L. REV. (2019). 2.Abbott, Ryan, I think, therefore I invent: creative computers and the future of patent law, 57 BCL REV. (2016). 3.Arrieta, A. B. & Díaz-Rodríguez, N. & Del Ser, J. & Bennetot, A. & Tabik, S. & Barbado, A. & . & Herrera, F., Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, 58 INFORMATION FUSION (2020). 4.Bostrom, Nick, How long before superintelligence, 2 INTERNATIONAL JOURNAL OF FUTURES STUDIES (1998). 5.Cuntz, A. & Fink, C. & Stamm, H., Artificial Intelligence and Intellectual Property: An Economic Perspective, WORLD INTELLECTUAL PROPERTY ORGANIZATION (WIPO) ECONOMIC RESEARCH WORKING PAPER SERIES (2024). 6.Dang, N. C. & Moreno-García, M. N. & De la Prieta, F., Sentiment analysis based on deep learning: A comparative study, 9 ELECTRONICS (2020). 7.Denberg, Thomas D. & Winner, Ellen P., Requirements for Deposits of Biological Materials for Patents Worldwide, 68 DENV. UL REV. (1991). 8.Deng, Li & Yu, Dong, Deep learning: methods and applications, 7 FOUNDATIONS AND TRENDS® IN SIGNAL PROCESSING (2014). 9.Ebrahim, Tabrez Y., Artificial intelligence inventions & patent disclosure, 125 PENN ST. L. REV. (2020). 10.Gröger, Christoph, There is no AI without data, 64 COMMUNICATIONS OF THE ACM 98(2021). 11.Gu, F. & Chung, M. H. & Chignell, M. & Valaee, S. & Zhou, B. & Liu, X., A Survey on Deep Learning for Human Activity Recognition, 54 ACM COMPUTING SURVEYS 1 (2021). 12.Gudivada, V. & Apon, A. & Ding, J., Data quality considerations for big data and machine learning: Going beyond data cleaning and transformations, 10 INTERNATIONAL JOURNAL ON ADVANCES IN SOFTWARE (2017). 13.Gunning, David & Aha, David, DARPA’s explainable artificial intelligence (XAI) program, 40 AI MAGAZINE (2019). 14.Hilbert, Martin & López, Priscila, The world’s technological capacity to store, communicate, and compute information, 332 SCIENCE (2011). 15.Hinton, Geoffrey E., Learning multiple layers of representation, 11 TRENDS IN COGNITIVE SCIENCES (2007). 16.Hopfield, John J, Neural networks and physical systems with emergent collective computational abilities, 79 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES (1982). 17.Hu, Shuijing, Comparative Study on Patent Eligibility of Artificial Intelligence in the United States, China and Japan (2020). 18.Hu, Shuijing, Patent Protection for Artificial Intelligence in China (2019). 19.Jakubik, J. & Vössing, M. & Kühl, N. & Walk, J. & Satzger, G., Data-centric artificial intelligence, BUSINESS & INFORMATION SYSTEMS ENGINEERING (2024). 20.Jarrahi, M. H. & Memariani, A. & Guha, S., The principles of data-centric AI, 66 COMMUNICATIONS OF THE ACM (2023). 21.Kimmelblatt, Brian, Immaterial to Innovation: The Story of Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co, 5 BROOKLYN JOURNAL OF CORPORATE, FINANCIAL & COMMERCIAL LAW (2011). 22.KUISMIN, ATTE, Black Box AI–The Problem with Sufficient Disclosure, HOW WILL AI SHAPE THE FUTURE OF LAW? (2019). 