يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"自热"', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: 北京大学微电子研究所

    المصدر: 知网

    مصطلحات موضوعية: 自热效应, 载流子注入效应, 电阻, 寿命预测, SOI

    Relation: 中国科学:信息科学.2014,(07),912-919.; 808879; http://hdl.handle.net/20.500.11897/174278

  5. 5
    Academic Journal
  6. 6
    Report
  7. 7
    Report
  8. 8

    المؤلفون: 陳芸慈, Chen, Yun-Tsz

    المساهمون: 淡江大學化學工程與材料工程學系碩士班, 張煖, Chang, Hsuan

    وصف الملف: 144 bytes; text/html

    Relation: Ahchieva, D., M. Peglow, S. Heinrich, L. Mörl, T. Wolff, F. Klose, Oxidative dehydrogenation of ethane in a fluidized bed membrane reactor, Applied Catalysis A: General, 296, 176-185, 2005. Basile, A., L. Paturzo, F. Lagan, The partial oxidation of methane to syngas in a palladium membrane reactor: Simulation and experimental studies, Catalysis Today, 67(1-3), 65-75. 2001. Cavani, F., N. Ballarini, A. Cericola, Oxidative dehydrogenation of ethane and propane: How far from commercial implementation, Catalysis Today, 127, 113-131, 2007. Coronas, J., M. Menéndez, J. Santamaría, Use of a ceramic membrane reactor for the oxidative dehydrogenation of ethane to ethylene and higher hydrocarbons, Industrial & Engineering Chemistry Research, 34, 4229-4234, 1995. De Groote, A. M., G. F. Froment, Simulation of the catalytic partial oxidation of methane to synthesis gas, Applied Catalysis A:General, 138(2), 245-264, 1996. Deb, K., A. Patap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE. Tran. Evol. Comput., 6, 182-197, 2002. Freni, S., G. Calogero, S. Cavallaro, Hydrogen production from methane through catalytic partial oxidation reactions, Journal of Power Sources, 87(1), 28-38. 2000. Froment, G.F., K.B. Bischoff, J.D. Wilde, Chemical reactor analysis and design, Wiley, Toronto, Canada, 2011. Haryanto, A., S. Fernando, N. Murali, S. Adhikari, Current status of hydrogen production techniques by steam reforming of ethanol: A review, Energy and Fuels, 19(5), 2098-2106, 2005. Heracleous, E., A.A. Lemonidou, Ni-Nb-O Mixed Oxides as Highly Active and Selective Catalysts for Ethene Production via Ethane Oxidative Dehydrogenation. Part I: Characterization and Catalytic Performance, Journal of Catalysis, 237, 162, 2006a. Heracleous, E., A.A. Lemonidou, Ni-Nb-O mixed oxides as highly active and selective catalysts for ethane production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling, Journal of Catalysis, 237, 175, 2006b. Holland, J. H., Adaptation in Natural and ArtificialSystems, University of Michigan Press, 1975. Inamdar, S. V., S. K. Gupta, D. N. Saaf, MULTI-OBJECTIVE OPTIMIZATION OF AN INDUSTRIAL CRUDE DISTILLATION UNIT USING THE ELITIST NONDOMINATED SORTING GENETIC ALGORITHM, Chem. Eng. Res. Des., 82, 611-623, 2004. Ji, P., W. Feng, H. J. Van Der Kooi, J. De Swaan Arons, Comparison of three integrated catalytic partial oxidation (CPO) processes producing H2 for fuel cell application, Industrial and