يعرض 1 - 20 نتائج من 247 نتيجة بحث عن '"胺基酸"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: 李宗遠, Lee, Tsung-Yuan

    المساهمون: 靳宗洛, 臺灣大學:植物科學研究所

    وصف الملف: 9637820 bytes; application/pdf

    Relation: Agrawal, G.K., Rakwal, R., and Iwahashi, H. (2002). Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294, 1009-1016. Almoguera, C., Rojas, A., Diaz-Martin, J., Prieto-Dapena, P., Carranco, R., and Jordano, J. (2002). A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277, 43866-43872. Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D., and von Koskull-Doring, P. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29, 471-487. Bharti, K., Von Koskull-Doring, P., Bharti, S., Kumar, P., Tintschl-Korbitzer, A., Treuter, E., and Nover, L. (2004). Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16, 1521-1535. Bonaventure, G., and Ohlrogge, J.B. (2002). Differential regulation of mRNA levels of acyl carrier protein isoforms in Arabidopsis. Plant Physiol 128, 223-235. Busch, W., Wunderlich, M., and Schoffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41, 1-14. Carranco, R., Almoguera, C., and Jordano, J. (1997). A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 272, 27470-27475. Carratu, L., Franceschelli, S., Pardini, C.L., Kobayashi, G.S., Horvath, I., Vigh, L., and Maresca, B. (1996). Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci U S A 93, 3870-3875. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., and Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129, 661-677. Cicero, M.P., Hubl, S.T., Harrison, C.J., Littlefield, O., Hardy, J.A., and Nelson, H.C. (2001). The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res 29, 1715-1723. Clarke, S.M., Mur, L.A., Wood, J.E., and Scott, I.M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38, 432-447. Crawford, N.M., and Guo, F.Q. (2005). New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10, 195-200. Czarnecka-Verner, E., Pan, S., Salem, T., and Gurley, W.B. (2004). Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56, 57-75. Czarnecka-Verner, E., Yuan, C.X., Scharf, K.D., Englich, G., and Gurley, W.B. (2000). Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol Biol 43, 459-471. Damberger, F.F., Pelton, J.G., Harrison, C.J., Nelson, H.C., and Wemmer, D.E. (1994). Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 3, 1806-1821. Dansako, T., Kato, K., Satoh, J., Sekine, M., Yoshida, K., and Shinmyo, A. (2003). 5' Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J Biosci Bioeng 95, 52-58. de Jong, W.W., Caspers, G.J., and Leunissen, J.A. (1998). Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22, 151-162. Desikan, R., S, A.H.-M., Hancock, J.T., and Neill, S.J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127, 159-172. Doring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A., and Nover, L. (2000). The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12, 265-278. Edelman, L., Czarnecka, E., and Key, J.L. (1988). induction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium trreatments. Plant Physiol. 86, 1048-1056. Gallie, D.R., and Young, T.E. (1994). The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol 106, 929-939. Giese, K.C., and Vierling, E. (2002). Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277, 46310-46318. Guan, J.C., Jinn, T.L., Yeh, C.H., Feng, S.P., Chen, Y.M., and Lin, C.Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56, 795-809. Hamilton, E.W., 3rd, and Heckathorn, S.A. (2001). Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126, 1266-1274. Harrison, C.J., Bohm, A.A., and Nelson, H.C. (1994). Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263, 224-227. Hartley-Whitaker, J., Ainsworth, G., and Meharg, A.A. (2001). Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell and Enviroment 24, 713-722. Haslbeck, M. (2002). sHsps and their role in the chaperone network. Cell Mol Life Sci 59, 1649-1657. Hong, S.W., and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97, 4392-4397. Hong, S.W., Lee, U., and Vierling, E. (2003). Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132, 757-767. Hsieh, M.S., Chen, T.J., Jinn, T.L., Chen, Y.M., and Lin, C.Y. (1992). A class of soybean low molecular weight heat shock proteins. Plant Physiol 99, 1279-1284. Hubel, A., and Schoffl, F. (1994). Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26, 353-362. Jacobs, M., Dolferus, R., and Van den Bossche, D. (1988). Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of arabidopsis thaliana (L.) Heynh. Biochem Genet 26, 105-122. Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129, 440-450. Jinn, T.L., Chen, Y.M., and Lin, C.Y. (1995). Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean. Plant Physiol 108, 693-701. Jinn, T.L., Chiu, C.C., Song, W.W., Chen, Y.M., and Lin, C.Y. (2004). Azetidine-induced accumulation of class I small heat shock proteins in the soluble fraction provides thermotolerance in soybean seedlings. Plant Cell Physiol 45, 1759-1767. Jonak, C., Nakagami, H., and Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136, 3276-3283. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H. (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A 93, 11274-11279. Kirschner, M., Winkelhaus, S., Thierfelder, J.M., and Nover, L. (2000). Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J 24, 397-411. Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6, 262-267. Larkindale, J., and Knight, M.R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128, 682-695. Larkindale, J., and Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161, 405-413. Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138, 882-897. Lee, J.H., Hubel, A., and Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8, 603-612. Lee, Y., Nagao, R.T., Lin, C.Y., and Key, J.L. (1996). Induction and Regulation of Heat-Shock Gene Expression by an Amino Acid Analog in Soybean Seedlings. Plant Physiol 110, 241-248. Levine, R.L., Mosoni, L., Berlett, B.S., and Stadtman, E.R. (1996). Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93, 15036-15040. Li, B., Liu, H.T., Sun, D.Y., and Zhou, R.G. (2004). Ca(2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45, 627-634. Li, H., Culligan, K., Dixon, R.A., and Chory, J. (1995). CUE1: A Mesophyll Cell-Specific Positive Regulator of Light-Controlled Gene Expression in Arabidopsis. Plant Cell 7, 1599-1610. Lin, C.Y., Roberts, J.K., and Key, J.L. (1984). Acquisition of thermotolerance in soybean seedlings. Synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol 74, 152-160. Liu, H.T., Sun, D.Y., and Zhou, R.G. (2005). Ca(2+) and AtCam3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant, Cell and Enviroment 28, 1276-1284. Liu, H.T., Li, B., Shang, Z.L., Li, X.Z., Mu, R.L., Sun, D.Y., and Zhou, R.G. (2003). Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132, 1186-1195. Liu, S.X., Athar, M., Lippai, I., Waldren, C., and Hei, T.K. (2001). Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A 98, 1643-1648. Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., and Schoffl, F. (2004). Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271, 11-21. Malyshev, I., Manukhina, E.B., Mikoyan, V.D., Kubrina, L.N., and Vanin, A.F. (1995). Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett 370, 159-162. Meharg, A.A., and Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154, 29-43. Miroshnichenko, S., Tripp, J., Nieden, U., Neumann, D., Conrad, U., and Manteuffel, R. (2005). Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41, 269-281. Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K.D. (2002). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16, 1555-1567. Morimoto, R.I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788-3796. Neta-Sharir, I., Isaacson, T., Lurie, S., and Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17, 1829-1838. Nover, L., and Scharf, K.D. (1997). Heat stress proteins and transcription factors. Cell Mol Life Sci 53, 80-103. Nover, L., Scharf, K.D., Gagliardi, D., Vergne, P., Czarnecka-Verner, E., and Gurley, W.B. (1996). The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1, 215-223. Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177-189. Prandl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schoffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258, 269-278. Rhoads, D.M., White, S.J., Zhou, Y., Muralidharan, M., and Elthon, T.E. (2005). Altered gene expression in plants with constitutive expression of a mitochondria small heat shock protein suggests the involvement of retrograde regulation in the heat shock response. Physiologia Plantarum 123, 435-444. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134, 1683-1696. Rojas, A., Almoguera, C., and Jordano, J. (1999). Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. Plant J 20, 601-610. Sabehat, A., Lurie, S., and Weiss, D. (1998). Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiol 117, 651-658. Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H., and Dhindsa, R.S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31, 629-638. Sanmiya, K., Suzuki, K., Egawa, Y., and Shono, M. (2004). Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557, 265-268. Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6, 225-237. Scharf, K.D., Heider, H., Hohfeld, I., Lyck, R., Schmidt, E., and Nover, L. (1998). The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18, 2240-2251. Schoffl, F., Prandl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiol 117, 1135-1141. Schultheiss, J., Kunert, O., Gase, U., Scharf, K.D., Nover, L., and Ruterjans, H. (1996). Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur J Biochem 236, 911-921. Siddique, M., Port, M., Tripp, J., Weber, C., Zielinski, D., Calligaris, R., Winkelhaus, S., and Scharf, K.D. (2003). Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 8, 381-394. Snoeckx, L.H., Cornelussen, R.N., Van Nieuwenhoven, F.A., Reneman, R.S., and Van Der Vusse, G.J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81, 1461-1497. Stanley Kim, H., Yu, Y., Snesrud, E.C., Moy, L.P., Linford, L.D., Haas, B.J., Nierman, W.C., and Quackenbush, J. (2005). Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant J 41, 212-220. Sun, W., Van Montagu, M., and Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577, 1-9. Sun, W., Bernard, C., van de Cotte, B., Van Montagu, M., and Verbruggen, N. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27, 407-415. Sun, Y., and Macrae, T.H. (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci. Sung, D.Y., Kaplan, F., Lee, K.J., and Guy, C.L. (2003). Acquired tolerance to temperature extremes. Trends Plant Sci 8, 179-187. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., and Moreau, Y. (2001). A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113-1122. Treuter, E., Nover, L., Ohme, K., and Scharf, K.D. (1993). Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet 240, 113-125. Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., Yoshida, S., and Fujikawa, S. (1999). Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120, 481-490. van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., and Vierling, E. (2001). Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8, 1025-1030. Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiology Plant Mol. Biol 42, 579-620. Vuister, G.W., Kim, S.J., Orosz, A., Marquardt, J., Wu, C., and Bax, A. (1994). Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1, 605-614. Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9, 244-252. Waters, E.R., Lee, G.J., and Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47, 325-338. Wehmeyer, N., and Vierling, E. (2000). The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122, 1099-1108. Wehmeyer, N., Hernandez, L.D., Finkelstein, R.R., and Vierling, E. (1996). Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112, 747-757. Weigel, D., and Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press). Wendehenne, D., Durner, J., and Klessig, D.F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7, 449-455. Wunderlich, M., Werr, W., and Schoffl, F. (2003). Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct. Plant J 35, 442-451. Yamanouchi, U., Yano, M., Lin, H., Ashikari, M., and Yamada, K. (2002). A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 99, 7530-7535. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136, 2621-2632.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/57973; http://ntur.lib.ntu.edu.tw/bitstream/246246/57973/1/ntu-95-R92b42025-1.pdf