23.Mammen, Christian E. & Richey, Carrie, AI and IP: are creativity and inventorship inherently human activities?, 14 FIU L. REV. (2020). 24.Manyika, J. & Chui, M. & Brown, B. & Bughin, J. & Dobbs, R. & Roxburgh, C. & Hung Byers, A., Big data: The next frontier for innovation, competition, and productivity (2011). 25.McCulloch, Warren S. & Pitts, Walter, A logical calculus of the ideas immanent in nervous activity, 5 THE BULLETIN OF MATHEMATICAL BIOPHYSICS (1943). 26.Picht, Peter Georg & Thouvenin, Florent, AI and IP: Theory to Policy and Back Again – Policy and Research Recommendations at the Intersection of Artificial Intelligence and Intellectual Property, 54 IIC - INTERNATIONAL REVIEW OF INTELLECTUAL PROPERTY AND COMPETITION LAW 916(2023). 27.Price, W. & Nicholson, I. I. & Rai, A. K., Clearing opacity through machine learning, 106 IOWA L. REV. (2020). 28.Rudzite, Liva, Algorithmic Explainability and the Sufficient-Disclosure Requirement under the European Patent Convention, 31 JURIDICA INT'L (2022). 29.Rumelhart, D. E. & Hinton, G. E. & Williams, R. J., Learning representations by back-propagating errors, 323 NATURE (1986). 30.Samek, W. & Wiegand, T. & Müller, K. R., Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models, ARXIV PREPRINT ARXIV:1708.08296 (2017). 31.Sarker, I. H., Machine Learning: Algorithms, Real-World Applications and Research Directions, 2 SN COMPUT SCI (2021). 32.Searle, JR, Minds, brains, and programs, 3 BEHAVIORAL AND BRAIN SCIENCES 417(1980). 33.Shi, Y. F. & Yang, Z. X. & Ma, S., Kang, P. L. & Shang, C. & Hu, P. & Liu, Z. P., Machine learning for chemistry: basics and applications, ENGINEERING (2023). 34.Turing, Alan M., Computing Machinery and Intelligence (1950). 35.Vetter, Greg R., Patent Law's Unpredictability Doctrine and the Software Arts, 76 MO. L. REV. (2011). 36.Wang, Lihui, From Intelligence Science to Intelligent Manufacturing, 5 ENGINEERING 615 (2019). 37.Yanisky-Ravid, Shlomit & Jin, Regina, Summoning a new artificial intelligence patent model: in the age of pandemic, SOCIAL SCIENCE RESEARCH NETWORK (2020). 38.Yanisky-Ravid, Shlomit & Liu, Xiaoqiong Jackie, When artificial intelligence systems produce inventions: the 3A era and an alternative model for patent law (2017). V.Cases 1.AK Steel Corp. v. Sollac, 344 F.3d 1234 (Fed. Cir. 2003) 2.Alice Corp. v. CLS Bank International, 573 U.S. 208, 134 S. Ct. 2347, 189 L. Ed. 2d 296, 24 Fla. L. Weekly Supp. 870 (2014). 3.Amgen Inc. v. Sanofi, 143 S. Ct. 1243, 215 L. Ed. 2d 537 (2023). 4.Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co., 598 F.3d 1336 (Fed. Cir. 2010). 5.Bayer AG v. Schein Pharms., Inc., 301 F.3d 1306 (Fed. Cir. 2002). 6.Biogen Inc v. Medeva plc [1997] RPC 1. 7.Blackboard v. DESIRE2LEARN, 574 F.3d 1371, 368 F. App'x 111 (Fed. Cir. 2009). 8.Centripetal Networks, Inc. v. Cisco Sys., 492 F. Supp. 3d 495 (E.D. Va. 2020). 