Engineering Chemistry Research, 43(9), 2005-2016, 2004. Ji, P., H. J. van der Kooi, J. De Swaan Arons, Simulation and thermodynamic analysis of an integrated process with H2 membrane CPO reactor for pure H2 production, Chemical Engineering Science, 58(17), 3901-3911, 2003. Jin, W., X. Gu, S. Li, P. Huang, N. Xu, J. Shi, Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas, Chemical Engineering Science, 55(14), 2617-2625, 2000. Julbe, A., D. Farrusseng, D. Cot, C. Guizard, The chemical valve membrane: a new concept for an auto-regulation of O2 distribution in membrane reactors, Catalysis Today, 67, 139-149, 2001. Kameyama, T., M. Dokiya, M. Fujishige, H. Yokokawa and K. Fikuda, Possibility for Effect Production of Hydrogen from Hydrogen Sulfide by means of a Porous Vycor Glass Membrane, Ind. Eng. Chem. Fund., 20, 97-99, 1981. Kasat, B. R., D. Kunzru, D. N. Saraf, S. K. Gupta, Multiobjective Optimization of Industrial FCC Units Using Eltist Nondominated Sorting Genetic Algorithm, Ind. Eng. Chem. Res., 41, 4765-4776, 2002. Mason, E.A., A.P. Malinauskas, Gas transport in porous media: The dusty gas model, Elsevier, Amsterdam, 1983. Marcano, J. G. S., T. T. Tsotsis, Catalytic membranes and membrane reactors, Wiley-VCH Verlag GmbH, 2002. Mulder, M., Basic principles of membrane technology, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1991. Ostrowski, T., A. Giroir-Fendler, C. Mirodatos, L. Mleczko, Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors Part I: A modeling approach, Catalysis Today, 40(2-3), 181-190, 1998. Rajesh, K.M., G. Gowda, R. M. Mendon, Primary productivity of the brackishwater impoundments along Nethravathi estuary, Mangalore in relation to some physico-chemical parameters, Fish. Technology, 39, 85-87, 2002. Rodríguez, M.L., D.E. Ardissone, E.L. Opez, M.N. Pedernera, D.O. Borio, Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance, Industrial and Engineering Chemistry Research, 50, 2690-2697, 2011. Rodríguez, M.L., M.N. Pedernera, D.O. Borio, Two dimensional modeling of a membrane reactor for ATR of methane, Industrial and Catalysis Today, 193, 137-144, 2012. Rosen, M. A., Thermodynamic investigation of hydrogen production by steam-methane reforming, International Journal of Hydrogen Energy, 16(3), 207-217. 1991. Shinji, O., M. Misono, Y. Yoneda, Bull. Chem. Soc. Japan, 55, 2760, 1982. Srinivas, N., K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evolutionary Computation Journal, 2(3), 221-248, 1995. Tarafder, A., B. C. S. Lee, A. K. Ray, G. P. Rangaiah, Multiobjective Optimization of an Industrial Ethylene Reactor Using a Nondominated Sorting Genetic Algorithm, Ind. Eng. Chem. Res., 44, 124-141, 2005. Xu, J.G.F. Froment, Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics, AIChE J., 35, 88-96, 1989.; U0002-0808201611071000; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111319; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111319/1/index.html

