يعرض 1 - 20 نتائج من 77 نتيجة بحث عن '"泛素化"', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Report
  5. 5
    Academic Journal

    المساهمون: 深圳大学医学部, 深圳大学医学院, 中国生与分子生物学学会医学生与分子生物学学会, 北京大学医学部基础医学院生

    المصدر: 知网

    Relation: 科学新闻.2017,85.; 1901170; http://hdl.handle.net/20.500.11897/467448

  6. 6
    Academic Journal

    المؤلفون: 袁玉婷

    المساهمون: 北京大学国际医院心内科 北京 102206

    مصطلحات موضوعية: 高血压, @泛素化修饰, 分子生物学

    Relation: 陕西医学杂志. 2017, 46(8), 1151-1152.; 1898126; http://hdl.handle.net/20.500.11897/464552

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: 侯天云, 陆小鹏, 朱卫国

    المساهمون: 北京大学医学部基础医学院生物学与分子生物学系

    المصدر: 知网 ; CSCD

    Relation: 科学通报.2017,62(8),759-769.; 1902147; http://hdl.handle.net/20.500.11897/468327

  9. 9
    Report
  10. 10
    Academic Journal

    المؤلفون: 朱卫国

    المساهمون: 北京大学医学部基础医学院生物学与分子生物学系

    المصدر: 知网 ; CSCD

    مصطلحات موضوعية: 乙酰修饰, 磷酸修饰, 泛素化修饰

    Relation: 中国科学. 生命科学.2016,46(12),1446-1448.; 1913922; http://hdl.handle.net/20.500.11897/478023

  11. 11
    Conference
  12. 12
    Conference

    المساهمون: 北京大学药学院, 吉林大学

    المصدر: 知网

    Relation: 2013年全国药物学学术会议暨第四届中英药物学学术会议.; 897391; http://hdl.handle.net/20.500.11897/323242

  13. 13
    Conference

    المؤلفون: 彭炎炎, 郑晓峰

    المساهمون: 北京大学蛋白质与植物基因工程国家重点实验室, 北京大学生物学与分子生物学系

    المصدر: 知网

    مصطلحات موضوعية: 细胞抗病毒应答, 泛素化, HSCARG TRAF3

    Relation: 细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉.; 1107155; http://hdl.handle.net/20.500.11897/184243

  14. 14
  15. 15
    Conference

    المساهمون: 北京大学医学部生与分子生物学系, 北京大学人民医院外科, 清华大学生物技术系

    المصدر: 知网

    Relation: 中华医学会肿瘤学分会第七届全国中青年肿瘤学术会议——中华医学会肿瘤学分会“中华肿瘤 明日之星”大型评选活动暨中青年委员全国遴选.; 886633; http://hdl.handle.net/20.500.11897/166993

  16. 16
    Conference

    المساهمون: 北京大学医学部基础医学院

    المصدر: 万方

    Relation: 北京细胞生物学会第三次会员代表大会暨2011年学术年会论文集北京细胞生物学会.; 1213940; http://hdl.handle.net/20.500.11897/332229

  17. 17
    Conference

    المؤلفون: 洪道俊, 张巍, 王朝霞, 袁云

    المساهمون: 北京大学第一医院神经内科

    المصدر: 知网

    Relation: 中华医学会第十三次全国神经病学学术会议.; 1005846; http://hdl.handle.net/20.500.11897/121254

  18. 18
    Academic Journal

    المؤلفون: 范六民, 佟向军, 许崇任, 张雁云

    المساهمون: 北京大学生命科学学院, 北京师范大学生命科学学院

    Relation: 生物学通报.2015,54-58.; 1508038; http://hdl.handle.net/20.500.11897/455411

  19. 19
    Academic Journal

    المؤلفون: 王翔, 魏潇凡, 张宏权

    المساهمون: 北京大学医学部基础医学院分子细胞生物学与肿瘤生物学实验室

    المصدر: 知网 ; CSCD

    مصطلحات موضوعية: 泛素化, 细胞生物学功能, 癌症, 神经退行性病变

    Relation: 中国科学. 生命科学.2015,45,(11),1074-1082.; 1387091; http://hdl.handle.net/20.500.11897/432354

