-
1Conference
المساهمون: 北京分子科学国家实验室稀土材料化学与应用国家重点实验室北京大学化学与分子工程学院
المصدر: 知网
Relation: 第七届全国物理无机化学学术会议. 2016, 1.; 1933481; http://hdl.handle.net/20.500.11897/483314
-
2Conference
المساهمون: 北京大学核物理与核技术国家实验室
المصدر: 知网
Relation: 2010年全国荷电粒子源、粒子束学术会议、中国电工技术学会第十三届全国电子束离子束学术年会暨电子束离子束专业委员会换届大会、中国电子学会焊接专业委员会第十届全国电子束焊接学术交流会、粒子加速器学会第十二届全国离子源学术交流会、中国机械工程学会焊接分会高能束及特种焊接2010年学术交流会、北京电机工程学会第十一届粒子加速器学术交流会.; 957686; http://hdl.handle.net/20.500.11897/86171
-
3Academic Journal
المساهمون: 北京大学物理系
المصدر: 知网
Relation: 物理学报.1997,(09),178-185.; 1044239; http://hdl.handle.net/20.500.11897/88306
-
4
المؤلفون: 張峻賢, Chun-Hsin Chang
المساهمون: 胡淑芬, Shu-Fen Hu
مصطلحات موضوعية: 奈米線, 陽極氧化鋁, 自旋閥, nanowires, anodized aluminum oxide, spin valve
Relation: GN0698410295; http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0698410295%22.&%22.id.&; http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/102763
-
5Report
المؤلفون: 張炎輝
المساهمون: 材料科學及工程學系
مصطلحات موضوعية: 自旋閥, 磁控濺鍍法, 多層膜, 射頻, Spin valve, Magnetron sputtering, Multilayer, Radio frequency (RF), geo, manag
Relation: http://ir.lib.ncku.edu.tw/bitstream/987654321/77205/1/3010500403009.pdf; http://ir.lib.ncku.edu.tw/handle/987654321/77205
-
6Dissertation/ Thesis
المؤلفون: 何丽
المساهمون: 北京大学
المصدر: 万方 ; http://d.g.wanfangdata.com.cn/Thesis_Y2500610.aspx
Relation: 北京大学.; 730108; http://hdl.handle.net/20.500.11897/367517
-
7Dissertation/ Thesis
المؤلفون: 柯昇, Ko, Sheng, 許世英, Hsu, Shih-Ying
المساهمون: 電子物理系所
مصطلحات موضوعية: 巨磁阻, 自旋閥, 磁電阻, 磁矩翻轉, giant magnetoresistance, spin valve, magnetoresistance, magnetization reversal
-
8Dissertation/ Thesis
المؤلفون: 何承育, Ho, Cheng-Yu
المساهمون: 臺灣大學: 應用物理所, 陳永芳
مصطلحات موضوعية: 氮化銦鎵/氮化鎵奈米柱多重量子井, 量子侷限史塔克效應, Rashba自旋軌道交互作用, 自旋閥, 四氧化三鐵奈米球, InGaN/GaN nanorod multiple quantum wells, Quantum confined stark effect, Rashba spin-orbit interaction, Spin valve, Fe3O4 nanoparticle
وصف الملف: 140 bytes; text/html
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/257855; http://ntur.lib.ntu.edu.tw/bitstream/246246/257855/1/index.html
-
9Dissertation/ Thesis
المؤلفون: 籃英庭, Lan, Ying-Ting, 林志忠, 黃旭明, Lin, Juhn-Jong, Huang, Shiu-Ming
المساهمون: 物理研究所
مصطلحات موضوعية: 巨磁阻, 非區域自旋閥, 磁阻, nonlocal spin valve, Py/Au/Pu, NiFe/Au/NiFe, spin diffusion length in Au film
-
10Dissertation/ Thesis
المؤلفون: 陳浩軒, Chen, Hao-Hsuan
المساهمون: 臺灣大學: 物理研究所, 張慶瑞
مصطلحات موضوعية: 自旋閥, 奈米自旋力矩振盪器, 自旋力矩振盪器的同步, spin valve, spin torque nano-oscillator, synchronization of spin torque nano-oscillator
وصف الملف: 9884208 bytes; application/pdf
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/251581; http://ntur.lib.ntu.edu.tw/bitstream/246246/251581/1/ntu-100-D95222014-1.pdf
-
11Dissertation/ Thesis
المؤلفون: 江典蔚, Chiang, Tien-Wei
المساهمون: 臺灣大學: 物理研究所, 郭光宇, 李尚凡
مصطلحات موضوعية: 自旋閥, 磁壁, 粗糙度, 自旋極化率, 點接觸安德烈夫反射, spin valve, domain wall, roughness, spin polarization, Point Contact Andreev Reflection, BTK
وصف الملف: 17697325 bytes; application/pdf
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/251708; http://ntur.lib.ntu.edu.tw/bitstream/246246/251708/1/ntu-99-D94222012-1.pdf
-
12Dissertation/ Thesis
المؤلفون: 陳煜仁, Chen, Yu-Jen
المساهمون: 孫允武, 中興大學
مصطلحات موضوعية: Ni80Fe20, 鎳鐵, Spin-valve, ferromagnetic resonance, reflectometry, 自旋閥, 鐵磁共振, 反射式量測
Relation: http://hdl.handle.net/11455/17290
الاتاحة: http://hdl.handle.net/11455/17290
-
13
المؤلفون: 吳仲卿
المساهمون: 物理學系
مصطلحات موضوعية: Magnetic tunnel junction, Spin valve, Exchange bias, RKKY coupling, Nano-second-scaled electrical measurement, Magnetization reversal, 磁穿隧結, 自旋閥, 交換場, RKKY 耦合, 快速電性量測
Time: 42
وصف الملف: application/pdf; 0 bytes
Relation: 國科會計畫, 計畫編號: NSC98-2112-M018-004-MY3; 研究期間: 9908-10007; http://ir.ncue.edu.tw/ir/handle/987654321/18860
-
14
المؤلفون: 洪雅娟, Hung, Ya-Jyuan
المساهمون: 李志浩, 許瑤真, Lee, Chih-Hao, Hsu, Yao-Jane
