-
1Dissertation/ Thesis
المؤلفون: 黃名儀, Huang, Ming-I
المساهمون: 郁方 洪智鐸, Yu, Fang Hong, Chih-Duo
مصطلحات موضوعية: 政治大學, 深度神經網路, 動態符號執行測試, 公平性測試, NCCU, Concolic Testing, Fairness Testing, Deep Neural Networks
وصف الملف: 1636132 bytes; application/pdf
Relation: Aggarwal, A., Lohia, P., Nagar, S., Dey, K., and Saha, D. (2019). Black box fairness testing of machine learning models. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 625–635. Albarghouthi, A., D’Antoni, L., Drews, S., and Nori, A. V. (2017). Fairsquare: prob- abilistic verification of program fairness. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–30. Awwad, Y., Fletcher, R., Frey, D., Gandhi, A., Najafian, M., and Teodorescu, M. (2020). Exploring fairness in machine learning for international development. Technical report, CITE MIT D-Lab. Bastani, O., Zhang, X., and Solar-Lezama, A. (2019). Probabilistic verification of fairness properties via concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–27. Biswas, S. and Rajan, H. (2020). Do the machine learning models on a crowd sourced platform exhibit bias? an empirical study on model fairness. In Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pages 642–653. Biswas, S. and Rajan, H. (2021). Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline. In Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pages 981–993. Biswas, S. and Rajan, H. (2023). Fairify: Fairness verification of neural networks. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages 1546–1558. IEEE. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for self- driving cars. arXiv preprint arXiv:1604.07316. Buolamwini, J. and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency, pages 77–91. PMLR. Chakraborty, J., Majumder, S., Yu, Z., and Menzies, T. (2020). Fairway: a way to build fair ml software. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 654–665. Chen, Y.-F., Tsai, W.-L., Wu, W.-C., Yen, D.-D., and Yu, F. (2021). Pyct: A python con- colic tester. In Programming Languages and Systems: 19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October 17–18, 2021, Proceedings 19, pages 38–46. Springer. Chen, Z., Zhang, J. M., Sarro, F., and Harman, M. (2024). Fairness improvement with multiple protected attributes: How far are we? In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pages 1–13. Dastin, J. (2022). Amazon scraps secret ai recruiting tool that showed bias against women. In Ethics of data and analytics, pages 296–299. Auerbach Publications. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science con- ference, pages 214–226. Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. (2015). Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pages 259–268. Flores, A. W., Bechtel, K., and Lowenkamp, C. T. (2016). False positives, false nega- tives, and false analyses: A rejoinder to machine bias: There’s software used across the country to predict future criminals. and it’s biased against blacks. Fed. Probation, 80:38. Galhotra, S., Brun, Y., and Meliou, A. (2017). Fairness testing: testing software for dis- crimination. In Proceedings of the 2017 11th Joint meeting on foundations of software engineering, pages 498–510. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and Vechev, M. (2018). Ai2: Safety and robustness certification of neural networks with abstract inter- pretation. In 2018 IEEE symposium on security and privacy (SP), pages 3–18. IEEE. Gohar, U., Biswas, S., and Rajan, H. (2023). Towards understanding fairness and its composition in ensemble machine learning. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages 1533–1545. IEEE. Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adver- sarial examples. arXiv preprint arXiv:1412.6572. Hort, M., Zhang, J. M., Sarro, F., and Harman, M. (2021). Fairea: A model behaviour mutation approach to benchmarking bias mitigation methods. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 994–1006. John, P. G., Vijaykeerthy, D., and Saha, D. (2020). Verifying individual fairness in machine learning models. In Conference on Uncertainty in Artificial Intelligence, pages 749– 758. PMLR. Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Reluplex: An efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pages 97–117. Springer. Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A., et al. (2019). The marabou framework for verification and analysis of deep neural networks. In Computer Aided Verification: 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31, pages 443–452. Springer. Khedr, H. and Shoukry, Y. (2023). Certifair: A framework for certified global fairness of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 8237–8245. Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial examples in the phys- ical world. In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC. Lam, L. and Suen, S. (1997). Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 27(5):553–568. Li, T., Xie, X., Wang, J., Guo, Q., Liu, A., Ma, L., and Liu, Y. (2023). Faire: Repair- ing fairness of neural networks via neuron condition synthesis. ACM Transactions on Software Engineering and Methodology, 33(1):1–24. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42:60–88. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu, Y., et al. (2018). Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pages 120–131. Mohammadi, K., Sivaraman, A., and Farnadi, G. (2023). Feta: Fairness enforced verify- ing, training, and predicting algorithms for neural networks. In Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, pages 1–11. Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). Deepxplore: Automated whitebox testing of deep learning systems. In proceedings of the 26th Symposium on Operating Systems Principles, pages 1–18. Ruoss, A., Balunovic, M., Fischer, M., and Vechev, M. (2020). Learning certified in- dividually fair representations. Advances in neural information processing systems, 33:7584–7596. Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa, K. T., and Ghani, R. (2018). Aequitas: A bias and fairness audit toolkit. arXiv preprint arXiv:1811.05577. Sharma, A. and Wehrheim, H. (2020). Automatic fairness testing of machine learning models. In Testing Software and Systems: 32nd IFIP WG 6.1 International Conference, ICTSS 2020, Naples, Italy, December 9–11, 2020, Proceedings 32, pages 255–271. Springer. Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019). An abstract domain for certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., and Kroening, D. (2018). Concolic testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE In- ternational Conference on Automated Software Engineering, pages 109–119. Udeshi, S., Arora, P., and Chattopadhyay, S. (2018). Automated directed fairness test- ing. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pages 98–108. Urban, C., Christakis, M., Wüstholz, V., and Zhang, F. (2020). Perfectly parallel fairness certification of neural networks. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30. Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018). Formal security analysis of neural networks using symbolic intervals. In 27th USENIX Security Symposium (USENIX Security 18), pages 1599–1614. Yurochkin, M., Bower, A., and Sun, Y. (2019). Training individually fair ml models with sensitive subspace robustness. arXiv preprint arXiv:1907.00020. Zhang, J. M. and Harman, M. (2021). “ignorance and prejudice” in software fairness. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages 1436–1447. IEEE. Zhang, L., Zhang, Y., and Zhang, M. (2021). Efficient white-box fairness testing through gradient search. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 103–114. Zhang, P., Wang, J., Sun, J., Dong, G., Wang, X., Wang, X., Dong, J. S., and Dai, T. (2020). White-box fairness testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pages 949–960. Zheng, H., Chen, Z., Du, T., Zhang, X., Cheng, Y., Ji, S., Wang, J., Yu, Y., and Chen, J. (2022). Neuronfair: Interpretable white-box fairness testing through biased neuron identification. In 44th International Conference on Software Engineering, pages 1–13, New York, NY, USA. ACM.; G0111356047; https://nccur.lib.nccu.edu.tw//handle/140.119/153165; https://nccur.lib.nccu.edu.tw/bitstream/140.119/153165/1/604701.pdf
-
2Dissertation/ Thesis
المؤلفون: 胡程鈞, Hu, Cheng-Jun