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: 林志豪, Lin, Chih-Hao

    المساهمون: 張文章, 臺灣大學:生化科學研究所

    وصف الملف: 1843448 bytes; application/pdf

    Relation: Alexander FW, S.E., Mehta PK, Christen P. (2004) Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes Resio-specific α, β and γ families. Eur. J. Biochem, 219, 953-960. Anthony, J.C., Anthony, T.G., Kimball, S.R., Vary, T.C. and Jefferson, L.S. (2000) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr, 130, 139-145. Awapara, J. and Seale, B. (1952) Distribution of transaminases in rat organs. J Biol Chem, 194, 497-502. Berger, B.J., English, S., Chan, G. and Knodel, M.H. (2003) Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol, 185, 2418-2431. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254. Branden, C. and Tooze, J. (1998) Introduction to protein structure. Garland. Brock, T.D. and Freeze, H. (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol, 98, 289-297. Cai, G., Zhu, S., Yang, S., Zhao, G. and Jiang, W. (2004) Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: probing the molecular basis for its high thermostability. Appl Environ Microbiol, 70, 2764-2770. Cammarata, P.S. and Cohen, P.P. (1950) The scope of the transamination reaction in animal tissues. J Biol Chem, 187, 439-452. Chien, A., Edgar, D.B. and Trela, J.M. (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol, 127, 1550-1557. Cooper, A.J. and Plum, F. (1987) Biochemistry and physiology of brain ammonia. Physiol Rev, 67, 440-519. Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M., Omelchenko, M.V., Kostandarithes, H.M., Makarova, K.S., Wackett, L.P., Fredrickson, J.K. and Ghosal, D. (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 306, 1025-1028. Diebold, R., Schuster, J., Daschner, K. and Binder, S. (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol, 129, 540-550. Dunathan, H.C. and Voet, J.G. (1974) Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc Natl Acad Sci U S A, 71, 3888-3891. Eden, A., Simchen, G. and Benvenisty, N. (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem, 271, 20242-20245. Feild, M.J., Nguyen, D.C. and Armstrong, F.B. (1989) Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase. Biochemistry, 28, 5306-5310. Fersht, A. (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman, New York. Goto, M., Miyahara, I., Hayashi, H., Kagamiyama, H. and Hirotsu, K. (2003) Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme. Biochemistry, 42, 3725-3733. Grishin, N.V., Phillips, M.A. and Goldsmith, E.J. (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci, 4, 1291-1304. Hall, T.R., Wallin, R., Reinhart, G.D. and Hutson, S.M. (1993) Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem, 268, 3092-3098. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Lienard, T., Gohl, O., Martinez-Arias, R., Jacobi, C., Starkuviene, V., Schlenczeck, S., Dencker, S., Huber, R., Klenk, H.P., Kramer, W., Merkl, R., Gottschalk, G. and Fritz, H.J. (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol, 22, 547-553. Henson, C.P. and Cleland, W.W. (1964) Kinetic Studies Of Glutamic Oxaloacetic Transaminase Isozymes. Biochemistry, 47, 338-345. Honda, T., Fukuda, Y., Nakano, I., Katano, Y., Goto, H., Nagasaki, M., Sato, Y., Murakami, T. and Shimomura, Y. (2004) Effects of liver failure on branched-chain alpha-keto acid dehydrogenase complex in rat liver and muscle: comparison between acute and chronic liver failure. J Hepatol, 40, 439-445. Hutson, S.M., Berkich, D., Drown, P., Xu, B., Aschner, M. and LaNoue, K.F. (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem, 71, 863-874. Ichihara, A. and Koyama, E. (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem (Tokyo), 59, 160-169. Kado, C.I. and Liu, S.T. (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol, 145, 1365-1373. Kanda, M., Hori, K., Kurotsu, T., Ohgishi, K., Hanawa, T. and Saito, Y. (1995) Purification and properties of branched chain amino acid aminotransferase from gramicidin S-producing Bacillus brevis. J Nutr Sci Vitaminol (Tokyo), 41, 51-60. Klein, N., Maillard, M.B., Thierry, A. and Lortal, S. (2001) Conversion of amino acids into