مصطلحات موضوعية: 五環素, 鈷, 介面性質, 有機半導體, 自旋閥, 光電子能譜術, 吸收光譜, Pietancene, Cobalt, Interfacial, Organic semiconductor, spin valve, XPS, NEXAFS
Time: 22
وصف الملف: 155 bytes; text/html
Relation: 第一章 [1.1] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, “Giant magnetoresistive in soft ferromagnetic multilayers ”, Phys. Rev. B 43, 1297, 1991 [1.2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett. 61, 2472, 1988 [1.3] G. Binasch, P. Gr?nberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Phys. Rev. B 39, 4828, 1989 [1.4] V.I. Krinichnyi, “2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers”, Synth. Met. 108, 173, 2000 [1.5](a) Sanvito S and Rocha A R , “Molecular-Spintronics: The Art of Driving Spin Through Molecules”, J. Comput. Theor. Nanosci. 3, 624, 2006 (b)Jedema F J, Filip A T and van Wees B J, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve”, Nature 410, 345, 2001 [1.6] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, “Room temperature spin polarized injection in organic semiconductor”, Solid State Commun. 122, 181, 2002 [1.7] Z. H. Xiong, Di Wu, Z. Valy Vardeny, and Jing Shi, “Giant magnetoresistance in organic spin-valves”, Nature 427, 821, 2004 [1.8] Hisao Ishii and Kazuhiko Seki, “Energy level alignment at organic/metal interfaces studied by UV photoemission: breakdown of traditional assumption of a common vacuum level at the interface”, IEEE Trans. Electr. Dev. 44, 1295, 1997 [1.9] T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera1, “Room-Temperature Tunnel Magnetoresistance and Spin-Polarized Tunneling through an Organic Semiconductor Barrier ”, Phys. Rev. Lett. 98, 016601, 2007 [1.10] Toshihiro Shimada, Hiroyuki Nogawa, Takuya Noguchi, Yutaka Furubayashi, Yukio Yamamoto, Yasushi Hirose, Taro Hitosugi, and Tetsuya Hasegawa, “Magnetotransport Properties of Fe/Pentacene/Co:TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition”, Jap. J. Appl. Phys. 47, 1184, 2008 [1.11] M. V. Tiba, W. J. M. de Jonge, and B. Koopmans, “Morphology and electronic properties of the pentacene on cobalt interface”, J. Appl. Phys. 100, 093707, 2006 [1.12] 林智仁,「自旋閥結構Si/Ta/NiFe/Cu/Co/FeMn/Ta擴散現象之電鏡分析」,國立清 華大學工程與系統科學所,碩士論文,中華民國八十八年 [1.13] F.J. Wang, Z.H. Xiong, D. Wu, J. Shi, and Z.V. Vardeny, “Organic spintronics: The case of Fe/Alq3/Co spin-valve devices ”, Synth. Met. 155, 172, 2005 [1.14] Hong-Lie Shen, Guan-Xiong Li, Qin-Wo Shen, Tie Li, and Shi-Chang Zou, “Giant magnetoresistance and structural properties in Co/Cu/Co sandwiches with Si and Cr buffer layers”, Thin Solid Films 375, 55, 2000 [1.15] Hong-Lie Shen, Tie Li, Qin-WO Shen, Qiang Pan, and Shi-Chang Zou, “Correlation between the magnetic and transport properties of ni and cr buffered co/cu/co sandwiches ”, IEEE. 0-7803-5943-7, BC-07, 2000 [1.16] V. Butko, X. Chi, D. Lang, and A. Ramirez, “Field-effect transistor on pentacene single crystal”, Appl. Phys. Lett. 83, 4773, 2003 第二章 [2.1] M. N. Baibich , J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett. 61, 2472, 1988 [2.2] 江文中、李尚凡,「2007 諾貝爾物理獎—輕鬆看巨磁阻」,物理雙月刊,卅卷二期, 2008 [2.3] 莊怡君,「RuxMn100-x 合金與Ni80Fe20 之交換偏移效應之研究」,國立成功大學物 理研究所,碩士論文,中華民國九十一年 [2.4] Fert and I. A. Campbell, “Two-Current Conduction in Nickel”, Phys. Rev. Lett. 21, 1190, 1968 [2.5] Y. Sun, Y. Liu, and D. Zhu, “Advances in organic field-effect transistors ”, J. Mater. Chem. 15, 53, 2005 [2.6] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater. 10, 365, 1998 [2.7] 魏菱均,「有機半導體分子之合成、薄膜形貌與場效電晶體性質研究」,國立清 華大學化學研究所,碩士論文,中華民國九十五年 [2.8] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. Kangeveld-Voss, A. J. J. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. eeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature. 401, 685, 1999 [2.9] 林孝軒,「以同步輻射光研究Ag/Alq3 介面電子結構」,國立清華大學材料科學工程 學所,碩士論文,中華民國九十四年 [2.10] Christos D. Dimitrakopoulos, and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics ”, Adv. Mater. 