المساهمون: 呂桔誠 林士貴, Lyu, Jye-Cherng Lin, Shih-Kuei
مصطلحات موضوعية: 房價預測, 機器學習, 深度學習, 深度神經網路, 生成對抗網路, 隨機森林, XGBoost, Housing Price Prediction, Machine Learning, Deep Learning, Deep Neural Network, Generative Adversarial Network, Random Forest
وصف الملف: 1544488 bytes; application/pdf
Relation: 1. Aggarwal, K., Kirchmeyer, M., Yadav, P., Keerthi, S., and Gallinari, P. (2020). Benchmarking Regression Methods: A Comparison with CGAN. arXiv preprint arXiv:1905.12868. 2. Antipov, E.A. and Pokryshevskaya, E.B. (2012). Mass Appraisal of Residential Apartments: An Application of Random Forest for Valuation and A CART-Based Approach for Model Diagnostics. Expert Systems with Applications, 39(2), 1772-1778. 3. Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Gan. arXiv preprint arXiv:1701.07875, 2(3), 4. 4. Aycock, S.A. (2000). The Impact of Fairness, Reference Point, and Human Decision Processing on Negotiation. Journal of Financial Service professionals, 54(2), 76-81. 5. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. 6. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees. 7. Chen, T.Q. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (785-794). 8. Chen, X., Wei, L., and Xu, J. (2017). House Price Prediction Using LSTM. arXiv preprint arXiv:1709.08432. 9. Diaz III, J. (1990). The Process of Selecting Comparable Sales. The Appraisal Journal 58(4), 533-540. 10. Diqi, M., Hiswati, M.E., and Nur, A.S. (2022). StockGAN: Robust Stock Price Prediction Using GAN Algorithm. International Journal of Information Technology, 14(5), 2309–2315. 11. Do, A.Q. and Grudnitski, G. (1992). A Neural Network Approach to Residential Property Appraisal, The Real Estate Appraiser. 58(3), 38-45. 12. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1-26. 13. Embaye, W.T., Zereyesus, Y.A., and Chen, B. (2021). Predicting the Rental Value of Houses in Household Surveys in Tanzania, Uganda And Malawi: Evaluations of Hedonic Pricing and Machine Learning Approaches. Public Library of Science, 16(2), 1-20. 14. Frew, J. and Jud, G.D. (2003). Estimating the Value of Apartment Buildings. Journal of Real Estate Research, 25(1), 77-86. 15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. Advances in neural information processing systems, 27. 16. Goodman, A.C. and Thibodeau, T. (2003). Housing Market Segmentation and Hedonic Prediction Accuracy. Journal of Housing Economics, 12(3), 181-201. 17. Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2015). A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. arXiv preprint arXiv:2001.06937. 18. Harrison, D. and Rubinfeld, D.L. (1978). Hedonic Housing Prices and the Demand for Clean Air. Journal of Environmental Economics and Management, 5(1), 81-102. 19. Ho, W.K.O., Tang, B., and Wong S.W. (2021). Predicting Property Prices with Machine Learning Algorithms. Journal of Property Research, 38(1), 48-70. 20. Hsieh, C.F. and Lin, T.C. (2021). Housing Price Prediction by Using Generative Adversarial Networks. In 2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 49-53. 21. Huang, H., Yu, P.S., and Wang, C. (2018). An Introduction to Image Synthesis with Generative Adversarial Nets. arXiv preprint arXiv:1803.04469. 22. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444. 23. Lin, H., Chen, C., Huang, G., and Jafari, A. (2021). Stock Price Prediction Using Generative Adversarial Networks. Journal of Computer Science, 17(3), 188-196. 24. Liu, B., Lv, J., Fan, X., Luo, J., and Zou, T. (2022). Application of an Improved DCGAN for Image Generation. Mobile Information Systems, 2022. 25. Liu, Z., Song, A., Sabar, N., Qin, K., Izuhara, T. (2023). Evolution Enhancing Property Price Prediction by Generating Artificial Transaction Data. In Proceedings of the Conference on Genetic and Evolutionary Computation, 739-742. 26. Lusht, K.M. (1996). A Comparison of Prices Brought by English Auctions and Private Negotiations. Journal of Real Estate Economics, 24(4), 517-530. 27. Mackmin, D. (1985). Is There a Residential Valuer in The House? Journal of Valuation, 3(4), 384-390. 28. Maliene, V. (2011). Specialized Property Valuation: Multiple Criteria Decision Analysis. Journal of Retail & Leisure Property, 9, 443–450. 