  20. 20
    Academic Journal

    المؤلفون: 李宜蒨, Lee, Yi-Chien

    المساهمون: 陳瑞華, 臺灣大學:分子醫學研究所

    وصف الملف: 1808029 bytes; application/pdf

    Relation: Reference Adams, J., Kelso, R., and Cooley, L. (2000). The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10, 17-24. Angers, S., Li, T., Yi, X., MacCoss, M. J., Moon, R. T., and Zheng, N. (2006). Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590-593. Aravind, L., and Koonin, E. V. (1999). Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285, 1353-1361. Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005). Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982. Bardwell, V. J., and Treisman, R. (1994). The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8, 1664-1677. Barna, M., Merghoub, T., Costoya, J. A., Ruggero, D., Branford, M., Bergia, A., Samori, B., and Pandolfi, P. P. (2002). Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 3, 499-510. Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., and Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279, 27233-27238. Choe, S., Cushman, S., Baker, K. A., and Pfaffinger, P. (2002). Excitability is mediated by the T1 domain of the voltage-gated potassium channel. Novartis Found Symp 245, 169-175; discussion 175-167, 261-164. Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., and Taylor, C. T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100, 986-991. d'Azzo, A., Bongiovanni, A., and Nastasi, T. (2005). E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6, 429-441. Dai, Q., and Wang, H. (2006). "Cullin 4 makes its mark on chromatin". Cell Div 1, 14. Deshaies, R. J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15, 435-467. Desterro, J. M., Rodriguez, M. S., and Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233-239. Desterro, J. M., Rodriguez, M. S., Kemp, G. D., and Hay, R. T. (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274, 10618-10624. Desterro, J. M., Thomson, J., and Hay, R. T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417, 297-300. Dohmen, R. J. (2004). SUMO protein modification. Biochim Biophys Acta 1695, 113-131. Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R., and Orr, A. (1999). Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112 ( Pt 24), 4581-4588. Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059. Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D., and Hay, R. T. (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11, 1043-1054. Glickman, M. H., and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 373-428. Hara, T., Ishida, H., Raziuddin, R., Dorkhom, S., Kamijo, K., and Miki, T. (2004). Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. Mol Biol Cell 15, 1172-1184. Harper, J. W., Burton, J. L., and Solomon, M. J. (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179-2206. Hay, R. T. (2004). Modifying NEMO. Nat Cell Biol 6, 89-91. Hay, R. T. (2005). SUMO: a history of modification. Mol Cell 18, 1-12. He, Y. J., McCall, C. M., Hu, J., Zeng, Y., and Xiong, Y. (2006). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949-2954. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281, 16117-16127. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479. Hicke, L. (2001). Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2, 195-201. Hietakangas, V., Ahlskog, J. K., Jakobsson, A. M., Hellesuo, M., Sahlberg, N. M., Holmberg, C. I., Mikhailov, A., Palvimo, J. J., Pirkkala, L., and Sistonen, L. (2003). Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23, 2953-2968. Higa, L. A., and Zhang, H. (2007). Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2, 5. Hilgarth, R. S., Hong, Y., Park-Sarge, O. K., and Sarge, K. D. (2003). Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem Biophys Res Commun 303, 196-200. Hilgarth, R. S., Murphy, L. A., Skaggs, H. S., Wilkerson, D. C., Xing, H., and Sarge, K. D. (2004). Regulation and function of SUMO modification. J Biol Chem 279, 53899-53902. Hochstrasser, M. (2001). SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5-8. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141. Hsuan-Chung Ho. (2004). A novel BTB-kelch protein DIP2 promotes DAPK degradation through Cul3 ubiquitination ligase complex. Master Thesis. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. Johnson, E. S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382. Kagey, M. H., Melhuish, T. A., and Wotton, D. (2003). The polycomb protein Pc2 is a SUMO E3. Cell 113, 127-137. Kaiser, P., Flick, K., Wittenberg, C., and Reed, S. I. (2000). Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102, 303-314. Kerscher, O. (2007). SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8, 550-555. Kile, B. T., Schulman, B. A., Alexander, W. S., Nicola, N. A., Martin, H. M., and Hilton, D. J. (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27, 235-241. Kirsh, O., Seeler, J. S., Pichler, A., Gast, A., Muller, S., Miska, E., Mathieu, M., Harel-Bellan, A., Kouzarides, T., Melchior, F., and Dejean, A. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. Embo J 21, 2682-2691. Koonin, E. V., Senkevich, T. G., and Chernos, V. I. (1992). A family of DNA virus genes that consists of fused portions of unrelated cellular genes. Trends Biochem Sci 17, 213-214. Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y., and Vierstra, R. D. (2003). The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278, 6862-6872. Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S., and Hallenbeck, J. M. (2007). Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 27, 950-962. Li, S. J., and Hochstrasser, M. (2000). The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20, 2367-2377. Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I., et al. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24, 341-354. Lin, X., Sun, B., Liang, M., Liang, Y. Y., Gast, A., Hildebrand, J., Brunicardi, F. C., Melchior, F., and Feng, X. H. (2003). Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11, 1389-1396. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107. Matunis, M. J., Zhang, X. D., and Ellis, N. A. (2006). SUMO: the glue that binds. Dev Cell 11, 596-597. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. Melchior, F., Schergaut, M., and Pichler, A. (2003). SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28, 612-618. Muller, S., Berger, M., Lehembre, F., Seeler, J. S., Haupt, Y., and Dejean, A. (2000). c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275, 13321-13329. Nacak, T. G., Alajati, A., Leptien, K., Fulda, C., Weber, H., Miki, T., Czepluch, F. S., Waltenberger, J., Wieland, T., Augustin, H. G., and Kroll, J. (2007). The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res 100, 1155-1163. Nelson, D. A., Tan, T. T., Rabson, A. B., Anderson, D., Degenhardt, K., and White, E. (2004). Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18, 2095-2107. Nguyen, H. V., Chen, J. L., Zhong, J., Kim, K. J., Crandall, E. D., Borok, Z., Chen, Y., and Ann, D. K. (2006). SUMOylation attenuates sensitivity toward hypoxia- or desferroxamine-induced injury by modulating adaptive responses in salivary epithelial cells. Am J Pathol 168, 1452-1463. Perez-Torrado, R., Yamada, D., and Defossez, P. A. (2006). Born to bind: the BTB protein-protein interaction domain. Bioessays 28, 1194-1202. Petroski, M. D., and Deshaies, R. J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6, 9-20. Pichler, A., Gast, A., Seeler, J. S., Dejean, A., and Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120. Pintard, L., Willems, A., and Peter, M. (2004). Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. Embo J 23, 1681-1687. Prag, S., and Adams, J. C. (2003). Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics 4, 42. Rodriguez, M. S., Dargemont, C., and Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276, 12654-12659. Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258. Salomoni, P., and Pandolfi, P. P. (2002). The role of PML in tumor suppression. Cell 108, 165-170. Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. Embo J 21, 5206-5215. Scheffner, M., Nuber, U., and Huibregtse, J. M. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81-83. Sharma, M., Li, X., Wang, Y., Zarnegar, M., Huang, C. Y., Palvimo, J. J., Lim, B., and Sun, Z. (2003). hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. Embo J 22, 6101-6114. Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M., and Pandolfi, P. P. (2006). The mechanisms of PML-nuclear body formation. Mol Cell 24, 331-339. Stogios, P. J., Downs, G. S., Jauhal, J. J., Nandra, S. K., and Prive, G. G. (2005). Sequence and structural analysis of BTB domain proteins. Genome Biol 6, R82. Stogios, P. J., and Prive, G. G. (2004). The BACK domain in BTB-kelch proteins. Trends Biochem Sci 29, 634-637. Takahashi, Y., Mizoi, J., Toh, E. A., and Kikuchi, Y. (2000). Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem (Tokyo) 128, 723-725. Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001). A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275, 223-231. Tatham, M. H., Kim, S., Jaffray, E., Song, J., Chen, Y., and Hay, R. T. (2005). Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol 12, 67-74. Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G., and Deshaies, R. J. (1997). Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455-460. Xu, L., Wei, Y., Reboul, J., Vaglio, P., Shin, T. H., Vidal, M., Elledge, S. J., and Harper, J. W. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316-321. Xue, F., and Cooley, L. (1993). kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681-693. Zheng, N., Wang, P., Jeffrey, P. D., and Pavletich, N. P. (2000). Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533-539. Zhong, S., Muller, S., Ronchetti, S., Freemont, P. S., Dejean, A., and Pandolfi, P. P. (2000). Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752. Zipper, L. M., and Mulcahy, R. T. (2002). The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem 277, 36544-36552. Zollman, S., Godt, D., Prive, G. G., Couderc, J. L., and Laski, F. A. (1994). The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci U S A 91, 10717-10721.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/51348; http://ntur.lib.ntu.edu.tw/bitstream/246246/51348/1/ntu-96-R94448004-1.pdf