يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"組合問題"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis
  5. 5
    Dissertation/ Thesis
  6. 6

    المؤلفون: 林英志, Ying-Chih Lin

    المساهمون: 唐傳義, Chuan-Yi Tang

    Time: 2

    وصف الملف: 155 bytes; text/html

    Relation: [1] Derange II. ftp://ftp.ebi.ac.uk/pub/software/unix/derange2.tar.Z. [2] Graphics gallery of the National Human Genome Research Institute (NHGRI). http://www.accessexcellence.org/RC/VL/GG/. [3] The seven Prize Problems. http://www.claymath.org/millennium/. [4] Traveling Salesman Problem. http://www.tsp.gatech.edu/. [5] W. Ackermann. Zum hilbertshen aufbau der reelen zahlen. Math. Ann., 99:118–133, 1928. [6] M. Aigner and D. B. West. Sorting by insertion of leading elements. Journal of Combinatorial Theory, Series A, 45:306–309, 1987. [7] Y. Ajana, J.-F. Lefebvre, E. R. M. Tillier, and N. El-Mabrouk. Exploring the set of all minimal sequences of reversals - an application to test the replicationdirected reversal hypothesis. In Proceedings of the 25th Workshop on Algorithms in Bioinformatics (WABI2002), volume 2452 of Lecture Notes in Computer Science, pages 300–315. Springer, 2002. [8] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: a technique for designing parallel algorithms. SIAM Journal on Computing, 18:499– 532, 1989. [9] G. Ausiello, P. Crescenzi, V. Kann, A. Marchetti-Spaccamela, G. Gambosi, and A. M. Spaccamela. Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer-Verlag, 1999. [10] D. A. Bader, B. M. W. Moret, and M. Yan. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology, 8:483–491, 2001. [11] M. Bader and E. Ohlebusch. Sorting by weighted reversals, transpositions, and inverted transpositions. In A. Apostolico, C. Guerra, S. Istrail, P. A. Pevzner, and M. S. Waterman, editors, Proceedings of the 10th Annual International Conference on Research in Computational Molecular Biology (RECOMB2006), volume 3909 of Lecture Notes in Computer Science, pages 563–577. Springer, 2006. [12] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. SIAM Journal on Computing, 25:272–289, 1996. (Preliminary version in Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS1993), pages 148–157). [13] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on Discrete Mathematics, 11:221–240, 1998. (Preliminary version in Proceedings of the 6th Annual Symposium on Discrete Algorithms (SODA1995), pages 614–623). [14] S. A. Bansal. Genome rearrangements and randomized sorting by reversals. unpublished, 2002. [15] E. Belda, A. Moya, and F. J. Silva. Genome rearrangement distances and gene order phylogeny in -proteobacteria. Molecular Biology and Evolution, 22:1456– 1467, 2005. [16] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics, 146:134–145, 2005. (Preliminary version in Proceedings of the 12nd Annual Symposium on Combinatorial Pattern Matching (CPM2001), pages 106–117). [17] A. Bergeron, C. Chauve, T. Hartman, and K. St-Onge. On the properties of sequences of reversals that sort a signed permutation. In Journ´ees Ouvertes Biologie, Informatique, Math´ematiques (JOBIM2002), pages 99–108, 2002. [18] A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and fortresses. In S. C. Sahinalp, S. Muthukrishnan, and Ugur Dogrus¨oz, editors, Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM2004), volume 3109 of Lecture Notes in Computer Science, pages 388–399. Springer, 2004. [19] A. Bergeron and F. Strasbourg. Experiments in computing sequences of reversals. In O. Gascuel and B. M. E. Moret, editors, Proceedings of the 1st Workshop on Algorithms in Bioinformatics (WABI2001), volume 2149 of Lecture Notes in Computer Science, pages 164–174. Springer, 2001. [20] P. Berman and S. Hannenhalli. Fast sorting by reversal. In D. S. Hirschberg and E. W. Myers, editors, Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM1996), volume 1075 of Lecture Notes in Computer Science, pages 168–185. Springer, 1996. [21] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sorting by reversals. In