29. Mirza, M. and Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784. 30. Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., and French, N. (2003). Real Estate Appraisal: A Review of Valuation Methods. Journal of Property Investment and Finance, 21(4), 383-401. 31. Park, B. and Bae, J.K. (2015). Using Machine Learning Algorithms for Housing Price Prediction: The Case of Fairtax County, Virginia Housing Data. Expert Systems with Applications, 42(6), 2928-2934. 32. Rico-Juan, J.R. and de La Paz, P.T. (2021). Machine Learning with Explainability or Spatial Hedonics Tools? An Analysis of The Asking Prices in The Housing Market in Alicante, Spain. Expert Systems with Applications, 171, 114590. 33. Romero, R.A.C. (2017). Generative Adversarial Network for Stock Market Price Prediction. CD230: Deep Learning, Stanford University, 5. 34. Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, 82(1), 34-55. 35. Rosenblatt, F. (1957). The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain. Psychological Review, 65(6), 386-408. 36. Soltani, A., Heydari, M., Aghaei, F., and Pettit, C.J. (2022). Housing Price Prediction Incorporating Spatio-Temporal Dependency into Machine Learning Algorithms. Cities, 131(4), 103941. 37. Tanaka, F.H.K.D.S. and Aranha, C. (2019). Data Augmentation using GANs. arXiv preprint arXiv:1904.0913. 38. Tay, D.P.H. and Ho, D.K.H. (1991). Artificial Intelligence and The Mass Appraisal of Residential Apartments. Journal of Property Valuation and Investment, 10, 525 -539. 39. Xu, X. and Zhang, Y. (2021). House Price Forecasting with Neural Networks. Intelligent Systems with Applications, 12, 200052. 40. Yilmaz, B. (2023). Housing GANs: Deep Generation of Housing Market Data. Computational Economics, 1-16. 41. Yiu, C.Y., Tang, B.S., Chiang, Y.H., and Choy, L.H.T. (2006). Alternative Theories of Appraisal Bias. Journal of Real Estate Literature, 14(3), 321-344. 42. Yu, L., Jiao, C., Xin, H., Wang, Y., and Wang, K. (2018). Prediction on Housing Price Based on Deep Learning. International Journal of Computer and Information Engineering, 12(2), 90-99. 43. Zhang, B., Sui, W., Huang, Z., Qi, M., and Li, M. (2023). Normalizing Flow based Uncertainty Estimation for Deep Regression Analysis. Available at SSRN 4698811. 44. Zhang, K., Zhong, G., Dong, J., Wang, S. and Wang, Y. (2018). Stock Market Prediction Based on Generative Adversarial Network. Procedia Computer Science 147, 400-406. 45. Zheng, T., Song. L., Wang, J., Teng, W., Xu, X., and Ma, C. (2020). Data Synthesis Using Dual Discriminator Conditional Generative Adversarial Networks for Imbalanced Fault Diagnosis of Rolling Bearings. Measurement, 158(1), 107741.; G0111ZB1009; https://nccur.lib.nccu.edu.tw//handle/140.119/150175; https://nccur.lib.nccu.edu.tw/bitstream/140.119/150175/1/100901.pdf
-
3Dissertation/ Thesis
المؤلفون: 陳威妤, Chen, Wei-Yu
المساهمون: 廖文宏, Liao, Wen-Hung
مصطلحات موضوعية: 語者辨識, 跨語言音料庫, 深度神經網路, 轉換器, 對抗例攻擊, Speaker Recognition, Cross-lingual Dataset, Deep Neural Networks, Transformer, Adversarial Attack
وصف الملف: 4903846 bytes; application/pdf
Relation: [1] Eberhard, D. M., Simons, G. F., Fennig, C. D. (eds).Ethnologue: Languages of the World. 23rd Edition. Dallas, TX: SIL International, 2020.\n[2] Grenier, Gilles Zhang, et al “The value of language skills”, IZA World of Labor, 2021.\n[3] Nawaz, Shah, et al. "Cross-modal Speaker Verification and Recognition: A Multilingual Perspective." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.\n[4] Wu, Yi-Chieh, and Wen-Hung Liao. "Toward Text-independent Cross-lingual Speaker Recognition Using English-Mandarin-Taiwanese Dataset." 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021.\n[5] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.\n[6] Parmar, Niki, et al. "Image Transformer." International Conference on Machine Learning. PMLR, 2018.\n[7] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).\n[8] Wu, Haiping, et al. "Cvt: Introducing convolutions to Vision Transformers." arXiv preprint arXiv:2103.15808 (2021).\n[9] Kua, Jia Min Karen, Julien Epps, and Eliathamby Ambikairajah. "i-Vector with sparse representation classification for speaker verification." Speech Communication 55.5 (2013): 707-720.