14, 99, 2002 [2.11] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, “High Performance Organic Thin Film Transistors”, Mater. Res. Soc. Symp. Proc. 771, 169, 2003 [2.12] Maria Veronica Tiba., Organo-metallic structures for spintronic applications, geboren te Cernavoda, Roemeni?, Universiteitsdrukkerij Technische Universiteit Eindhoven, 2005 [2.13] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, “Room temperature spin polarized injection in organic semiconductor”, Solid State Commun. 122, 181, 2002 [2.14] 戴榮吉、林敏聰,「利用分子為自旋傳輸材料有機和分子自旋電子學簡介」,物理 雙月刊,卅卷二期,2008 [2.15] (a) Toshihiro Shimada, Hiroyuki Nogawa, Takuya Noguchi, Yutaka Furubayashi, Yukio Yamamoto, Yasushi Hirose, Taro Hitosugi, and Tetsuya Hasegawa, “Magnetotransport Properties of Fe/Pentacene/Co:TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition”, Japan. J. Appl. Phys. 47, 1184, 2008 (b) V.Yu. Aristov, O.V. Molodtsova, Yu.A. Ossipyan, B.P. Doyle, S. Nannarone, and M. Knupfer, “Ferromagnetic cobalt and iron top contacts on an organic semiconductor: Evidence for a reacted interface”, Org. Electron. 10, 8, 2009 (c) M. Grobosch, K. D?rr, R. B. Gangineni, and M. Knupfer, “ Energy level alignment and injection barriers at spin injection contacts between La0.7Sr0.3MnO3 and organic semiconductors”, Appl. Phys. Lett. 92, 023302, 2008 [2.16] M. Popinciuc, H. T. Jonkman, and B. J. van Wees, “ Energy level alignment symmetry at Co/pentacene/Co interfaces”, J. Appl. Phys. 100, 093714, 2006 第三章 [3.1]http://www.nsrrc.org.tw/ [3.2]汪建民,材料分析,中國材料科學學會,台灣,p325,p370,中華民國八十七年 [3.3] Vickerman, J.C. “Surface Analysis-The Principal Techniques”, John Wiley and Sons, New York, 1997 [3.4] G. Ertl, J.K?ppers, “Low Energy Electrons and Surface Chemistry”, Verlag Chemie, Beinheim, Germany, 1974 [3.5] Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, and Kazuhiko Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Adv. Mater. 605, 11, 1999 [3.6] 張濱、孫玉珍、王文皓,「關於用UPS測量功函數」,物理測試,第25卷第4期,p21, 2007 [3.7]Seah M P, Gilmore I S, Beamson G, “XPS:Binding Energy Calibration of Electron Spectrometers 5-Re-evaluation of the Reference Energies”, Surf. Interface Anal., 26, 642 1998 [3.8](a)Park. Y Choong V, Gao Y., “Work Function of Indium Tin Oxide Transparent Conductor Measured By Photoelectron Spectroscopy”, Appl. Phys. Lett. 68, 2699 (1996) (b)Schlaf R. Murata H, Kafafi Z H, “Work Function Measurements on Indium Tin Oxide Films”, J. Electron. Spectrosc. Relat. Phenom. 120, 149, 2001 [3.9] 員鳳屏,「龐磁阻錳氧化物薄膜之應變效應」,國立中山大學物理研究所,碩士 論文,中華民國九十五年 [3.10] J. St?hr, “NEXAFS Spectroscopy”, Springer, Heidelberg, 1992 [3.11] 李宗勳,「光電子激發顯微鏡(X-PEEM)於奈米磁性結構之研究」,國立成功大學 物理研究所,碩士論文,中華民國九十二年 [3.12] Z. Q. Qiu, and S. D. Bader, “Surface magneto-optic Kerr effect (SMOKE) ”, J. Magn. Magn. Mater. 200, 664, 1999 [3.13] Marvis J. Freiser, “A survey of magnetooptic effects”, IEEE Trans. Magn. 4, 152, 1968 第四章 [4.1] Francis Gamier, Abderrahim Yassar, Ryad Hajlaoui, GiUes Horowitz, FranGoise Deloffre, Bernard Serve Simone Ries, and Patrick Alnott, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers”, J. Am. Chem. Soc., 115, 8716, 1993 第五章 [5.1] (a) Norbert Koch, Alexander Gerlach, Steffen Duhm, Hendrik Glowatzki, Georg Heimel, Antje Vollmer, Yoichi Sakamoto, Toshiyasu Suzuki, J?rg Zegenhagen, J?rgen P. Rabe, and Frank Schreiber, “Adsorption-Induced Intramolecular Dipole: Correlating Molecular Conformation and Interface Electronic Structure ”, J. Am. Chem. Soc. 130, 7300, 2008 (b) S.J. Kang, Y. Yi, C.Y. Kim, S.W. Cho, M. Noh, K. Jeong , and C.N. Whang, “Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au”, Synth. Met. 156, 32 2006 [5.2] I. G. Hill, A. J. M?kinen, and Z. H. Kafafi, “Initial stages of metal/organic semiconductor interface formation”, J. Appl. Phys. 88, 889, 2000 [5.3] R. Schlaf, C. D. Merritt, L. A. Crisafulli, and Z. H. Kafafi, “Organic semiconductor