9.Chiron Corp. v. Genentech Inc., 363 F.3d 1247, 1254, 70 USPQ2d 1321, 1326(Fed. Cir. 2004). 10.EPO Case Number G 0001/19 (March. 10, 2021). 11.EPO Case Number T 0161/18 (May. 12, 2020). 12.EPO Case Number T 0258/03 (Apr. 21, 2004). 13.EPO Case Number T 0593/09 (Dec. 20, 2011). 14.EPO Case Number T 0641/00 (Sep. 26, 2002). 15.EPO Case Number T 0676/94 (Feb. 06, 1996). 16.EPO Case Number T 1191/19 (Apr. 01, 2022). 17.EPO Case Number T 1227/05 (Dec.13, 2006). 18.EPO Case Number T 1845/14 (Nov.08, 2018). 19.EPO Case Number T 2237/09 (Sep. 30, 2011). 20.EPO Case Number T 2574/16 (Nov. 21, 2019). 21.Genentech, Inc. v. Novo Nordisk, A/S, 108 F.3d 1361, 42 U.S.P.Q.2d 1001 (Fed. Cir. 1997). 22.Holland Furniture Co. v. Perkins Glue Co., 277 U.S. 245, 48 S. Ct. 474 (1928). 23.Hybritech Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367 (Fed. Cir. 1986). 24.In re Colianni, 561 F.2d 220, 224, 195 USPQ 150, 153 (CCPA 1977). 25.In re Fisher, 427 F.2d 833, 839, 166 USPQ 18, 24 (CCPA 1970). 26.In re Ghiron, 442 F.2d 985, 169 U.S.P.Q. 723 (CCPA 1971). 27.In re Glass, 492 F.2d 1228, 181 U.S.P.Q. 31 (CCPA 1974). 28.In re GPAC Inc., 57 F.3d 1573, 35 U.S.P.Q.2d 1116 (Fed. Cir. 1995). 29.In re Hogan, 559 F.2d 595 (CCPA 1977). 30.In re Marzocchi, 439 F.2d 220, 169 U.S.P.Q. 367 (CCPA 1971). 31.In re Wands, 858 F.2d 731 (Fed. Cir. 1988). 32.In re Wright, 999 F.2d 1557, 27 U.S.P.Q.2d 1510 (Fed. Cir. 1993). 33.Juno Therapeutics, Inc. v. Kite Pharma., 10 F.4th 1330 (Fed. Cir. 2021). 34.Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66, 132 S. Ct. 1289, 182 L. Ed. 2d 321, 23 Fla. L. Weekly Supp. 189 (2012). 35.O'REILLY ET AL. v. MORSE ET AL, 56 U.S. 62 (1853). 36.Pannu v. Iolab Corp., 155 F.3d 1344 (Fed. Cir. 1998). 37.Regents of the Univ. of Cal. v. Lilly & Co., 119 F.3d 1559, 43 U.S.P.Q.2d (BNA) 1398 (Fed. Cir. 1997). 38.The Incandescent Lamp Patent, 159 U.S. 465, 16 S. Ct. 75 (1895). 39.Vasudevan Software, Inc. v. MicroStrategy, Inc., 782 F.3d 671, 114 U.S.P.Q.2d 1349 (Fed. Cir. 2015). 40.Zipher Ltd v. Markem Systems Ltd [2008] EWHC 1379. VI.Reports or Official Documents 1.European Patent Office & Japan Patent Office, Comparative Study On Computer Implemented Inventions/Software Related Inventions Report 2021 EPO & JPO(2020), available at https://www.jpo.go.jp/news/kokusai/epo/document/software_201903/01_en.pdf (Last visited: 2024/07/21). 2.European Patent Office, Case Law of the Boards of Appeal, 10 edition 2022, available at https://link.epo.org/web/case_law_of_the_boards_of_appeal_2022_en.pdf (Last visited: 2024/07/21). 3.European Patent Office, Guidelines for Examination in the European Patent Office (March 2024), available at https://link.epo.org/web/legal/guidelines-epc/en-epc-guidelines-2024-hyperlinked.pdf (Last visited: 2024/07/21). 4.European Patent Office, Patenting artificial intelligence: Conference summary (European Patent Office Munich 2018), available at https://e-courses.epo.org/pluginfile.php/23523/mod_resource/content/2/Summary%20Artificial%20Intelligence%20Conference.pdf (Last visited: 2024/07/21). 