\n[10] Variani, Ehsan, et al. "Deep neural networks for small footprint text-dependent speaker verification." 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2014.\n[11] Snyder, David, et al. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." Interspeech. 2017.\n[12] Ravanelli, Mirco, and Yoshua Bengio. "Speaker recognition from raw waveform with sincnet." 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018.\n[13] Ghezaiel, Wajdi, Luc Brun, and Olivier Lézoray. "Hybrid network for end-to-end text-independent speaker identification." 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021.\n[14] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.\n[15] Nagrani, Arsha, Joon Son Chung, and Andrew Zisserman. "Voxceleb: a large-scale speaker identification dataset." arXiv preprint arXiv:1706.08612 (2017).\n[16] Chatfield, Ken, et al. "Return of the devil in the details: Delving deep into convolutional nets." arXiv preprint arXiv:1405.3531 (2014).\n[17] Ding, Shaojin, et al. "Autospeech: Neural architecture search for speaker recognition." arXiv preprint arXiv:2005.03215 (2020).\n[18] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014.\n[19] Gong, Yuan, Yu-An Chung, and James Glass. "AST: Audio Spectrogram Transformer." arXiv preprint arXiv:2104.01778 (2021).\n[20] Touvron, Hugo, et al. "Training data-efficient image transformers & distillation through attention." International Conference on Machine Learning. PMLR, 2021.\n[21] Durou, Geoffrey. Multilingual text-independent speaker identification. FACULTE POLYTECHNIQUE DE MONS (BELGIUM), 2000.\n[22] Xie, Weidi, et al. "Utterance-level aggregation for speaker recognition in the wild." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.\n[23] Min, Feixia, Xiaofeng Qiu, and Fan Wu. "Adversarial attack? Don`t panic." 2018 4th International Conference on Big Data Computing and Communications (BIGCOM). IEEE, 2018.\n[24] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Nips 2017: Defense against adversarial attack, 2017c. URL https://www.kaggle.com/c/ nips-2017-defense-against-adversarial-attack.\n[25] Wang, Xin, et al. "ASVspoof 2019: a large-scale public database of synthetized, converted and replayed speech." Computer Speech & Language (2020): 101114.\n[26] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014)\n[27] Olivier, Raphael, Bhiksha Raj, and Muhammad Shah. "High-Frequency Adversarial Defense for Speech and Audio." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.\n[28] Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." arXiv preprint arXiv:1706.06083 (2017).\n[29] Panayotov, Vassil, et al. "Librispeech: an asr corpus based on public domain audio books." 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2015.\n[30] Salamon, Justin, Christopher Jacoby, and Juan Pablo Bello. "A dataset and taxonomy for urban sound research." Proceedings of the 22nd ACM international conference on Multimedia. 2014.\n[31] Shao, Rulin, et al. "On the adversarial robustness of visual transformer." arXiv preprint arXiv:2103.15670 (2021).\n[32] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.\n[33] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).\n[34] Jati, Arindam, et al. "Adversarial attack and defense strategies for deep speaker recognition systems." Computer Speech & Language 68 (2021): 101199.; G0108753131; https://nccur.lib.nccu.edu.tw//handle/140.119/139218; https://nccur.lib.nccu.edu.tw/bitstream/140.119/139218/1/313101.pdf
-
4
المؤلفون: 林承憲, Lin, Cheng-Shian
المساهمون: 林政宏, Lin, Cheng-Hung
مصطلحات موضوعية: 深度神經網路, 資料增強, 分布外偵測, 異常偵測, 離群偵測, deep neural network, data augmentation, out-of-distribution detection, anomaly detection, outlier detection
وصف الملف: application/pdf
Relation: 60775054H-38383; https://etds.lib.ntnu.edu.tw/thesis/detail/a775f2d5bdf2be29b9279ae9b928e822/; http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/116951
-
5
المؤلفون: 謝承璋, Hsieh, Cheng-Chang
المساهمون: 林政宏, Lin, Cheng-Hung
مصطلحات موضوعية: 視網膜前膜, 光學相干斷層掃描, 光學相干斷層掃描血管成像術, 眼底螢光血管攝影, 深度神經網路, 多流網路, 視力偵測, deep learning, multi-stream network, visual acuity, Epiretinal membranes, optical coherence tomography, optical coherence tomography angiography, fundus fluorescence angiography