R. H. Mohring and R. Raman, editors, Proceedings of the 10th Annual European Symposium on Algorithms (ESA2002), volume 2461 of Lecture Notes in Computer Science, pages 200–210. Springer, 2002. [22] P. Berman and M. Karpinski. On some tighter inapproximability results. In J. Wiedermann, P. E. Boas, and M. Nielsen, editors, Proceedings of the 26th International Colloquium on Automata, Languages and Programming (ICALP1999), volume 1644 of Lecture Notes in Computer Science, pages 200–209. Springer, 1999. [23] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene, 172:11–17, 1996. [24] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, E. D. Green, A. Sidow, and S. Batzoglou. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Research, 13:721–731, 2003. [25] A. Caprara. Sorting by reversal is difficult. In Proceedings of the 1st Annual International Conference on Research in Computational Molecular Biology (RECOMB1997), pages 75–83. ACM Press, 1997. [26] A. Caprara. Sorting permutations by reversals and eulerian cycle decompositions. SIAM Journal on Discrete Mathematics, 12:91–110, 1999. [27] A. Cayley. Note on the theory of permutations. Philo. Magazine, 34:527–529, 1884. (reprinted in The Collected Mathematical Papers of Arthur Cayley , Cambridge University Press, Cambridge, 1 (1889) pp. 423–424.). [28] C. Y. Chen, K. M. Wu, Y. C. Chang, and C. H. Chang. Comparative genome analysis of vibrio vulnificus, a marine pathogen. Genome Research, 13:2577–2587, 2003. [29] M. C. Chen and R. C. T. Lee. Sorting by transpositions based on the first increasing substring concept. In Proceedings of the 4th IEEE International Symposium on BioInformatics and BioEngineering (BIBE2004), pages 553–560. IEEE Computer Society, 2004. [30] D. A. Christie. Sorting by block-interchanges. Information Processing Letters, 60:165–169, 1996. [31] D. A. Christie. A 3/2-approximation algorithm for sorting by reversals. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA1998), pages 244–252. ACM/SIAM, 1998. [32] D. A. Christie. Genome rearrangement problem. PhD thesis, University of Glasgow, 1999. [33] D. P. Clark and L. D. Russell. Molecular Biology Made Simple and Fun, second edition. Cache River Press, 2000. [34] A. Cobham. The intrinsic computational difficulty of functions. In Proceeding of the 1964 Congress for Logic, Methodology and the Philosophy of Science, pages 24–30, 1964. [35] D. S. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete Applied Mathematics, 61:105–120, 1995. [36] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC1971), pages 151–158. ACM, 1971. [37] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, Second Edition. MIT Press, 2001. [38] M. E. Cosner, R. K. Jansen, B. M.E. Moret, L. A. Raubeson, L.-S. Wang, T. Warnow, and S. Wyman. An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanulaceae. In D. Sankoff and J. H. Nadeau, editors, In Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pages 99–122. Kluwer Academic Press, 2000. [39] Y. Cui, L. Wang, and D. Zhu. A 1.75-approximation algorithm for unsigned translocation distance. In X. Deng and D. Du, editors, Proceedings of the 16th Annual Symposium on Algorithms and Computation (ISAAC05), volume 3827 of Lecture Notes in Computer Science, pages 392–401. Springer, 2005. [40] A. C. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14:1394–1403, 2004. [41] A. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. GRIL: genome rearrangement and inversion locator. Bioinformatics, 20:122–124, 2004. [42] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27:2369–2376, 1999. [43] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Research, 30:2478– 2483, 2002. [44] Z. Dias and J. Meidanis. Sorting by prefix transpositions. In A. H. F. Laender and A. L. Oliveira, editors, Proceedings of the 9th International Symposium on String Processing and Information Retrieval (SPIRE2002), volume 2476 of Lecture Notes in Computer Science, pages 65–76. Springer, 2002. [45] T. Dobzhansky and A. H. Sturtevant. Inversions