5.European Patent Office, Report of the IP5 expert round table on artificial intelligence (2018), available at https://link.epo.org/ip5/IP5+roundtable+on+AI_report_22052019.pdf (Last visited: 2024/07/21). 6.Japan Patent Office & China National Intellectual Property Administration, Comparative Study On AI-Related Inventions Report 2023 JPO and CNIPA (2024), available at https://www.jpo.go.jp/e/news/kokusai/cn/ai_report_2023_e.html (Last visited: 2024/07/21). 7.Japan Patent Office, Examination Handbook for Patent and Utility Model in Japan, March 2024. 8.Japan Patent Office, Recent Trends in AI-related Inventions (2023), available at https://www.jpo.go.jp/e/system/patent/gaiyo/ai/document/ai_shutsugan_chosa/report.pdf (Last visited: 2024/07/21). 9.SCP, Background Document on Patents and Emerging Technologies, U.N. Doc. E/SCP/30/5(2019). 10.SCP, Study on the sufficiency of disclosure, E/SCP/22/4(2015). 11.United States Patent and Trademark Office, 2019 Revised Patent Subject Matter Eligibility Guidance, 84 FR 50 (2019). 12.United States Patent and Trademark Office, Examining Computer-Implemented Functional Claim Limitations for Compliance With 35 U.S.C. 112, 84 FR 57 (2019). 13.United States Patent and Trademark Office, Inventing AI: Tracing the diffusion of artificial intelligence with US patents (2020) , available at https://www.uspto.gov/sites/default/files/documents/OCE-DH-AI.pdf (Last visited: 2024/07/21). 14.United States Patent and Trademark Office, Inventorship Guidance for AI-Assisted Inventions (2024), available at https://www.federalregister.gov/documents/2024/02/13/2024-02623/inventorship-guidance-for-ai-assisted-inventions (Last visited: 2024/07/21). 15.United States Patent and Trademark Office, Manual of Patent Examining Procedure (Feb. 2023), available at https://www.uspto.gov/web/offices/pac/mpep/index.html (Last visited: 2024/07/21). 16.United States Patent and Trademark Office, Patent eligible subject matter: Public views on the current jurisprudence in the United States (2022), available at https://www.uspto.gov/sites/default/files/documents/USPTO-SubjectMatterEligibility-PublicViews.pdf (Last visited: 2024/07/21). 17.United States Patent and Trademark Office, Public Views on Artificial Intelligence and Intellectual Property Policy (2020), available at https://www.uspto.gov/sites/default/files/documents/USPTO_AI-Report_2020-10-07.pdf (Last visited: 2024/07/21). 18.World Intellectual Property Organization, Getting the Innovation Ecosystem Ready for AI: An IP policy toolkit, GENEVA: WORLD INTELLECTUAL PROPERTY ORGANIZATION (2024), available at https://www.wipo.int/publications/en/details.jsp?id=4711 (Last visited: 2024/07/21). 