  9. 9
  10. 10

    المؤلفون: 韩雪,余运波,贺泓等

    مصطلحات موضوعية: 乙醇制氢, 自热重整, 铜铈复合氧化物, 低温, 共沉淀

    Relation: 韩雪,余运波,贺泓等. 铜铈复合氧化物催化乙醇自热重整制氢[C]. 见:第十六届全国催化学术会议. 中国辽宁沈阳. 2012-10-15.; http://ir.rcees.ac.cn/handle/311016/32126

  11. 11
    Dissertation/ Thesis
  12. 12

    المؤلفون: 曾建源, Chien-Yuen Tseng

    المساهمون: 黃智方, Chih-Fang Hunag

    Time: 47

    وصف الملف: 155 bytes; text/html

    Relation: [1] R. Singh, J. A. Cooper, Jr., M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, vol. 49, no. 4, Apr. 2002. [2] C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon Carbide High-Power Devices,” IEEE Trans. Electron Devices, vol. 43, no. 10, Oct. 1996, pp. 1732-1741. [3] J. Richmond, S. H. Ryu, M. Das, S. Krishnaswami, S. Hodge Jr., A. Agarwal and J. Palmour, ”An Overview of Cree Silicon Carbide Power Devices,” Presented at 8th Workshop on Power Electronics in Transportation(WPET 2004), Sheraton Detroit Novi, Michign, USA , pp 37-42, Oct. 2004. [4] J. Millán, P. Godign on, and D. Tournier, “Recent Development in SiC Power Devices and Related Technology,” Proc. 24th International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, Vol. 1, NIS, pp. 16-19, 2004. [5] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002. [6] H. S. Lee, “High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE. [7] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol.75, pp. 1208-1225, Apr. 1949. [8] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., vol. 28, pp. 435-489, July 1949. [9] P.A. Ivanov, M.E. Levinshtein, A. Agarwal, S. Krishnaswami, and J. Palmour, “Analysis of the effect of temperature on base current gain in power 4H-SiC BJTs,” Materials Science Forum, Vols. 527-529 2006 pp. 1441-1444 [10] M. Domeij, E. Danielsson, W. Liu, U. Zimmermann, C-M. Zetterling, and M. Ostling, “Measurements and simulations of self-heating and switching with 4H-SIC power BJTs,” in IEEE ISPSD’2003, 2003, pp.375-378. [11] B. J. Baliga, Power Semiconductor Devices. Boston, MA:PWS,1996. [12] A. Elasser, M. Ghezzo, N. Krishnamurthy, J. Kretchmer, A. W. Clock, D. M. Brown, and T. P. Chow, “Switching characteristics of silicon carbide power PIN diodes,” Solid-State Electron, vol. 44, no. 2, pp. 317-323, Feb. 2000. [13] J. Wang, and B.W. Williams, “4H-SiC npn power bipolar junction transistor,” Semiconductor Science and Technology, vol. 14, no. 12, pp. 1088-1097, Dec. 1999. [14] M. Roschke, and F. Schwierz, “Electron Mobility Models for 4H, 6H, and 3C SiC,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1442-1447, July 2001. [15] X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, and M. Weiner, “On the temperature coefficient of 4H-SiC BJT current gain,” Solid-State Electronics, vol. 47, no. 2, pp. 233-239, Feb. 2003. [16] M. Ikeda, H. Matsunami, and T. Tanaka, “Site effect on the impurity levels in 4H, 6H, and 15R SiC,” Phys. Rev. vol. 22, no. 3, pp. 2842-2854, Sep. 1980. [17] D. Morelli, J. Hermans, C. Beetz, W.S. Woo, G.L. Harris, and C. Taylor, Silicon Carbide and Related Materials Eds. Spencer, M.G., et al., Institute of Physics Conference Series N137, pp. 313-316, 1993. [18] S. Ryu, A. K. Agarwal, R. Singh, and J.W. Palmour, “1800 V npn bipolar junction transistors in 4H-SiC,” IEEE Electron. Device Lett., vol. 22, no. 3, pp. 124–126, Mar. 2001. [19] C. Huang, and J. A. Cooper Jr., “4H-SiC bipolar junction transistors with BVCEO>3,200V,” in Proc. ISPSD, pp. 57-60, 2002. [20] Pavel A. Ivanov, Michael E. Levinshtein, Anant K. Agarwal, Sumi Krishnaswami, and John W. Palmour, “Temperature dependence of the current gain in power 4H-SiC NPN BJTs,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1245-1249, May. 2006. [21] “Medici user’s manual, version 2003.6,” Synopsys, Inc., 2003. [22] H. K. Gummel, and H. C. Poon, “An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., vol. 49, pp. 827-852, 1970. [23] A.Vladimirescu, Kaihe Zhang, A.R.Newton, D.O.Pederson, and A.Sangiovanni-Vincentelli, “SPICE Version 2G User’s Guide,” Department of Electrical Engineering and Computer Sciences University of California Berkeley, Ca., 94720, Aug. 1981. [24] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors, ” John Wiley & Sons, pp. 1088-1090, 1998.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/31843

  13. 13

    Relation: 第八届全国氢能学术会议论文集; 第八届全国氢能学术会议; 汪丛伟;阴秀丽;吴创之;马隆龙;周肇秋.生物油自热重整制氢反应的力学模拟.见:.第八届全国氢能学术会议论文集,西安,2007; http://ir.giec.ac.cn/handle/344007/7340