وصف الملف: application/pdf
Relation: 60775055H-40308; https://etds.lib.ntnu.edu.tw/thesis/detail/1fb50ea8d2716a603fdc50466e37b66a/; http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/116952
-
6Dissertation/ Thesis
المؤلفون: 張立廉, CHANG, LI-LIEN
المساهمون: 資訊與通訊系, 朱鴻棋, CHU, HUNG-CHI
مصطلحات موضوعية: 深度神經網路, 流量分類, 應用服務, 深度學習, DNN, Traffic Classification, Application Services, Deep Learning
وصف الملف: 2050681 bytes; application/pdf
Relation: 110CYUT0652004; http://ir.lib.cyut.edu.tw:8080/handle/310901800/41236; http://ir.lib.cyut.edu.tw:8080/bitstream/310901800/41236/1/110CYUT0652004-004.pdf
-
7Dissertation/ Thesis
المؤلفون: 陳冠文, CHEN, KUAN-WEN
المساهمون: 徐建業, HSU, CHIEN-YEH, 資訊管理研究所
مصطلحات موضوعية: 胰臟癌, 逐步迴歸, 羅吉斯迴歸, 深度神經網路, 集成學習, 風險識別模型, Pancreatic Cancer, Stepwise Regression, Logistic Regression, Deep Neural Networks, Ensemble Learning, Identification Model
Time: 15
-
8
المؤلفون: 陳奕臣, CHEN, YI-CHEN
المساهمون: 葉建華, 資訊工程學系碩士班
Time: 34
وصف الملف: 9898500 bytes; application/pdf
-
9Dissertation/ Thesis
المؤلفون: 林允文
المساهمون: 資訊工程學系, 吳宗憲, Wu, Chung-Hsien
مصطلحات موضوعية: 語音降噪, 自動語音辨識, 音訊品質, 音素可信度, STOI, PESQ, 深度神經網路, 卷積神經網路, speech enhancement, automatic speech recognition, speech quality, phone confidence, deep neural network, convolutional neural network, psy, lang
-
10Dissertation/ Thesis
المؤلفون: 楊佳玲
مصطلحات موضوعية: 特徵提取, 電壓衰退, 機器學習, 深度神經網路, 晶片電力網路分 析, Feature selection, IR drop, Machine learning, Neural network, Power/grid network analysis
وصف الملف: 169 bytes; text/html
Relation: http://ir.lib.ntust.edu.tw/handle/987654321/77723; http://ir.lib.ntust.edu.tw/bitstream/987654321/77723/1/index.html
-
11Dissertation/ Thesis
المؤلفون: 謝義桐
مصطلحات موضوعية: 對抗式樣本, 對抗式攻擊, 深度神經網路, Adversarial example, Adversarial attack, Deep Neural Networks
وصف الملف: 169 bytes; text/html
Relation: http://ir.lib.ntust.edu.tw/handle/987654321/77541; http://ir.lib.ntust.edu.tw/bitstream/987654321/77541/1/index.html
-
12Dissertation/ Thesis
المؤلفون: 吳紫源
مصطلحات موضوعية: 翻拍人臉, 二維圖像防偽檢測, 局部二值模式, 圖像失真分析, 深度神經網路, remaking face images, face liveness detection, local binary pattern, image distortion analysis, deep neural network
وصف الملف: 169 bytes; text/html
Relation: http://ir.lib.ntust.edu.tw/handle/987654321/77478; http://ir.lib.ntust.edu.tw/bitstream/987654321/77478/1/index.html
-
13Dissertation/ Thesis
المؤلفون: 張家綺
مصطلحات موضوعية: 使用者介面, 手繪草圖, 深度神經網路, 網頁佈局, 使用者介面骨架, 超文本標記語言, Graphical User Interface, Hand-Drawn Sketch, Deep Neural Networks, Webpage Layout, GUI Skeleton, HTML
وصف الملف: 169 bytes; text/html
Relation: http://ir.lib.ntust.edu.tw/handle/987654321/77489; http://ir.lib.ntust.edu.tw/bitstream/987654321/77489/1/index.html
-
14
المؤلفون: 郭柏賢, Guo, Bo-Xain
المساهمون: 吳順德, Wu, Shuen-De
مصطلحات موضوعية: 故障診斷, 卷積神經網路, 深度神經網路, 機器學習, Fault Diagnosis, Convolution Neural Network, Deep Learning Neural Network, Machine Learning
Relation: G060573019H; http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060573019H%22.&%22.id.&; http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/97061
-
15
المؤلفون: 水谷英二
المساهمون: 國立臺灣科技大學工業管理系
مصطلحات موضوعية: 深度神經網路學習 (deep neural network learning), 反向傳播(backpropagation), 不定海森矩陣(indefinite Hessian matrix), 動態規劃(dynamic programming), 負曲率 (negative curvature), 鞍點 (saddle points)
وصف الملف: 116 bytes; text/html
Relation: http://ir.lib.ntust.edu.tw/handle/987654321/74984; http://ir.lib.ntust.edu.tw/bitstream/987654321/74984/1/index.html
-
16Dissertation/ Thesis
المؤلفون: 洪奕瑾, Yi-Chin Hung
المساهمون: 土木工程學系所, 楊明德, Ming-Der Yang
مصطلحات موضوعية: 高光譜影像, 最小噪聲轉換, 簡單的線性迭代聚類, 深度神經網路, hyperspectral image, Minimum Noise Fraction, Simple Linear Iterative Clustering, Deep Neural Network
Relation: http://hdl.handle.net/11455/97484
الاتاحة: http://hdl.handle.net/11455/97484
-
17Dissertation/ Thesis
المؤلفون: 藍家馨, Lan, Jia-Shin
المساهمون: 電機資訊學院: 資訊工程學研究所, 指導教授: 徐宏民, 藍家馨, Lan, Jia-Shin
مصطلحات موضوعية: 人臉屬性偵測, 深度神經網路, 多標籤分類問題, facial attribute detection, DNN, multi-label classification
Time: 79
وصف الملف: 1509648 bytes; application/pdf
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/275480; http://ntur.lib.ntu.edu.tw/bitstream/246246/275480/1/ntu-105-R03922004-1.pdf