19.World Intellectual Property Organization, Patent Landscape Report - Generative Artificial Intelligence (GenAI) , GENEVA: WORLD INTELLECTUAL PROPERTY ORGANIZATION (2024), available at https://www.wipo.int/web-publications/patent-landscape-report-generative-artificial-intelligence-genai/assets/62504/Generative%20AI%20-%20PLR%20EN_WEB2.pdf (Last visited: 2024/07/21). 20.World Intellectual Property Organization, WIPO technology trends 2019: Artificial intelligence, GENEVA: WORLD INTELLECTUAL PROPERTY ORGANIZATION (2019), available at https://www.wipo.int/edocs/pubdocs/en/wipo_pub_1055.pdf (Last visited: 2024/07/21). 21.World Intellectual Property Organization, World Intellectual Property Report 2022 - The Direction of Innovation, GENEVA: WORLD INTELLECTUAL PROPERTY ORGANIZATION (2022), available at https://www.wipo.int/edocs/pubdocs/en/wipo-pub-944-2022-en-world-intellectual-property-report-2022.pdf (Last visited: 2024/07/21). 22.World Intellectual Property Organization, World Intellectual Property Report 2024- Making Innovation Policy Work for Development, GENEVA: WORLD INTELLECTUAL PROPERTY ORGANIZATION (2024), available at https://www.wipo.int/edocs/pubdocs/en/wipo-pub-944-2024-en-world-intellectual-property-report-2024.pdf (Last visited: 2024/07/21). VII.Doctoral Dissertations and Master’s Theses 1.Paul Werbos, Beyond regression: New tools for prediction and analysis in the behavioral sciences, PHD THESIS, COMMITTEE ON APPLIED MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA (1974). VIII.Internet Source 1.Automatic Language Processing Advisory Committee, Language and Machines: Computers in Translation and Linguistics (1966). 2.Daniel Zhang, et al., Artificial Intelligence Index Report 2022 (2022) , available at https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf (Last visited: 2024/07/21). 3.Dario Amodei, Danny Hernandez, AI and compute (2018), available at https://openai.com/research/ai-and-compute (Last visited: 2024/07/21). 4.ImageNet Large Scale Visual Recognition Challenge (ILSVRC), available at https://www.image-net.org/challenges/LSVRC/ (Last visited: 2024/07/21). 5.IP5, Examination practices on AI-related inventions (2023), available at https://www.jpo.go.jp/news/kokusai/ip5/document/gochou_ai/chart.pdf (Last visited: 2024/07/21). 6.IP5, IP5 NET/AI roadmap (2021), available at https://link.epo.org/ip5/IP5_NET_AI_roadmap_FIN.pdf (Last visited: 2024/07/21). 7.IP5, IP5 NET/AI Task Force Scoping document (2020), available at https://link.epo.org/ip5/IP5+NET_AI+TF+scoping+document.pdf (Last visited: 2024/07/21). 8.James Lighthill, Artificial intelligence: A general survey (Science Research Council London 1973). 9.JavaTpoint, Deep learning vs. Machine learning vs. Artificial Intelligence, available at https://www.javatpoint.com/deep-learning-vs-machine-learning-vs-artificial-intelligence (Last visited: 2024/07/21). 10.Joe Osborne, Google’s tensor processing unit explained: this is what the future of computing looks like, 6 TECHRADAR (2017),available at https://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-computing-looks-like-1326915 (Last visited: 2024/07/21). 