  14. 14

    المؤلفون: 李德章, Lee, De-Chang

    المساهمون: 黃惠良, 冉曉雯, Hwang, Huey-Liang, Zan, Hsiao-Wen

    مصطلحات موضوعية: 低溫多晶矽, 熱效應, LTPS, poly-si, self-heating

    Time: 47

    وصف الملف: 155 bytes; text/html

    Relation: [1]A. G. Lewis, I-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs,’’ in IEDM Tech. Dig., 1990,pp.843-846 [2]Y. Matsueda, M. Ashizawa, S. Aruga, H. Ohshima, and S. Morozumi, “New technologies for compact TFT LCDs with high-aperture ratio, ’’soc. Information Display, Tech. Dig., pp, 315-318, 1990. [3]R. G. Stewart, S. N. Lee, A. G. Ipri, D. L. Jose, D. A. furst, S. A. Lipp, and W. R. Roach, “A 9V polysilicon LCD with integrated gray-scale drivers,” soc. Information Display, Tech. Dig., pp, 319-322, 1990. [4]T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T.Nishida, T. Mine, E. Takeda, and T. Nagano, ”Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography,’’ IEEE Trans. Electron Devices, Vol. 42, No. 7, pp.1305-1313, 1995. [5]S. D. S. Malhi, H. Shichijio, S.K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardaon, A. h. Shah, L. R. Hite, R. H. Womoack, P. K. Chatterjee, and H. W. Lan, “Characteristics and Three-Dimenssional Integration of MOSFETs in Small-Grain LPCVD Polycrystalline Silicon,’’ IEEE Trans. Electric Devices, Vol.32, No.2, pp.258-281, 1985. [6]K. YoShizaki, H. Takahashi, Y. Kamigaki, T.Yasui, K. Komori, and H. Katto, ISSCC Digest of tech. Papers, p.166, February 1985. [7]N. D. Young, G. Harkin, R. M. Bunn, D. J. McCullloch, and I.D. French, “The Fabrication and Characteristization of EEPROM Arrays on Glass Using a Low-Temperature Poly-Si TFT Process,’’ IEEE Trans. Electron Devices, Vol. 43, NO.11, pp.1930-1936, 1996. [8]T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with poly-Si TFT’s Analog Readout Circuits and Dynamics shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5 ,pp.1086-1039,1991. [9]Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “A Thermal Printer Head with Cmos Thin-Film Transistors and Heating Elements Integrated on a Chip,’’ IEEE Solid-State Circuits Conference (ISSCC), p.266, 1998. [10]N. Yamauhchi, Y. Inaba, and M. Okamamura, “An Integrated Photodector-Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin Film Transistors, ’’ IEEE Photonic Tech. Lett., Vol.5, p.319, 1993. [11]M. G. Clark, “Current Status and Future Propects of Poly-Si,’’ IEEE proc. Circuits Devices Syst., Vol. 141, No.1, p3.3, 1994. [12]K. Nakazawa, J. Appl. Phys., 69(3), p.1703, 1992. [13]Mark D. Jacunski, Michael S. Shur, IEEE Trans. On Electron Devices, p.1146, 1999 [14]M. Koyanagi, Tamio Shimatani, IEDM, 5.2.1, 1993 [15]Tamio Shimatani, Jpn. J. Appl. Phys. 33 (1994) p.619-622 [16]Satoshi Inoue, IEDM, 20.4.1, 1997 [17]Satoshi Inoue, Jpn. J. Appl. Phys. Vol.41(2002) pp.6313-6319 [18]Satoshi Inoue, Jpn. J. Appl. Phys. Vol.42(2003) pp.4213-4217 [19]Ching-Wei Lin, Jpn. J. Appl. Phys. Vol.41(2002) pp.5517-5522 [20]P.-S. Lin, J-Y. Guo, and C.-Y. Wu, “A Quasi-Two Dimensional Analytical Model for the Turn-On Characteristic of polysilicon Thin-Film Transistors,’’ IEEE Trans. On Electron Devices, 37 (3), 666-674 (1990). [21]S. Chen, F. Shone, and J. Kuo, “A closed form inversion type polysilicon thin-film transistor DC/AC model consonsidering the kink effect,’’ J. Appl. Phys., 77, 1776(1995). [22]H. Chern, C. Lee, and T. Lei, “An analytical model for the above threshold characteristics of polysilicon thin-film transistors,’’ IEEE Trans. Electron Devices, 42, 1240(1995). [23]G. Fortunate and P. Migliorato, ”Model for the abovethreshold characteristics and threshold voltage in polysilicon thin-film transistors,” J. Appl. Phys., 68, 2463(1990). [24] M. Jacunski, “Characterization and Modeling of Short-Channel Polysilicon Thin Film Transistors,’’ Ph. D. Dissertation University of Virginia, 1997. [25]S. S. Sung, D. C. Chen, C. T. Cheng and C. F. Yeh, “ A physically-Based Built-in Spice Poly-Si TFT Model for Circuit Simulation and Reliability