interfaces: Discrimination between charging and band bending related shifts in frontier orbital line-up measurements with photoemission spectroscopy”, J. Appl. Phys. 86, 5678 1999 [5.4] I. G. Hill, A. J. Ma kinen, and Z. H. Kafafi, Appl. Phys. Lett. 77, 18, 2000 “Distinguishing between interface dipoles and band bending at metal/tris-(8-hydroxyquinoline) aluminum interfaces” [5.5] Herbert B. Michaelson, “The work function of the elements and its periodicity” J. Appl. Phys. 48, 4729, 1977 [5.6] P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, “Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoemission Spectroscopy ”, J. Phys. Chem. B 107, 2253, 2003 [5.7] Hisao Ishii and Kazuhiko Seki., “Energy level alignment at organic/metal interfaces studied by UV photoemission: breakdown of traditional assumption of a common vacuum level at the interface”, IEEE Trans. Electr. Dev. 44, 1295, 1997 [5.8] Xavier Crispin, Victor Geskin, Annica Crispin, J?r?me Cornil, Robert Lazzaroni, William R. Salaneck, and Jean-Luc Br?das, “Characterization of the Interface Dipole at Organic/ Metal Interfaces”, J. Am. Chem. Soc. 124, 8131, 2002 [5.9] W. Salaneck, K. Seki, A. Kahn, and J. Pireaux, “Conjugated polymer and molecular interfaces - Science and Technology for Photonic and optoelectronic applications”, Marcel Dekker, New York, 2002 [5.10] Gregor Witte, Simon Lukas, Paul S. Bagus and Christof W?ll, “Vacuum level alignment at organic/metal junctions: "Cushion" effect and the interface dipole ”, Appl. Phys. Lett. 87, 263502, 2005 [5.11] C. Mainka, Paul S. Bagus, A. Schertel, T. Strunskus, M. Grunze, and Ch. W?ill , “Linear dichroism in X-ray absorption spectroscopy of strongly chemisorbed planar molecules: role of adsorption induced rehybridisations”, Surf. Sci. Lett. 341, L1055, 1995 [5.12] W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, “Molecular Orientation of Evaporated Pentacene Films on Gold: Alignment Effect of Self-Assembled Monolayer”, Langmuir 21, 2260, 2005 [5.13] Michele Alagia, Chiara Baldacchini, Maria Grazia Betti, Fabio Bussolotti, Vincenzo Carravetta, Ulf Ekstr?m, and Carlo Mariani, Stefano Stranges, “Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory”, J. Chem. Phys. 122, 124305, 2005 [5.14] Daniel K?fer, and Gregor Witte, “Evolution of pentacene films on Ag(1 1 1): Growth beyond the first monolayer”, Chem. Phys. Lett. 442, 376, 2007 [5.15] Andrea Ferretti, Chiara Baldacchini, Arrigo Calzolari, Rosa Di Felice, Alice Ruini, Elisa Molinari, and Maria Grazia Betti, “Mixing of Electronic States in Pentacene Adsorption on Copper ”, Phys. Rev. Lett. 99, 046802, 2007 [5.16] J. Hoogboom, M. Behdani, J.A. A. W. Elemans, M. A. C. Devillers, R. Gelder, A. E. Rowan, T. Rasing, and Roeland J. M. Nolte, “Noncontact Liquid-Crystal Alignment by Supramolecular Amplification of Nanogrooves”, Angew. Chem. Int. Ed. 42, 1812, 2003 [5.17] J. Naciri, J. Y. Fang, M. Moore, D. Shenoy, C. S. Dulcey, and R. Shashidhar, “Photosensitive Triethoxysilane Derivatives for Alignment of Liquid Crystals”, Chem. Mater. 12, 3288, 2000 [5.18] Jisang Hong, R.Q.Wu, J. Lindner, E. Kosubek, and K. Baberschke, “Manipulation of Spin Reorientation Transition by Oxygen Surfactant Growth: A Combined Theoretical and Experimental Approach ”, Phys. Rev. Lett. 92, 147202-1, 2004 [5.19] S. Hope, E. Gu, M. Tselepi, M. E. Buckley, and J. A. C. Bland, “Dynamic evolution of the magnetic anisotropy of ultrathin Co/Cu(110) films”, Phys. Rev. B 57, 7454, 1998 [5.20] Javier D?az, Guido Paolicelli, Salvador Ferrer, and Fabio Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films”, Phys. Rev. B 54, 8064, 1996 [5.21] S. W. Poon, J. S. Pan and E. S. Tok, “Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite”, Phys. Chem. Chem. Phys. 8, 3326, 2006 [5.22]朱全力、楊建、季生福、王嘉欣、汪漢卿,「過渡金屬碳化物的研究進展」,化學 進展,第16卷第3期,p382,2004 [5.23] L.G. Makarova , I.N. Shabanova , V.I. Kodolov, and Ye.V. Besogonov, “X-ray photoelectron spectroscopy as a method to control the received metal–carbon nanostructures”, J. Electron. Spectrosc. Relat. Phenom. 