يعرض 1 - 20 نتائج من 109 نتيجة بحث عن '"王正一"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis
  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis
  5. 5
    Dissertation/ Thesis

    المؤلفون: WANG, ZHENG-YI, 王正一

    Thesis Advisors: YU, HUI-ZHOGN, FENG, WU-XIONG, PANG, TAI-MIN, 于惠中, 馮武雄, 龐台銘

  6. 6
    Dissertation/ Thesis
  7. 7
    Academic Journal

    Alternate Title: Self-evolving Power Smooth Control Method for Offshore Wind Power Cluster Based On Deep Reinforcement Learning. (English)

    المؤلفون: 袁铁江, 张红, 杨洋, 王正一

    المصدر: Electric Power; Mar2023, Vol. 56 Issue 3, p30-46, 17p

  8. 8
    Academic Journal

    Alternate Title: Research on the scale effects of solute transport in a bended karst conduit. (English)

    المؤلفون: 赵小二, 王正一, 武桂芝, 李 琪

    المصدر: Hydrogeology & Engineering Geology / Shuiwendizhi Gongchengdizhi; 2023, Vol. 50 Issue 2, p44-53, 10p

    مصطلحات موضوعية: KARST, DISPERSION (Chemistry), HOSE, STORAGE

  9. 9
    Report

    وصف الملف: 123 bytes; text/html

    Relation: Information Sciences, vol. 242, pp. 1-21; [1] S. Abbasbandy, B. Asady, Ranking of fuzzy numbers by sign distance, Information Sciences 176 (16) (2006) 2405-2416. [2] S. Abbasbandy, T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers, Computers and Mathematics with Applications 57 (3) (2009) 413-419. [3] B. Asady, A. Zendehnam, Ranking fuzzy numbers by distance minimization, Applied Mathematical Modelling 31 (11) (2007) 2589-2598. [4] L. Astudillo, O. Castillo, L. T. Aguilar, Intelligent control for a perturbed autonomous wheeled mobile robot: a type-2 fuzzy logic approach, Journal of Nonlinear Studies 14 (3) (2007) 37-48. [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986) 87-96. [6] S. Auephanwiriyakul, A. Adrian, J. M. Keller, Type-2 fuzzy set analysis in management surveys, in: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu, HI, 2002, pp. 1321-1325. [7] P. Baguley, T. Page, V. Koliza, P. Maropoulos, Time to market prediction using type-2 fuzzy sets, Journal of Manufacturing Technology Management 17 (4) (2006) 513-520. [8] A. Bouchachia, R. Mittermeir, A neural cascade architecture for document retrieval, in: Proceedings of the International Joint Conference Neural Networks 3, Poland, OR, 2003, pp. 1915-1920. [9] O. Castillo, N. Cazarez, P. Melin, Design of stable type-2 fuzzy logic controllers based on a fuzzy Lyapunov approach, in: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, 2006, pp. 2331-2336. [10] O. Castillo, P. Melin, Adaptive noise cancellation using type-2 fuzzy logic and neural networks, in: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, vol. 2, 2004, pp. 1093-1098. [11] O. Castillo, P. Melin, Evolutionary computing for optimizing type-2 fuzzy logic systems in intelligent control of non-linear dynamic plants, in: Proceedings of the North American Fuzzy Information Processing Society (NAFIPS), Ann Arbor, MI, 2005, pp. 247-251. [12] O. Castillo, P. Melin, in: J. Kacprzyk (Ed.), Type-2 Fuzzy Logic: Theory and Applications, Springer-Verlag, Berlin, Heidelberg, 2008. [13] O. Castillo, P. Melin, A review on the design and optimization of interval type-2 fuzzy controllers, Applied Soft Computing 12 (4) (2012) 1267-1278. [14] O. Castillo, P. Melin, Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review, Information Sciences 205 (2012) 1-19. [15] O. Castillo, P. Melin, W. Pedrycz, Design of interval type-2 fuzzy models through optimal granularity allocation, Applied Soft Computing 11 (8) (2011) 5590–5601. [16] N. R. Cazarez-Castro, L. T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems, Engineering Applications of Artificial Intelligence 25 (5) (2012) 971-979. [17] L. H. Chen, H. W. Lu, An approximate approach for ranking fuzzy numbers based on left and right dominance, Computers and Mathematics with Applications 41 (12) (2001) 1589-1602. [18] S. H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems 17 (2) (1985) 113-129. [19] S. M. Chen, J. H. Chen, Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads, Expert Systems with Applications 36 (3) (2009) 6833-6842. [20] S. M. Chen, L. W. Lee, Fuzzy multiple criteria hierarchical group decision-making based on interval type-2 fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40 (5) (2010) 1120-1128. [21] S. M. Chen, L. W. Lee, Fuzzy decision-making based on likelihood-based comparison relations, IEEE Transactions on Fuzzy Systems 18 (3) (2010) 613-628. [22] S. M. Chen, L. W. Lee, Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets, Expert Systems with Applications 37 (1) (2010) 824-833. [23] S. M. Chen, L. W. Lee, Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method, Expert