11.Michael Chui, et al., The economic potential of generative AI, (2023), available at https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier (Last visited: 2024/07/21). 12.Michael Chui, et al., The state of AI in 2022—and a half decade in review (2022), available at https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review (Last visited: 2024/07/21). 13.Michael Chui, et al., The state of AI in 2023: Generative AI’s breakout year (2023), available at https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year (Last visited: 2024/07/21). 14.Patrick Heckeler, Software patent applications: How the EPO examines innovative software, available at https://www.bardehle.com/europeansoftwarepatents/software-patent-epo/ (Last Visited 2024/07/21). 15.Ray Perrault & Jack Clark, Artificial Intelligence Index Report 2024 (2024), available at https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf (Last visited: 2024/07/21). 16. United States Patent and Trademark Office, AI-related resources, available at https://www.uspto.gov/initiatives/artificial-intelligence/artificial-intelligence-resources (Last visited: 2024/07/21). 17.What is the ACL and what is Computational Linguistics?, available at https://www.aclweb.org/portal/what-is-cl (Last visited: 2024/07/21). 18.World Economic Forum, Future of jobs report 2023 (2023), available at https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf (Last visited: 2024/07/21). 19.Young Global Leaders, World Economic Forum Annual Meeting 2016 : Mastering The Fourth Industrial Revolution(2016), available at https://www.weforum.org/publications/world-economic-forum-annual-meeting-2016-mastering-the-fourth-industrial-revolution/ (Last visited: 2024/07/21). 20.浅川直輝,ChatGPTの登場「AI進化の分岐点に」ソニーG北野CTO,日本経済新聞,2023年2月16日,https://www.nikkei.com/article/DGXZQOUC139810T10C23A2000000/ (最後檢視時間:2024/07/21)。; G0107652022; https://nccur.lib.nccu.edu.tw//handle/140.119/153347; https://nccur.lib.nccu.edu.tw/bitstream/140.119/153347/1/202201.pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Conference

    المؤلفون: 馮震宇

    المساهمون: 國立政治大學法律學系

    مصطلحات موضوعية: 電腦軟體, 智慧財產權

    Relation: 曾陳明汝教授六秩誕辰祝壽論文集; https://nccur.lib.nccu.edu.tw//handle/140.119/42018

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Report
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Dissertation/ Thesis
  20. 20

    المؤلفون: 劉珍汝, Liu, Chen-Ru

    المساهمون: 淡江大學教育科技學系碩士在職專班, 徐新逸

    وصف الملف: 144 bytes; text/html