aroma compounds by cell-free extracts of Lactobacillus helveticus. J Appl Microbiol, 91, 404-411. Lee-Peng, F.C., Hermodson, M.A. and Kohlhaw, G.B. (1979) Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-alpha-ketoglutarate activity. J Bacteriol, 139, 339-345. Madsen, S.M., Beck, H.C., Ravn, P., Vrang, A., Hansen, A.M. and Israelsen, H. (2002) Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme. Appl Environ Microbiol, 68, 4007-4014. Mehta, P.K., Hale, T.I. and Christen, P. (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem, 214, 549-561. Okada, K., Hirotsu, K., Hayashi, H. and Kagamiyama, H. (2001) Structures of Escherichia coli branched-chain amino acid aminotransferase and its complexes with 4-methylvalerate and 2-methylleucine: induced fit and substrate recognition of the enzyme. Biochemistry, 40, 7453-7463. Rew, D.A. (2003) Deinococcus radiodurans. Eur J Surg Oncol, 29, 557-558. Rudman, D. and Meister, A. (1953) Transamination in Escherichia coli. J Biol Chem, 200, 591-604. Schadewaldt, P. and Adelmeyer, F. (1996) Coupled enzymatic assay for estimation of branched-chain L-amino acid aminotransferase activity with 2-Oxo acid substrates. Anal Biochem, 238, 65-71. Schuster, J. and Binder, S. (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol, 57, 241-254. Shimomura, Y., Murakami, T., Nagasaki, M., Honda, T., Goto, H., Kotake, K., Kurokawa, T. and Nonami, T. (2004) Regulation of branched-chain amino acid metabolism and pharmacological effects of branched-chain amino acids. Hepatol Res, 30S, 3-8. Soda, K., Yoshimura, T. and Esaki, N. (2001) Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions. Chem Rec, 1, 373-384. Tachiki, T. and Tochikura, T. (1976) Purification and characterization of L-leucine-alpha-ketoglutarate transaminase from Acetobacter suboxydans. Agric. Biol. Chem, 40, 2187-2192. Taylor, P.P., Pantaleone, D.P., Senkpeil, R.F. and Fotheringham, I.G. (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol, 16, 412-418. Taylor, R.T. and Jenkins, W.T. (1966) Leucine aminotransferase. II. Purification and characterization. J Biol Chem, 241, 4396-4405. Thage, B.V., Rattray, F.P., Laustsen, M.W., Ardo, Y., Barkholt, V. and Houlberg, U. (2004) Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115. J Appl Microbiol, 96, 593-602. Venos, E.S., Knodel, M.H., Radford, C.L. and Berger, B.J. (2004) Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis. BMC Microbiol, 4, 39 White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., Moffat, K.S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, J.J., Lam, P., McDonald, L., Utterback, T., Zalewski, C., Makarova, K.S., Aravind, L., Daly, M.J., Minton, K.W., Fleischmann, R.D., Ketchum, K.A., Nelson, K.E., Salzberg, S., Smith, H.O., Venter, J.C. and Fraser, C.M. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 286, 1571-1577. Wong, H.C. and Lessie, T.G. (1979) Branched chain amino acid aminotransferase isoenzymes of Pseudomonas cepacia. Arch Microbiol, 120, 223-229. Wu, J.Y., Kao, H.J., Li, S.C., Stevens, R., Hillman, S., Millington, D. and Chen, Y.T. (2004) ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease. J Clin Invest, 113, 434-440. Xu, Y., Oz, G., LaNoue, K.F., Keiger, C.J., Berkich, D.A., Gruetter, R. and Hutson, S.H. (2004) Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin. J Neurochem, 90, 1104-1116. Yennawar, N., Dunbar, J., Conway, M., Hutson, S. and Farber, G. (2001) The structure of human mitochondrial branched-chain aminotransferase. Acta Crystallogr D Biol Crystallogr, 57, 506-515. Yudkoff, M., Nissim, I., Kim, S., Pleasure, D., Hummeler, K. and Segal, S. (1983) [15N] leucine as a source of [15N] glutamate in organotypic cerebellar explants. Biochem Biophys Res Commun, 115, 174-179. Yvon, M., Chambellon, E., Bolotin, A. and Roudot-Algaron, F. (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol, 66, 571-577. Zeikus, J.G., Vieille, C. and Savchenko, A. (1998) Thermozymes: biotechnology and structure-function relationships. Extremophiles, 2, 179-183.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/52750; http://ntur.lib.ntu.edu.tw/bitstream/246246/52750/1/ntu-94-R92b46017-1.pdf