Systems with Applications 37 (4) (2010) 2790-2798. [24] S. M. Chen, K. Sanguansat, Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers, Expert Systems with Applications 38 (3) (2011) 2163-2171. [25] S. M. Chen, C. Y. Wang, A new method for fuzzy decision-making based on ranking generalized fuzzy numbers and interval type-2 fuzzy sets, in: Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Guilin, Guangxi, China, 2011, pp. 131-136. [26] T. Y. Chen, Optimistic and pessimistic decision making with dissonance reduction using interval-valued fuzzy sets, Information Sciences 181 (3) (2011) 479-502. [27] T. Y. Chen, Bivariate models of optimism and pessimism in multi-criteria decision-making based on intuitionistic fuzzy sets, Information Sciences 181 (11) (2011) 2139-2165. [28] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems 95 (3) (1998) 307-317. [29] T. C. Chu, C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications 43 (1) (2002) 111-117. [30] D. Dubois, H. Prade, Ranking of fuzzy numbers in the setting of possibility theory, Information Sciences 30 (3) (1983) 183-224. [31] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas, A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games, in: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV, 2005, pp. 359-364. [32] L. Gu, Y. Q. Zhang, Web shopping expert using new interval type-2 fuzzy reasoning, Soft Computing 11 (8) (2007) 741-751. [33] K. Guo, W. Li, An attitudinal-based method for constructing intuitionistic fuzzy information in hybrid MADM under uncertainty, Information Sciences 208 (2012) 28-38. [34] H. Hagras, Type-2 FLCs: a new generation of fuzzy controllers, IEEE Computational Intelligence Magazine 2 (1) (2007) 30-43. [35] D. Hidalgo, P. Melin, O. Castillo, An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms, Expert Systems with Applications 39 (4) (2012) 4590-4598. [36] V. N. Huynh, Y. Nakamori, J. Lawry, A probability-based approach to comparison of fuzzy numbers and applications to target-oriented decision making, IEEE Transactions on Fuzzy Systems 16 (2) (2008) 371-387. [37] N. N. Karnik, J. M. Mendel, Q. Liang, Type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems 7 (6) (1999) 643-658. [38] K. Kim, K. S. Park, Ranking fuzzy numbers with index of optimism, Fuzzy Sets and Systems 35 (2) (1990) 143-150. [39] C. H. Lee, Y. C. Lin, Control of nonlinear uncertain systems using type-2 fuzzy neural network and adaptive filter, in: Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, vol. 2, Taipei, Taiwan, 2004, pp. 1177-1182. [40] Q. Liang, L. Wang, Sensed signal strength forecasting for wireless sensors using interval type-2 fuzzy logic systems, in: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV, 2005, pp. 25-30. [41] P. Z. Lin, C. F. Hsu, T. T. Lee, Type-2 fuzzy logic controller design for buck DC–DC converters, in: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV, 2005, pp. 365-370. [42] O. Linda, M. Manic, Interval type-2 fuzzy voter design for fault tolerant systems, Information Sciences 181 (14) (2011) 2933–2950. [43] T. S. Liou, M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and Systems 50 (3) (1992) 247-255. [44] F. Liu, J. M. Mendel, An interval approach to fuzzistics for interval type-2 fuzzy sets, in: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, UK, 2007, pp. 1-6. [45] P. Liu, Y. Su, Multiple attribute decision making method based on the trapezoid fuzzy linguistic hybrid harmonic averaging operator, Informatica 36 (1) (2012) 83-90. [46] Y. Liu, Z. P. Fan, Y. Zhang, A method for stochastic multiple criteria decision making based on dominance degrees, Information Sciences 181 (19) (2011) 4139-4153. [47] C. Lynch, H. Hagras, V. Callaghan, Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines, in: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, 2006, pp. 7217-7224. [48] M. Margaliot, G. Langholz, Adaptive fuzzy controller design via fuzzy Lyapunov synthesis, In: Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, vol. 1, 1998, pp. 354-359. [49] P. Melin, O. Castillo, An intelligent hybrid approach for industrial quality control combining neural networks, type-2 fuzzy logic and fractal theory, Information Sciences 177 (7) (2007) 1543-1557. [50] P. Melin, O. Mendoza, O. Castillo, Face recognition with an improved interval type-2 fuzzy logic Sugeno integral and modular neural networks, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41(5) (2011) 1001-1012. [51] P. Melin, J. Urias, D. Solano, M. Soto, M. Lopez, O. Castillo, Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms, Journal of Engineering Letters 13 (2) (2006) 108-116. [52] J. M. Mendel, An architecture