    Relation: 壹、中文文獻 Fraenkel, J. R., Wallen, N., Hyu, H., /楊孟麗、謝水南 (2013)。 How to design and evaluate research in education / 教育研究法:研究設計實務 (第二版 ed.) 。心理出版社。 王千倖 (19971001)。合作學習。師友月刊,364 期,34-38。 王子龍 (2014)。 結合概念構圖之翻轉教學法研究-以國小六年級自然與生活科 技領域為例 (未出版之碩士論文)。靜宜大學。台中市。 江怡璇 (2012)。高職綜合職能科輔導學生參與丙級證照技能檢定考試實施現況 與評價之調查 (未出版之碩士論文)。中原大學。桃園市。 江文雄 (1999)。技術及職業教育概論 (一版) 。師大書苑有限公司。 吳清山 (2013/05)。教育名詞-混合式學習模式。 教育資料與研究,109, 171-172。 吳清山 (2014/01)。善用活化教學提升學生學習效能。 師友月刋,559, 30-35。 呂玉瑞 (2014)。 翻轉教室結合問題導向學習對新北市某國小六年級學童學習成 效與學習動機之研究—以製作電子書課程為例 (未出版之碩士論文)。銘傳大 學。台北市。 呂莉莉、張永翔、徐明志(民91.04)。運用合作學習策略激勵高職生的學習動機。 [Application of Cooperative Learning Stratagem to Encourage Vocational High School Student''s Learning Motivation] 。木柵高工學報,6,頁 167-186。 97 吳筱莉 (2014)。翻轉教學對低成就學習者之英語自我導向學習與學習成效影 響 (未出版之碩士論文)。國立臺灣科技大學。台北市。 何奕慧、陳美如 (2014/04)。『合作學習』之回觀思辯與實踐反映。 教育研究 月刋, (240) 何琦瑜等著 (2013)。 翻轉教育:未來學習、未來的學校、未來的孩子。 天下雜 誌股份有限公司。 李岳霞 (2013-04)。4 撇步,成功翻轉教室。親子天下雜誌,44 期。 李嘉齡、陳盈足、洪照明、孔俊傑、鄭志宗 (2007)。 Vygotsky 近側發展區(ZPD) 的理論意涵及其在教學研究上的啟示。 國小主任儲訓班專題研究集,105, p307-318。 邱子翎 (2012)。 數位學習融入軟體應用科目研究-以台南市某高職低成就學生 為例 (未出版之碩士論文)。臺灣首府大學。台南市。 周士閔 (2013)。 Cai 策略對高職學生視聽電子丙級檢定課程學習成效之研究 (未 出版之碩士論文)。南華大學。嘉義縣。 周楷蓁 (2013)。翻轉教室結合行動學習之教學成效 (未出版之碩士論文)。國立 台中教育大學。台中市。 林佩璇 (1993/01)。臺灣省高級職業學校合作學習教學法實驗研究。教育研究資 訊,第一卷(第一期),100-117。 林惠明 (2005)。 在校生技能檢定的實施對高職餐飲科學生技能學習影響之研 究 (未出版之碩士論文)。銘傳大學。台北市。 林達森 (200106)。合作學習與認知風格對科學學習之效應 。教育學刊,17 期, 255-279。 98 林騰蛟、李彥儀 (2011)。 技職教育政策與發展。技術及職業教育季刋, 1(1), 6-16。 林佳蓉(2016)。翻轉學習的迷思與成功關鍵。教育研究月刊,261 期,p32-p45。 金陵 (2012/09)。翻轉課堂”翻轉了什麼?。中國信息技術教育, 2012(09), 18-18。 金陵(2012/10)。 薩爾曼‧汗怎樣走向“翻轉課堂。中國信息技術教育, 2010(10), 29-29。 姚立德、張仁家 (2011)。盤整技職教育-技專校院再出發。技術及職業教育季刋 , 1(1), 17-32。 范聖佳、郭重吉 (2007.07) 。 國中數學教師試行合作學習之行動研究。科學教 育,13, p73-90。 徐新逸 (2014.11)。翻轉教室與磨課師對教育訓練之啟示。研習論壇,167, p36-46。 徐藝華 (2006)。給他們機會-翻轉人生。 師友月刊,470,8-16。 陳棨秸 (2011)。電腦專業證照之學習態度及學習困擾對學習滿意度影響之研究 -以高職進修學校學生為例 (未出版之碩士論文)。萬能科技大學。桃園市。 陳韋翔 (2013)。 應用反向課堂與同儕互動學習於混成式教學之研究 (未出版之 碩士論文)。中原大學。桃園市。 陳國泰(2016)。結合問題導向學習的翻轉教學之設計:以國小數學教學為例。教 育研究月刊,261 期,p18-p31。 陶學文 (2005/01)。走出困惑-高校課堂教學的反向研究之一。 湖南師範大學 教育科學學報, 4(1), 50-53。 99 高大威 (2013.09)。教育的重新想像--我讀薩爾曼.可汗的《可汗學院的教育奇 蹟》。 文訊,335,頁152-153。 张渝江 (2012/10)。翻轉課堂變革。中國信息技術教育, 2012(10),118-120。 張輝誠 (2014)。學思達翻轉教學法──我的十五年教學生涯之後的全新改革。教 師天地,191,2014/08,頁37-43。 張嘉蘭 (2011.04)。網路合作學習系統教學成效之研究--以高職「軟體應用」課 程為例。 壢商學報,19,頁129-156。 張德銳、李建民、丁一顧、李俊達、高紅瑛、林芳如、高敏麗、張淑娟、鄒小蘭、 蔡美錦、王永進 (2007/10) 。 教學行動研究: 實務手冊理論介 紹 [Insturctional Action Research:Practical Handbook and Theory] 。 高等教育文化事業有限公司。 張新仁 (2014.01)。分組合作教學--改變課堂教學生態的希望工程。師友月刊, 559,頁36-43。 張春興 (1996)。 教育心理學-三化取向的理論與實踐。東華書局。 張瑞雄 (2013)。 Moocs 的現況與未來。師友月刊,550,36-40。 單文經 (2013.12)。為「學教翻轉、以學定教」的理念探源:杜威教材心理化主 張的緣起與要義. [The Origin of the Idea of "Teaching by Learning in an Inverted Classroom": John Dewey''s Theory of the Psychologizing of Subject Matter] 。教育研究,236,頁115-130。 黃政傑、吳俊憲 (2006/09)。合作學習-發展與實踐 。五南圖書出版股份有限公 司。 黃政傑, 林佩璇 (1996/04)。 合作學習 。五南圖書出版有限公司。 黃政傑(2016/01)。落實翻轉教室的核心理念。教育研究月刊,261 期,p5-p17。 100 黃華山、邱靖玲、張嘉蘭、郭炳辰、黃鈞彥、周殷菀(2006)。網路合作學習系統 教學成效之研究--以高職「軟體應用」課程為例. [A Study of Web-Based Cooperative Learning System''s Teaching Effect] 。資訊管理展望, 8(2), 頁25-44。 楊宏珩、段曉林(2001/03)。合作學習-高中化學教學之行動研究。科學教育學 刊, 9(1),55-57。 楊明恭、葛建培、王國興 (92.06)。合作學習教學策略對高職學生技能學習影響 之實驗研究。技術及職業教育學報,6,頁89-104。 葉欽龍 (2007)。 適性化補救教學系統之開發研究—以電腦軟體應用丙級檢定為 例 (未出版之碩士論文)。