137, 239, 2004 [5.24] F. L. Wang, J. C. Jiang, and E. I. Meletis, “Microstructural evolution of Co nanostructures in diamond-like carbon by plasma-assisted processing”, J. Appl. Phys. 95, 5069, 2004 [5.25] M. D. R. Taylor, P. Moriarty, B. N. Cotier, M. J. Butcher, P. H. Beton and V. R. Dhanak, “Doping of covalently bound fullerene monolayers: Ag clusters on C60/Si(111)”, Appl. Phys. Lett. 77, 1144, 2000 [5.26] Hao Wang, M.F. Chiah, W.Y. Cheung, and S.P. Wong, “Structure, magnetic and electrical properties of soft magnetic Co–C amorphous thin films”, Phys. Lett. A 316, 122, 2003 [5.27] A. Rajagopal and A. Kahn, “Photoemission spectroscopy investigation of magnesium–Alq3 interfaces”, J. Appl. Phys. 84, 355, 1998 [5.28] M. Probst and R. Haight, “Diffusion of metals into organic films”, Appl. Phys. Lett. 70, 1420, 1997 [5.29] H. Wang, S. P. Wong, W. Y. Cheung, N. Ke, G. H. Wen and X. X. Zhang R. W. M. Kwok “Magnetic properties and structure evolution of amorphous Co–C nanocomposite films prepared by pulsed filtered vacuum arc deposition”, J. Appl. Phys. 88, 4919, 2000 [5.30] Hao Wang , M.F. Chiahc, W.Y. Cheung , S.P. Wong, Structure, “magnetic and electrical properties of soft magnetic Co–C amorphous thin films”, Phys. Lett. A 316, 122, 2003; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34713
-
15Dissertation/ Thesis
المؤلفون: 黃大桀, Huang, Ta-Chieh
المساهمون: 許仁華, 臺灣大學:物理研究所
مصطلحات موضوعية: 鉍中間層, 三層接面, 磁電阻, 自旋閥, 電流垂直於膜面, Bismuth spacer, Trilayer junction, Magnetoresistance, Spin-valve, current-perpendiculat-to-plane
وصف الملف: application/pdf; 1919945 bytes
Relation: U0001-2907200813342100; http://ntur.lib.ntu.edu.tw/handle/246246/180999; http://ntur.lib.ntu.edu.tw/bitstream/246246/180999/1/ntu-97-R94222015-1.pdf
-
16
المؤلفون: 凌宏宗, Hung-Tzung Ling
المساهمون: 邱博文, Po-Wen Chiu
مصطلحات موضوعية: 自旋, 單自旋金屬, CrO2, 奈米碳管, 自旋閥, spin, half metal, nanotubes, spin valve
Time: 47
وصف الملف: 155 bytes; text/html
Relation: [1] Cheng, D. K. Field and wave electromagnetics (Addison-Wesley,1989). [2] 蔡信行, 奈米科技導論:基本原理及應用(新京文開發, 2004). [3] Chiu, P. W. Introduction to Nanoelectronic Devices (2005). [4] Seidel, D.-I. R. V. Carbon Nanotube Devices. Ph.D. thesis, Fakultät Maschinenwesen der Technischen Universitat Dresden (2004). [5] Waser, R. Nanoelectronics and information technology (Wiley,2005). [6] Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993). [7] Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diusive semiconductor. Phys. Rev. B 62, R4790 (2000). [8] Rashba, E. I. Theory of electrical spin injection tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62,R16267 (2000). [9] Fert, A. & Jares, H. Conditions for ecient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001). [10] Schmidt, G. & Molenkamp, L. W. A loadline method for determining the eciency of spin injection contacts. Semicond. Sci. Technol. 19, 1161 (2004). [11] 林展暘, 奈米碳管之自旋注入和自旋傳輸相關之研究. Master's thesis, 清華大學 (2007). [12] Coey, J. M. D. & Venkatesan, M. Half-metallic ferromagnetism: Example of CrO2 (invited). J. Appl. Phys. 91, 8345 (2002). [13] Jr., R. J. S. et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998). [14] R. J. Soulen, J. et al. Andreev refection: A new means to determine the spin polarization of ferromagnetic materials. J. Appl. Phys. 85, 4589 (1999). [15] Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173 (1994). [16] Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713 (2002). [17] Schmidt, G. & Molenkamp, L. W. Spin injection into semiconductors, physics and experiments. Semicond. Sci. Technol. 