in the chromosomes of drosophila pseudoobscure. Genetics, 23:28–64, 1938. [46] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449– 467, 1965. [47] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3:369–379, 2006. (Preliminary version in Proceedings of the 5th Workshop on Algorithms in Bioinformatics (WABI2005), pages 204–215). [48] E. Erdem and E. Tillier. Genome rearrangement and planning. In M. M. Veloso and S. Kambhampati, editors, Proceedings of the 20th National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI2005), pages 1139–1144. AAAI Press AAAI Press/The MIT Press, 2005. [49] N. Eriksen. (1+")-approximation of sorting by reversals and transpositions. Theoretical Computer Science, 289:517–529, 2002. [50] N. Eriksen. Combinatorial methods in comparative genomics. PhD thesis, Royal Institute of Technology, 2003. [51] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. W¨astlund. Sorting a bridge hand. Discrete Mathematics, 241:289–300, 2001. [52] J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.6. distributed by the author. Department of Genome Sciences, University of Washington, Seattle, 2005. http://evolution.genetics.washington.edu/phylip.html. [53] J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting by block-interchanges. In S. B. Cooper J. y. Cai and A. Li, editors, Proceedings of the 3rd International Conference on Theory and Applications of Models of Computation (TAMC2006), volume 3959 of Lecture Notes in Computer Science, pages 128–137. Springer, 2006. [54] J. Fischer and S. W. Ginzinger. A 2-approximation algorithm for sorting by prefix reversals. In G. S. Brodal and S. Leonardi, editors, Proceedings of the 13rd Annual European Symposium on Algorithms (ESA2005), volume 3669 of Lecture Notes in Computer Science, pages 415–425. Springer, 2005. [55] J. B. Fraleigh. A First Course in Abstruct Algebra. Addison-Wesley, 6th edition, 1999. [56] M. R. Garey, R. L. Graham, and J. D. Ullmann. Worst-case analysis of memory allocation algorithms. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing (STOC1972), pages 143–150, 1972. [57] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979. [58] W. H. Gates and C. H. Papadimitriou. Bound for sorting by prefix reversals. Discrete Mathematics, 27:47–57, 1979. [59] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Techical Journal, 45:1563–1581, 1966. [60] Q. P. Gu, S. Peng, and H. Sudborough. A 2-approximation algorithms for genome rearrangements by reversals and transpositions. Theoretical Computer Science, 210:327–339, 1999. [61] S. A. Guyer, L. S. Heath, and J. P. C. Vergara. Subsequence and run heuristics for sorting by transpositions. Technical Report TR-97-20, Virginia Polytechnic Institute and State University, 1997. [62] S. Hannenhalli. Polynomial algorithm for computing translocation distance between genomes. Discrete Applied Mathematics, 71:137–151, 1996. [63] S. Hannenhalli, C. Chappey, E. Koonin, and P. A. Pevzner. Genome sequence comparison and scenarios for gene rearrangement: a test case. 30:299–311, 1995. [64] S. Hannenhalli and P. A. Pevzner. To cut . . . or not to cut (applications of comparative physical maps in molecular evolution)). In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA1995), pages 304–313. ACM/SIAM, 1995. [65] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (FOCS1995), pages 581–592. IEEE Computer Society, 1995. [66] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM, 46:1– 27, 1999. (Preliminary version in Proceedings of the 27th Annual ACM Symposium on Theory of Computing 1995 (STOC1995), pages 178–189). [67] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Information and Computation, 204:275–290, 2006. (Preliminary version in Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM2003), pages 156–169). [68] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by transpositions and transreversals. Journal of Computer and System Sciences, 70:300–320, 2005. (Preliminary version in Proceedings of the 4th Workshop on Algorithms in Bioinformatics (WABI2004), pages 50–61). [69] T. Hartman and E. Verbin. Matrix tightness: a linear-algebraic framework for sorting by transpositions. In P. Ferragina F. Crestani and M. Sanderson, editors, Proceedings of the 13th International Symposium on String Processing and Information Retrieval (SPIRE2006), volume 4209 of Lecture Notes in Computer Science, pages 279–290. Springer, 2006. [70] J. F. Heidelberg, J. A. Eisen, W. C. Nelson, and R. A. Clayton. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406:477–483, 2000. [71] H. Heydari and H. I. Sudborough. On the diameter of the pancake network. Journal of Algorithms, 25:67–94, 1997. [72] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing Company, 1997. [73] I. Holyer. The np-completeness of some edge-partition problems. SIAM Journal on Computing, 10:713–717, 1981. [74] S. B. Hoot and J. D. Palmer. Structural rearrangements, including parallel inversions, within the chloroplast genome of anemone and related genera. Journal of Molecular Biology, 38:274–281, 1994. [75] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata theory, languages and computation, Second Edition. Addison-Wesley, 2001. [76] M. R. Jerrum. The complexity of finding minimum-length generator sequences. Theoretical Computer Science, 36:274–281, 1985. [77] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256–278, 1974. [78] H. Kaplan, R. Shamir, and R. E. Tarjan. A faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal on Computing, 29:880–892, 1999. (Preliminary version in Proceedings of the 8th Annual Symposium on Discrete Algorithms (SODA1997), pages 344–351). [79] H. Kaplan and E. Verbin. Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In R. A. Baeza-Yates, E. Ch´avez, and M. Crochemore, editors, Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM2003), volume 2676 of Lecture Notes in Computer Science, pages 170–185. Springer, 2003. [80] H. Kaplan and E. Verbin. Sorting signed permutations by reversals, revisited. Journal of Computer and System Sciences, 70:321–341, 2005. [81] J. D. Kececioglu and R. Ravi. Of mice and men: algorithms for evolutionary distances between genomes with translocation. In Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA1995), pages 604–613. ACM/SIAM, 1995. [82] J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome-inversion distance. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching (CPM1994), volume 807 of Lecture Notes in Computer Science, pages 307–325. Springer, 1994. [83] J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion distance between two permutations. Algorithmica, 13:180–210, 1995. (Preliminary version in Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM1993), pages 87–105). [84] G. Li, X. Qi, X. Wang, and B. Zhu. A linear-time algorithm for computing translocation distance between signed genomes. In S. C. Sahinalp, S. Muthukrishnan, and Ugur Dogrus¨oz, editors, Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM2004), volume 3109 of Lecture Notes in Computer Science, pages 323–332. Springer, 2004. [85] Z. Li, L. Wang, and K. Zhang. Algorithmic approaches for genome rearrangement: a review. IEEE Transactions on Systems, Man and Cybernetics, 36:636–648, 2006. [86] G. Lin and T. Jiang. A further improved approximation algorithm for breakpoint graph decomposition. Journal of Combinatorial Optimization, 8:183–194, 2004. [87] G. H. Lin and G. Xue. Signed genome rearrangement by reversals and transpositions: models and approximations. Theoretical Computer Science, 259:513–531, 2001. [88] Y. C. Lin, C. L. Lu, H. Y. Chang, and C. Y. Tang. An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species. Journal of Computational Biology, 12:102–112, 2005. [89] Y. C. Lin, C. L. Lu, Y. H. Liu, and C. Y. Tang. SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges. Nucleic Acids Research, 34:W696–W699, 2006. [90] Y. C. Lin, C. L. Lu, and C. Y. Tang. Sorting permutation by reversals and blockinterchanges. submitted, 2006. [91] Y. C. Lin and C. Y. Tang. Exposing phylogenetic relationships by genome rearrangement. in: C.