Evaluation,’’ Proceedings of IEDM, 139-142, December 1996. [26]M. D. Jacunski, M. shur, T. Ytterdal, A OWusu, and M. Hack, “AC and DC Characterization and SPICE Modeling of Short-Channel Polysilicon TFT’s,’’ presented at 1996 Mater. Res. Soc. Spring Meet., San Francisco, Ca., Apr. 1996. [27]B. Iniguez, Z. Xu, T. A. Fjeldly, and M. Shur, “Unified Model for short-Channel Poly-Si TFTs,’’ Solid-State Electronics, 43, 1821-1831(1999). [28]K. Lee, M. Shur, T. A. Fjeldy and T. Ytterdal , Semiconductor Device Modeling for VLSI, Prentice-Hall, 1993. [29] T. A. Fjeldy, T. Ytterdal and M. Shur, Introduction to Device Modeling and Circuit Simulation, New York: John Wiley & Sons, 1998. [34]Mark D. Jacunski, Characterization an Modeling of Short Channel Polysilicon Thin Film Transistor, the thesis for the Degree of Doctor of Philosophy, 1997 [35]Chul Ha Kim, Ki-Soo Sohn, Temperature-Depenent Charateristics of Polycrystalline Si Thin-Film Transistor, J. of the Korean Phy. Society, Vol.28, No.5, 1995, pp.620-624 [36]Kenneth Chain,Chenming Hu, A MOSFET electron mobility mobility model of wide temperature range(77-400k) for IC simulation, Smicond. Sci. Technol. 12(1997) 355-358. [37]Zheng Taolei, On “Pure Self-heating Effect” of MOSFET in SOI, IEEE, 2001, 665-668 [38]Jonathan S. Brodsky, A Physics-Based Dynamic Thermal Impedance Model for SOI MOSFET’s, IEEE, Trans. on Elec. Device, Vol.44, No.6, 1997 [39]Wei Jin, Chenming Hu,Self-Heating Characterization for SOI MOSFET Based on AC Output Conductance, IEDM, 7.6.1, 1999 [40]Jun Lin, Ming-C. Cheng, Efficient Thermal Modeling of SOI MOSFETs for Fast Dynamic Operation, IEEE, Trans. on Ele. Devices, Vol.51, No.10, 2004 [41]Deok-Su Jeon, A Temperature-Dependent SOI MOSFET Model for High-Temperature Application (27C-300C), IEEE, Trans. on Ele. Devices, Vol.38, No.9, 1991 [42]B. Iniguez, M. S. Shur, Thermal Self-heating and Kink Effects in a-Si:H Thin Film Transistors, IEDM, 32.7.1, 1998 [43]Ling Wang, M. S. Shur, Self-Heating and Kink Effects in a-Si:H Thin Film Transistors, IEEE, Trans. on Elec. Device, Vol.47, No.2, 2000 [44]E. Arnold, S. P. Herko, Comparison of self-heating effects in Bulk-Silicon and SOI High-Voltage Devices, IEDM, pp.813-816, 1994 [45]R. Awadallah, J. S. Yuan, A New Structure of a Silicon-on-Insulator MOSFET Reducing the Self-Heating Effect, Int. J. Electronics, Vol.86, No.6, pp.707-712, 1999 [46]T. A. Fjeldly, M. Shur, Introduction to device modeling and circuit simulation, Wiley, NY 1998 [47]M. S. Shur, H. C. Slade, M.D. Jacunski, SPICE models for amorphous silicon and polysilicon thin film transistor, J. Electrochem. Soc., Vol.144, No.8, pp.2833-2839,1997 [48]Y. Cheng, Unified physical model includeing self-heating effect for fully depleted SOI/MOSFET’s, IEEE, Trans. Elec. Devices, Vol.43, No.8, pp.1291-1296, 1996 [49] K. E. Goodson, Effect of microscale thermal conduction on the packing limit of silicon-on-insulator electronic devices, IEEE, Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 715–722, 1992. [50] B. M. Tenbroek et al., Self-heating effects in SOI MOSFET’s and their measurement by small signal conductance techniques, IEEE, Trans. Electron Devices, vol. 43, pp. 2240–2248, 1996. [51] F. Kreith, Principles of Heat Transfer. Boston, MA: PWS, 1997, p. 5. [52] L. T. Su et al., Measurement and modeling of self-heating in SOI NMOSFET’s, IEEE, Trans. Elec. Devices, vol. 41, pp. 69–75, 1994. [53] K. Shimizu, M. Matsumura, Transient temperature profiles in silicon films during pulsed laser annealing, Jpn. J.Appl. Phys., vol. 30, pp. 2664–2672, 1991. [54] C. T. Lynch, CRC Practical Handbook of Materials Science. Boca Raton, FL: CRC, 1989, p. 322. [55] J. S. Brodsky, R. M. Fox, S. Veeraraghavan, A physics-based, dynamic thermal impedance model for SOI MOSFET’s, IEEE, Trans. Electron Devices, vol. 44, pp. 957–964, 1997. [56]Charles Kittel, Introduction to Solid State Physics, Wiley; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/36327