17, 310 (2002). [18] Jedema, F. J., Nijboer, M. S., Filip, A. T. & van Wees, B. J. Spin injection and spin accumulation in all-metal mesoscopic spin valves. Phys. Rev. B 67, 085319 (2003). [19] Jedema, F. J., Nijboer, M. S., Filip, A. T. & vanWees, B. J. Spin injection and spin accumulation in permalloy-copper mesoscopic spin valves. J. Supercond. 15, 27 (2002). [20] Jedema, F. J., Filip, A. T. & vanWees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 401, 345 (2001). [21] Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572 (1999). [22] Zhao, B., Monch, I., Vinzelberg, H., hl, T. M. & Schneider, C. M. Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl. Phys. Lett. 80, 3144 (2002). [23] Kim, J.-R., So, H. M. & Kim, J.-J. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contact. Phys. Rev. B 66, 233401 (2002). [24] Nagabhirava, B., Bansal, T., Sumanasekera, G. U. & Alphenaar, B. W. Gated spin transport through an individual single wall carbon nanotube. Appl. Phys. Lett. 88, 023503 (2006). [25] Tombros, N., van der Molen, S. J. & van Wees, B. J. Separating spin and charge transport in single-wall carbon nanotubes. Phys. Rev. B 73, 233403 (2006). [26] Plummer, J. D., Deal, M. D. & Grin, P. B. Silicon VLSI Technology: Fundamentals, Practice, and Modeling (Tom Robbins, 2000). [27] Gupta, A., Li, X. W., Guha, S. & Xiao, G. Selective-area and lateral overgrowth of chromium dioxide(CrO2) lms by chemical vapor deposition. Appl. Phys. Lett. 75, 2996 (1999). [28] Li, X. W., Gupta, A., McGuire, T. R., Duncombe, P. R. & Xiao, G. Magnetoresistance and hall eect of chromium dioxide epitaxial thin lms. J. Appl. Phys. 85, 5585 (1999). [29] Ivanov, P. G., Watts, S. M. & Lind, D. M. Epitaxial growth of CrO2 thin lms by chemical-vapor deposition from a Cr8O21 precursor. J. Appl. Phys. 89, 1035 (2001). [30] Rabe, M. et al. Growth and magnetotransport study of thin ferromagnetic CrO2 lms. J. Phys. 14, 7 (2002). [31] Zhang, Q. et al. Magnetization reversal of CrO2 nanomagnet arrays. J. Appl. Phys. 96, 7527 (2004). [32] König, C. et al. Micromagnetism and magnetotransport properties of micron-sized epitaxial CrO2(100) wires. Phys. Rev. B 75, 144428 (2007). [33] Zoua, X. & Xiao, G. Magnetic domain congurations of epitaxial chromium dioxide CrO2 nanostructures. Appl. Phys. Lett. 91,113512 (2007). [34] van der Pauw, L. J. A method of measuring specic resistivity and hall eect of discs of arbitrary shape. Philips Res. Repts 13, 1-9 (1958). [35] Muller, R. S. & Kamins, T. I. Device Electronics for Integrated Circuits (Wiley, 2002).; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29701
-
17
المؤلفون: 黃榮潭, Rong-Tan Huang
المساهمون: 開執中, 陳福榮, Ji-Jung Kai, Fu-Rong Chen
مصطلحات موضوعية: 高分辨電子顯微鏡, 奈米電子束x光能量散佈分析儀, 巨磁阻, 自旋閥, 互相擴散, High performance TEM, Nanobeam EDX, Giant magnetoresistance (GMR), spin valve, interdiffusion
Time: 22
وصف الملف: 7081826 bytes; application/octet-stream
-
18Dissertation/ Thesis
المؤلفون: Hung, Ruei-Feng, 洪瑞峰
المساهمون: 藍明德, 中興大學, 李文新, 盧志權, 王昌仁
مصطلحات موضوعية: Spin Valve, 自旋閥, Impedance, 磁阻抗
Relation: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108200714074600; U0005-0108200714074600; http://hdl.handle.net/11455/16991
الاتاحة: http://hdl.handle.net/11455/16991
-
19
المؤلفون: 陳文泰, Wen-Tai Chen
المساهمون: 曾繁根, Fan-Gang Tseng
Time: 22
وصف الملف: 155 bytes; text/html