長庚大學。桃園市。 鄭淑止 (2015)。 基於模糊理論探討翻轉教室進行校園古蹟學習之成效 (未出版 之碩士論文)。亞洲大學。台中市。 劉名峰 (2005)。電腦評分系統應用於教學之研究-以高職生參加"電腦軟體應用 "丙級技能檢定術科為例 (未出版之碩士論文)。中華大學。新竹市。 劉怡甫 (2014)。 從anti-MOOC 風潮談MOOCs 轉型與SPOCs 擅場。 財團法 人高等教育評鑑中心基金會。 劉耀東 (2000)。 技能檢定對高職教學計畫影響之研究 (未出版之碩士論文)。國 立台北科技大學。台北市。 蔡明祥 (2011)。合作學習對高職學生學習成就與學習動機之影響 (未出版之碩 士論文)。國立中興大學。台中市。 蕭錫錡 (1993)。從技術士證照的特質談職業教育應有的理念。技術及職業教育 雙月刊,17,p24-28。 101 盧佳君 (2012)。學生使用數位教學平台學習效能之評估-以電腦軟體應用丙級 為例 (未出版之碩士論文)。國立彰化師範大學。彰化市。 戴國峻 (2012)。 學習動機及學習滿意度之相關研究-以參加技能檢定之高職學 生為例 (未出版之碩士論文)。國立雲林科技大學。雲林縣。 薩爾曼.可汗(Salman Khan)著/王亦穹譯 (2013)。可汗學院的教育奇蹟 : 兩億人 的家教課, 跟比爾.蓋茲的孩子一起學習 [The one world schoolhouse] (初 版) 。圓神出版社。 饒達欽 (1990)。 技術職業教育理念與實施 (初版)。文景出版社。 教師發展與教學資源中心廖怡慧。教學新思維-翻轉課堂(Flipped classroom)。 Retrieved from http://www.teachers.fju.edu.tw/epapers/index.php?option=com_cont ent&task=view&id=366&Itemid=369 教育Wiki。翻轉教室 。Retrieved from http://content.moe.edu.tw/wiki/index.php/%E7%BF%BB%E8%BD% 89%E6%95%99%E5%AE%A4%EF%BC%88flipped_classroom%EF%BC %89 教育部合作學習工作坊。教室教學的春天-分組合作學習專業培訓工作坊。 Retrieved from http://www.coop.ntue.edu.tw/ 102 貳、英文文獻 Ash, K. (2012). Educators evaluate '' flipped classrooms''; benefits and drawbacks seen in replacing lectures with on-demand video.(usage of video tutorials). Education Week, 32(02), s6. Berrett, D. (2012). How " flipping" the classroom can improve the traditional lecture. Chronicle of Higher Education. Bergmann Jonathan, and Sams Aaron, (2012-07-15). Flip your classroom: Reach every student in every class every day International Society For Technology In Education. Bergmann Jonathan, A. S. (2012). Flip your classroom : Reach every student in every class every day (First edition. ed.) International Society for Technology in Education. Fulton, K. (2012). Upside down and inside out: Flip your classroom to improve student learning. Learning & Leading with Technology, (8), 12-17. Herreid, C. F., & Schiller, N. A. (2013). Case studies and the flipped classroom.( CASE STUDY)(report). Journal of College Science Teaching, 42(5), 62. Fulton Kathleen P, (2014). Time for learning: Top 10 reasons why flipping the classroom can change education. Thousand Oaks, California: SAGE Publications. Stiggins, R. J. (1997). Student- centered classroom assessment. second edition 103 Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning Environments Research, (2), 171-193. doi:10.1007/s10984-012-9108-4 Strayer, J. F., . (2007). The effects of the classroom flip on the learning environment a comparison of learning activity in a traditional classroom and a flip classroom that used an intelligent tutoring system Columbus, Ohio : Ohio State University. Tucker, B. (2012). The flipped classroom: Online instruction at home frees class time for learning.(what next). Education Next, 12(1), 82.; U0002-1408201602251100; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111641; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111641/1/index.html