for making judgements using computing with words, International Journal of Applied Mathematics and Computer Science 12 (3) (2002) 325-335. [53] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, Upper Saddle River, NJ, 2001. [54] J. M. Mendel, R. I. John, F. L. Liu, Interval type-2 fuzzy logical systems made simple, IEEE Transactions on Fuzzy Systems 14 (6) (2006) 808-821. [55] J. M. Mendel, H. Wu, Centroid uncertainty bounds for interval type-2 fuzzy sets: forward and inverse problems, in: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, vol. 2, Budapest, Hungary, 2004, pp. 947-952. [56] A. Niewiadomski, M. Bartyzel, Elements of type-2 semantics in summarizing databases, in: Proceedings of the 8th International Conference on Artificial Intelligence and Soft Computing, vol. 4029, 2006, 278-287. [57] A. Niewiadomski, P. S. Szczepaniak, News generating based on type-2 linguistic summaries of databases, in: Proceedings of the 2006 International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, France, 2006, pp. 1324-1331. [58] C. M. Own, H. H. Tsai, P. T. Yu, Y. J. Lee, Adaptive type-2 fuzzy median filter design for removal of impulse noise, Imaging Science 54 (1) (2006) 3-18. [59] T. Ozen, J.M. Garibaldi, Effect of type-2 fuzzy membership function shape on modelling variation in human decision making, in: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 2004, pp. 971-976. [60] F. C. H. Rhee, Uncertainty fuzzy clustering: insights and recommendations, IEEE Computational Intelligence Magazine 2 (1) (2007) 44-56. [61] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, O. Montiel, Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic, Information Sciences 177 (10) (2007) 2023-2048. [62] P. Sevastjanov, P. Figat, Aggregation of aggregating modes in MCDM: synthesis of type 2 and level 2 fuzzy sets, Omega 35 (5) (2007) 505-523. [63] H. Shu, Q. Liang, Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems, in: Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV, 2005, pp. 19-24. [64] Y. M. Wang, Y. Luo, Area ranking of fuzzy numbers based on positive and negative ideal points, Computers and Mathematics with Applications 58 (9) (2009) 1769-1779. [65] Z. X. Wang, Y. J. Liu, Z. P. Fan, B. Feng, Ranking L-R fuzzy number based on deviation degree, Information Sciences 179 (13) (2009) 2070-2077. [66] D. Wu, J. M. Mendel, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE Transactions on Fuzzy Systems 15 (6) (2007) 1145-1666. [67] D. Wu, J. M. Mendel, Uncertainty measures for interval type-2 fuzzy sets, Information Sciences 177 (23) (2007) 5378-5393. [68] D. Wu, J. M. Mendel, A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets, Information Sciences 179 (8) (2009) 1169-1192. [69] H. Wu, J. M. Mendel, Antecedent connector word models for interval type-2 fuzzy logic systems, in: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 2004, vol. 2, pp. 1099-1104. [70] D. Wu, W. W. Tan, A simplified type-2 fuzzy controller for real-time control, ISA Transactions 45 (4) (2006) 503-516. [71] D. Wu, W. W. Tan, Genetic learning and performance evaluation of type-2 fuzzy logic controllers, Engineering Applications of Artificial Intelligence 19 (8) (2006) 829-841. [72] Z. S. Xu, An approach based on similarity measure to multiple attribute decision making with trapezoid fuzzy linguistic variables, in: Proceedings of the 2005 Second International Conference on Fuzzy Systems and Knowledge Discovery, Changsha, China, 2005, pp. 110-117. [73] R. R. Yager, Fuzzy subsets of type-2 in decisions, Journal of Cybernetics 10 (1980) 137-159. [74] R. R. Yager, Decision making with fuzzy probability assessments, IEEE Transactions on Fuzzy Systems 7 (4) (1999) 462-467. [75] R. R. Yager, Including decision attitude in probabilistic decision making, International Journal of Approximate Reasoning 21 (1) (1999) 1-21. [76] R. R. Yager, Fuzzy modeling for intelligent decision making under uncertainty, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 30 (1) (2000) 60-70. [77] J. Yao, K. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems 116 (2) (2000) 275-288. [78] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353. [79] J. Zeng, Z. O. Liu, Type-2 fuzzy hidden Markov models and their applications to speech recognition, IEEE Transactions on Fuzzy Systems 14 (3) (2006) 454-467.; 全文連結 http://www.sciencedirect.com/science/article/pii/S0020025513002934; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111801; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111801/1/index.html; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111801/-1/Fuzzy decision making systems based on interval type-2 fuzzy sets.pdf