Relation: 1.Vapor phase deposited self-assembled monolayers applied to bio-blocking process,清華大學謝馨儀碩士論文, Chap1,2 2. Detection of cystic fibrosis related DNA targets using AC field focusing of magnetic labels and spin valve sensors, H.A. Ferreira, D.L. Graham, P.P. Freitas, IEEE, ( 2005) 396 3. Use of Magnetoresistive Biochips for Monitoring of Pathogenic Microorganisms in Water through Bioprobes: Oligonucleotides and Antibodies, H.A. Ferreira, D.L. Graham, P.P. Freitas, NSTI-Nanotech 2005, 1(2005) 493-496 4. Magnetoresistive-based biosensors and biochips, H.A. Ferreira, D.L. Graham, P.P. Freitas, Trends in biotechnology, 22 (2004) 455-462 5. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors, H.A. Ferreira, D.L. Graham, P.P. Freitas, Biosensors and Bioelectronics , 18 (2003) 483-488 6. DETECTION OF BIOMOLECULAR RECOGNITION USING NANOMETER-SIZED MAGNETIC LABELS AND SPIN-VALVE SENSORS, H.A. Ferreira, D.L. Graham, P.P. Freitas, IEEE (2003) 7. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications, H.A. Ferreira, D.L. Graham, P.P. Freitas, J. Appl. Phys., 91 (2002) 7786-7788 8. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications, Shan X. Wang, Sensors and Actuators A , 126 (2006) 98–106 9.Towards a magnetic microarray for sensitive diagnostics, S.X. Wang et al., Journal of Magnetism and Magnetic Materials, 293 (2005) 731–736 10.Bio-functionalization of Monodisperse Magnetic Nanoparticles and Their Use as Biomolecular Labels in a Magnetic Tunnel Junction Based Sensor, Shan X. Wang, Stephanie G. Grancharov, J. Phys. Chem. B, 109 (2005) 13030-13035 11. Model and Experiment of Detecting Multiple Magnetic Nanoparticles as Biomolecular Labels by Spin Valve Sensors, Shan X. Wang, IEEE TRANSACTIONS ON MAGNETICS, VOL. 40 (2004) 3000-3002 12. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications, Shan X. Wang, J. Appl. Phys., 93 ( 2003)7557-7559 13. Analytical and Micromagnetic Modeling for Detection of a Single Magnetic Microbead or Nanobead by Spin Valve Sensors, Shan X. Wang, IEEE TRANSACTIONS ON MAGNETICS, 39 (2003) 3313 14.Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, M.M. Miller, J.C. Rife, Sensor and actuators, A 107 (2003)209~218 15. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor, Miller et al., Appl. Phys. Lett., 81 (2002) 2211-2213 16. A DNA array senor utilizing magnetic microbeads and magnetoelectronic detection, M.M. Miller, R.J. Colton, Journal of magnetism and magnetic material 225 (2001)139-144 17. The BARC biosensor applied to the setection of biological warfare agents, M.M. Miller, R.J. Colton, Biosensors and Bioelectronics 14 (2000) 805-813 18. A biosensor based on magnetoresistance technology, David R. Baselt, R.J. Colton, Biosensors and Bioelectronics 13 (1998) 731-739 19.Magnetic particles as markers and carriers of Biomolecules, H. Br.uckl, M. Panhorst, J. Schotter, P.B. Kamp and A. Becker, IEE Proc.-Nanobiotechnol., 152 (2005) 41-46 20.Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection, J. Schotter et al., Biosensors and Bioelectronics, 19 (2004) 1149–1156 21. A Biochip Based on Magnetoresistive Sensors, J. Schotter, P. B. Kamp, A. Becker, A. Pühler, D. Brinkmann, W. Schepper, H. Brückl, and G. Reiss, IEEE TRANSACTIONS ON MAGNETICS, 38 (2002) 3365-3367 22.A biochip sensor based on giant and tunnel magneto resistance, J. Schotter et al., IEEE 2002 23. Single molecule detection with magnetic beads- computer simulation, J schotter et al., Journal of Magnetism and Magnetic Materials, 272(2002) 1695-1696 ………. 24.The fabrication of Iron Oxide magnetic nanoparticles and the application to improve the binding efficiency of the IgG and Thiol SAMs, 清華大學林俊毅碩士論文 25.Material science and engineering an introduction, William D. Callister, Chapter21 26.Magnetic materials, Nicola A. Chapter 4,5,7,8 27.Introduction to magnetism and magnetic recording, R. Lawrence Comstock, Chapter 4 28. New Magnetic Anisotropy, W.H. Meiklejohn and C.P. Bean, Phys. Rev., 102(1956)1413-1414 29. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, M. N. Baibich, Phy. Rev. Lett., 61 (1988) 2472 30. Magnetoresistance and spin electronics, A. Barthelemy et al., Journal of Magnetism and Magnetic Materials, VOL. 242–245 (2002) 68–76 31. Giant magnetoresistance materials and their potential as read headsensors, Robert L. White, IEEE TRANSACTIONS ON MAGNETICS, 30(1994)346-352 32. Magnetotransport properties of magnetically soft spin-valve structures, B. Dieny, V.S. Sperious, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart,D.R. Wilhoit, J. Appl. Phys. 69 (1991) 4774–4779. 