  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal

    المؤلفون: 劉禧賢, 柯文慶

    المساهمون: 國立中興大學農學院

    مصطلحات موضوعية: 乾海參, 復水, 膠原蛋白, 胺基酸組成

    Relation: 農林學報, Volume51, Issue4, Page(s) 1-8.; http://hdl.handle.net/11455/75868

  14. 14
    Report

    المؤلفون: 曾夢蛟, 楊明德, 陳俊麟

    المساهمون: 行政院農業委員會, 中興大學園藝學系(所)

    Relation: http://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=2512130& plan_no=101%E8%BE%B2%E7%A7%91-9.1.1-%E7%B3%A7-Z1%285%29& plan_year=101& projkey=PW10104-2969& target=plan& highStr=*& check=0& pnchDesc=%E7%84%A1%E7%AF%A9%E9%81%B8%E6%A8%99%E8%AA%8C%E5%9F%BA%E5%9B%A0%E4%B9%8B%E8%91%89%E7%B6%A0%E9%AB%94%E5%9F%BA%E5%9B%A0%E8%BD%89%E6%AE%96%E7%B3%BB%E7%B5%B1%E7%9A%84%E6%87%89%E7%94%A8; 101農科-9.1.1-糧-Z1(5); http://hdl.handle.net/11455/55002

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Report

    المؤلفون: 李進發

    المساهمون: 行政院國家科學委員會, 國立中興大學化學系(所)

    Relation: http://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=1654795& plan_no=NSC97-2113-M005-006-MY2& plan_year=97& projkey=PA9709-0158& target=plan& highStr=*& check=0& pnchDesc=%E6%96%B0%E5%9E%8B%E6%85%8B%E9%85%8D%E9%AB%94%E7%9A%84%E9%96%8B%E7%99%BC%E5%8F%8A%E5%85%B6%E5%9C%A8%E9%81%8E%E6%B8%A1%E9%87%91%E5%B1%AC%E5%82%AC%E5%8C%96%E5%8F%8D%E6%87%89%E7%9A%84%E6%87%89%E7%94%A8; NSC97-2113-M005-006-MY2; http://hdl.handle.net/11455/49466

  20. 20
    Report

    المؤلفون: 陸大榮

    المساهمون: 行政院國家科學委員會, 國立中興大學化學系(所)

    Time: 1

    Relation: http://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=1415766& plan_no=NSC96-2113-M005-005-MY3& plan_year=96& projkey=PA9607-0479& target=plan& highStr=*& check=0& pnchDesc=%E6%96%B0%E4%B8%8D%E5%B0%8D%E7%A8%B1%E5%90%88%E6%88%90%E6%96%B9%E6%B3%95%E4%B9%8B%E7%A0%94%E7%A9%B6; NSC96-2113-M005-005-MY3; http://hdl.handle.net/11455/49447