  10. 10
    Report

    وصف الملف: 123 bytes; text/html

    Relation: Information Sciences, vol 411, , Pages 176-184; [1] K.T. Atanassov, G. Gargov, Interval-valued Intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (3) (1989) 343-349. [2] M. Cai, Q. Li, G. Lang, Shadowed sets of dynamic fuzzy sets, Granular Computing 2 (2) (2017) 85-94. [3] K. Chatterjee, S. Kar, Unified Granular-number based AHP-VIKOR multi-criteria decision framework, Granular Computing 2 (4) (2017). [4] S.M. Chen, C.H. Chiou, Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques and evidential reasoning methodology, IEEE Transactions on Fuzzy Systems 23 (6) (2015) 1905-1916. [5] S.M. Chen, Z.C. Huang, Multiattribute decision making based on interval-valued intuitionistic fuzzy values and linear programming methodology, Information Sciences 381 (1) (2017) 341-351. [6] S.M. Chen, L.W. Lee, H.C. Liu, S.W. Yang, Multiattribute decision making based on interval-valued intuitionistic fuzzy values, Expert Systems with Applications 39 (12) (2012) 10343-10351. [7] T.Y. Chen, Comparative analysis of SAW and TOPSIS based on interval-valued fuzzy sets: Discussions on score functions and weight constraints, Expert Systems with Applications, 39 (2) (2012) 1848-1861. [8] S. Das, S. Kar, T. Pal, Robust decision making using intuitionistic fuzzy numbers, Granular Computing 2 (1) (2017) 41-54. [9] D.F. Li, TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets, IEEE Transactions on Fuzzy Systems 18 (2) (2010) 299-311. [10] L. Livi, A. Sadeghian, Granular computing, computational intelligence, and the analysis of non-geometric input spaces, Granular Computing 1 (1) (2016) 13-20. [11] J.M. Mendel, A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words, Granular Computing 1 (1) (2016) 59-69. [12] S. Meng, N. Liu, Y. He, GIFIHIA operator and its application to the selection of cold chain logistics enterprises, Granular Computing 2 (4) (2017). [13] V. L. G. Nayagam, G. Sivaraman, Ranking of interval-valued intuitionistic fuzzy sets, Applied Soft Computing, 11 (4) (2011) 3368-3372. [14] J. Qin, X. Liu, W. Pedrycz, Multi-attribute group decision making based on Choquet integral under interval-valued intuitionistic fuzzy environment, International Journal of Computational Intelligence Systems, 9 (1) (2016) 133-152. [15] R.I. Rothenberg, Linear Programming, Elsevier, North Holland, New York, 1979. [16] R. Sahin, Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets, Soft Computing 20 (7) (2016) 2557-2563. [17] M.A. Sanchez, J.R. Castro, O. Castillo, O. Mendoza, Fuzzy higher type information granules from an uncertainty measurement, Granular Computing 2 (2) (2017) 95-103. [18] C.Y. Tsao, T.Y. Chen, A projection-based compromising method for multiple criteria decision analysis with interval-valued intuitionistic fuzzy information, Applied Soft Computing 45 (2016) 207-223. [19] S.P. Wan, D.F. Li, Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees, Information Sciences 325 (2015) 484-503. [20] C.Y. Wang, S.M. Chen, Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method, Information Sciences 397-398 (2017) 155-167. [21] J.Q. Wang, K.J. Li, H.Y. Zhang, Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function, Knowledge-Based Systems, 27 (2012) 119-125. [22] Z. Xu, X. Gou, An overview of interval-valued intuitionistic fuzzy information aggregations and applications, Granular Computing 2 (1) (2017) 13-39. [23] Z. Xu, H. Wang, Managing multi-granularity linguistic information in qualitative group decision making: An overview, Granular Computing 1 (1) (2016) 21-35. [24] Z.S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control and Decision 22 (2) (2007) 215-219. (in Chinese) [25] F. Ye, An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection, Expert Systems with Applications 37 (10) (2010) 7050-7055. [26] J. Ye, Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment, Expert Systems with Applications, 36 (3) (2009) 6899-6902. [27] Z. Zhitao, Z. Yingjun, Multiple attribute decision making method in the frame of interval-valued intuitionistic fuzzy sets, in: Proceedings of the 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery, Shanghai, China, 2011, pp. 192-196. [28] X. Zhou, Membership grade mining of mutually inverse fuzzy implication propositions, Granular Computing 2 (1) (2017) 55-62.; 全文連結 http://www.sciencedirect.com/science/article/pii/S0020025517307314; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111800; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111800/1/index.html; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111800/-1/An improved multiattribute decision making method based on new score function of interval-valued intuitionistic fuzzy values and linear programming methodology.pdf

    الاتاحة: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/111800
    http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111800/1/index.html
    http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/111800/-1/An improved multiattribute decision making method based on new score function of interval-valued intuitionistic fuzzy values and linear programming methodology.pdf

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Report
  18. 18
    Report
  19. 19
    Report
  20. 20
    Report