33. High magnetoresistance permalloy films deposited on a thin NiFeCr or NiCr underlayer, W.-Y. Lee, M. F. Toney, P. Tameerug and E. Allen, J. Appl. Phys., 87(2000)6992-6994 34. Enhancement of exchange bias in Mn-Ir/Co-Fe based spin valves with an ultrathin Cu underlayer and in situ Mn-Ir surface modification, Kojiro Yagami, J. Appl. Phys., 89(2001)6609-6611. 35. Thermal stability of CoFe, Co and NiFe/Co spin valves, Alexander M. Zeltser, IEEE Trans. Magn. , 34(1998)1417-1419 36. The optimization of Ta buffer layer in magnetron sputtering IrMn top spinvalve, Thin Solid Films, Hua-Rui Liu, Tian-Ling Ren, Bin-Jun Qu, 441(2003)111–114 37. Exchange-biased spin-valves for magnetic storage, IEEE Trans. Magn. , J. C. S. Kools, 32(1996)3165-3184 38. Magnetotransport properties of magnetically soft spin-valve structures, B. Dieny, V.S. Sperious, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart,D.R. Wilhoit, J. Appl. Phys. 69 (1991) 4774–4779. 39. Magnetoresistance effects of Fe-Mn/Ni-Fe-Co/(Au,Ag,Al)/Ni- Fe-Co sandwiches, Ryoichi NaKatani, Hiroyuki Hoshyia, Katsumi Hoshino, J. Appl. Phys. Vol.34, (1995)2312-2317. 40. Introduction to magnetism and magnetic recording, R. Lawrence Comstock, p.397; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/36097
-
20
المؤلفون: 陳敏騰, Min-Teng Chen
المساهمون: 呂世源, Shih-Yuan Lu
مصطلحات موضوعية: 原子層沈積, 自旋閥結構, 自旋電子學, 鐵磁性材料, 磁鐵礦, atomic layer deposition, spin valve structure, spintronics, ferromagnetic material, magnetite
Time: 24
وصف الملف: 155 bytes; text/html
Relation: 參考文獻 1. 林智仁, 1999‚“自旋閥結構Si/Ta/NiFe/Cu/Co/FeMn/Ta擴散現象 之電鏡分析”國立清華大學工程與系統科學系碩士論文. 2. 郭世斌, 2001‚“以電子束蒸鍍製作鈷鐵/銅自旋閥及合成反鐵磁 之效應究”, 國立中正大學碩士論文. 3. 張慶瑞、衛榮漢‚2003‚“單自旋金屬材料的性質與應用”. 4. Hsiao C. T, 2002. 5. Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel, T. E. Thin Solid Films 2002, 402, 248. 6. Juppo, M. “Atomic Layer Deposition of Metal and Transition Metal Nitride Thin Films and In Situ Mass Spectrometry Studies”, Academic Dissertation 2001, Department of Chemistry, University of Helsinki, Finland 7. See http://www.ias.tuwien.ac.at/research/fghh/research/pic_resea rch_ald.html. 8. Leskelä, M.; Ritala, M. Thin Solid Films 2002, 409, 138. 9. Hsu, C.-T. Thin Solid Films 1998, 335, 284. 10. Leskelä, M.; Ritala, M. Thin Solid Films 2002, 409,138. 11. Suntola, T.; Appl. Surf. Sci. 1996, 100/101, 391. 12. Ritala, M.; Leskelä, M. Nanotechnology 1999, 10, 19. 13. Matero, R.; Rahtu, A.; Ritala, M.; Leskelä, M.; Sajavaara, T. Thin Solid Films 2000, 368, 1. 11. “Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies” Academic Dissertation 2002, Department of Chemistry, University of Helsinki, Finland. 14. Wu, Y.; Yang, P. J. Am. Chem. Soc. 2001, 123, 3165. 15. 盧盈靜‚2002‚“鋇、鋁的添加對La2/3Ca1/3MnO3之導電機構及磁 阻效應之影響” ‚國立成功大學材料科學及工程學系碩士論文. 16. 陳國駒‚2000‚“鑭錳系氧化物膜之磁性、電性及磁阻效應研 究”‚國立成功大學材料科學及工程學系博士論文. 17. See http://crism.stanford.edu. 18. Inomata, K. J. Electroceramic 1998, 2, 283. 19. Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Proceedings of the IEEE 2003, 91, 661. 20. Huten, A.; Hempel, T.; Heitmann, S.; Reiss, G. Phys. stat. sol. (a) 2002, 189, 327M. 21. BOOYONG S. LIM, ANTTI RAHTU AND ROY G. GORDON*, nature materials VOL 2 %7CNOVEMBER 2003 22. S. Bae, J. H. Judy, P. J. Chen, W. F. Egelhoff, APPLIED PHYSICS LETTERS 2002, Vol. 18, No. 12 23. R. Sbiaa, H. Morita, Appl. Phys. Lett., Vol. 84, No. 25, 2004 24. 汪建民,“材料分析”, 中國材料科學學會,民國九十年。 25. See http://www.isti.com.tw/b_technology/FESEM.htm 26. See http://elearning.stut.edu.tw/caster/3/no4/4-1.htm 27. 戴振益‚ 2004‚“[Fe3O4/ZnO]n 多層膜及退火膜結構與磁性之研 究”‚國立成功大學物理研究所碩士論文. 28. 賴志煌‚“磁阻式隨機讀取記憶體”‚國立清華大學材料系.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35763