-W. Tzeng and M. Zelkowitz ed., Advances in Computers: Computational Biology and Bioinformatics, Vol68, pp. 1-57, 2006. [92] C. L. Lu, Y. L. Huang, T. C. Wang, and H. T. Chiu. Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics, 7, 2006. [93] C. L. Lu, T. C. Wang, Y. C. Lin, and C. Y. Tang. ROBIN: a tool for genome rearrangement of block-interchanges. Bioinformatics, 21:2780–2782, 2005. [94] K. Makino, K. Oshima, K. Kurokawa, and K. Yokoyama. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet, 361:743–749, 2003. [95] I. Mantin and R. Shamir. An algorithm for sorting signed permutations by reversals. http://www.math.tau.ac.il/rshamir/GR/, 1999. [96] J. Meidanis and Z. Dias. An alternative algebraic formalism for genome rearrangements. In D. Sankoff and J. H. Nadeau, editors, Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and Evolution of Gene Families, pages 213–223. Kluwer Academic Publisher, 2000. [97] J. Meidanis and Z. Dias. Genome rearrangements distance by fusion, fission, and transposition is easy. In G. Navarro, editor, Proceedings of the 8th International Symposium on String Processing and Information Retrieval (SPIRE2001), Lecture Notes in Computer Science, pages 250–253. IEEE Computer Society, 2001. [98] J. Meidanis, M. E. Walter, and Z. Dias. Reversal distance of signed circular chromosomes. Technical Report IC-00-23, Institute of Computing, 2000. [99] J. Meidanis, M. E. M. T. Walter, and Z. Dias. Transposition distance between a permutation and its reverse. In Proceedings of the 4th South American Workshop on String Processing (WSP1997), pages 70–79. Carleton University Press, 1997. [100] J. Meidanis, M. E. M. T. Walter, and Z. Dias. A lower bound on the reversal and transposition diameter. Journal of Computational Biology, 9:743–746, 2002. (Preliminary version in String Processing and Information Retrieval: A South American Symposium (SPIRE1998), pages 96–102). [101] I. Mikl´os. MCMC genome rearrangement. Bioinformatics, 19:130–137, 2003. [102] I. Mikl´os, P. Ittz´es, and J. Hein. ParIS genome rearrangement server. Bioinformatics, 21:817–820, 2005. [103] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. [104] J. L. Mohammed and C. S. Subi. An improved block-interchange algorithm. Journal of Algorithms, 8:113–121, 1987. [105] B. Morgenstern. Dialign 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics, 15:211–218, 1999. [106] B. Morgenstern, K. Frech, A. Dress, and T.Werner. Dialign: finding local similarities by multiple sequence alignment. Bioinformatics, 14:290–294, 1998. [107] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. [108] J. H. Nadeau and B. A. Taylor. Lengths of chromosomal segments conserved since divergence of man and mouse. Proceedings of the National Academy of Sciences of the United States of America, 81:814–818, 1984. [109] M. Ozery-Flato and R. Shamir. Two notes on genome rearrangement. Journal of Bioinformatics and Computational Biology, 1:71–94, 2003. [110] M. Ozery-Flato and R. Shamir. An O(n3/2plog n) algorithm for sorting by reciprocal translocations. In M. Lewenstein and G. Valiente, editors, Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM2006), volume 4009 of Lecture Notes in Computer Science, pages 258–269. Springer, 2006. [111] J. D. Palmer and L. A. Herbon. Plant mitochomdrial DNA evolves rapidly in structure, but slowly in sequence. Journal of Molecular Evolution, 28:87–97, 1988. [112] J. D. Palmer, B. Osorio, and W. R. Thompson. Evolutionary significance of inversions in legume chorloplast DNAs. Current Genetics, 14:65–74, 1988. [113] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994. [114] P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000. [115] P. A. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Research, 13:37–45, 2003. [116] D. Sankoff. Edit distance for genome comparison based on non-local operations. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of the 3rd Annual Symposium on Combinatorial Pattern Matching (CPM1992), volume 644 of Lecture Notes in Computer Science, pages 121–135. Springer, 1992. [117] D. Sankoff. Rearrangements and chromosomal evolution. Current Opinion in Genetics and Development, 13:583–587, 2003. [118] D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through gene rearrangement. Methods in Enzymology, 183:428–438, 1990. [119] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang, and R. Cedergren. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America, 89:6575–6579, 1992. [120] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haussler, and W. Miller. Human-mouse alignments with blastz. Genome Research, 13:103–107, 2003. [121] A. C. Siepel. An algorithm to enumerate sorting reversals for signed permutations. Journal of Computational Biology, 10:575–597, 2003. (Preliminary version in Proceedings of the 6th Annual international conference on Research in Computational Molecular Biology (RECOMB2002), pages 281–290). [122] M. Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997. [123] A. Solomon, P. Sutcliffe, and R. Lister. Sorting circular permutations by reversal. In F. K. H. A. Dehne, J.-R. Sack, and M. H. M. Smid, editors, Algorithms and Data Structures, 8th International Workshop (WADS2003), volume 2748 of Lecture Notes in Computer Science, pages 319–328. Springer, 2003. [124] E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In S. C. Sahinalp, S. Muthukrishnan, and Ugur Dogrus¨oz, editors, Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM2004), volume 3109 of Lecture Notes in Computer Science, pages 1–13. Springer, 2004. [125] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences, 65:587–609, 2002. [126] G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics, 18:492–493, 2002. [127] N. Tran. An easy case of sorting by reversals. Journal of Computational Biology, 5:741–746, 1998. (Preliminary version in Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM1997), pages 83–89). [128] V. V. Vazirani. Approximation algorithms. Springer-Verlag, 2001. [129] M. E. M. T. Walter, L. R. A. F. Curado, and A. G. Oliveira. Working on the problem of sorting by transpositions on genome rearrangements. In R. A. Baeza- Yates, E. Chavez, and M. Crochemore, editors, Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM2003), volume 2676 of Lecture Notes in Computer Science, pages 372–383. Springer, 2003. [130] M. E. M. T. Walter, Z. Dias, and J. Meidanis. Reversal and transposition distance of linear chromosomes. In Proceedings of String Processing and Information Retrieval (SPIRE1998), Lecture Notes in Computer Science, pages 96–102. IEEE Computer Society, 1998. [131] M. E. M. T. Walter, M. C. Sobrinho, E. T. G. Oliveira, L. S. Soares, A. G. Oliveira, T. E. S. Martins, and T. M. Fonseca. Improving the algorithm of bafna and pevzner for the problem of sorting by transpositions: a practical approach. Journal of Discrete Algorithms, 3:342–361, 2005. [132] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171:737–738, 1953. [133] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion problem. Journal of Theoretical Biology, 99:1–7, 1982. [134] R. F. Weaver. Molecular biology, second edition. McGraw-Hill, 2001. [135] S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by translocation, inversion & block interchange. Bioinformatics, 21:3340–3346, 2005. [136] D. Zhua and L. Wang. On the complexity of unsigned translocation distance. Theoretical Computer Science, 352:322–328, 2006.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29773

  7. 7
  8. 8
  9. 9
    Academic Journal

    المؤلفون: 潘培琛

    المساهمون: 北京大学计算机科学技术研究所

    المصدر: 知网

    مصطلحات موضوعية: 组合问题, 优化, 上界, 下界

    Relation: 北京大学学报(自然科学版).1989,(03),370-379.; 1031485; http://hdl.handle.net/20.500.11897/161940

  10. 10
    Academic Journal

    المؤلفون: 王攻本

    المساهمون: 北京大学计算机科学与技术系, 美国伊利诺依大学计算机科学系

    المصدر: 知网

    Relation: 北京大学学报(自然科学版).1987,(01),56-64.; 823145; http://hdl.handle.net/20.500.11897/152297