-
1Academic Journal
المصدر: European Journal of Management and Business Economics, 2024, Vol. 33, Issue 4, pp. 429-444.
-
2Academic Journal
المؤلفون: 王曉丹, 盧穎鈺, Wang, Hsiao-tan, Lu, Yin-yu
المساهمون: 法科所
مصطلحات موضوعية: 性侵害, 受害者, 法意識, 自我認同, 理想被害人, 標籤, 女性主義, 能動性, 情感, 生命故事, Rape, Victim, Legal consciousness, Identity, Ideal victim, Stigma, Feminism, Agency, Emotion, Life story
وصف الملف: 110 bytes; text/html
Relation: 政大法學評論, 169期, pp.87-122; https://nccur.lib.nccu.edu.tw//handle/140.119/142389; https://nccur.lib.nccu.edu.tw/bitstream/140.119/142389/1/index.html
-
3Academic Journal
المؤلفون: 莊文忠, Juang, Wen-Jong, 張順全, Chang, Shun-Chuan, 林美榕, Lin, Mei-Rong
المساهمون: 選舉研究
مصطلحات موضوعية: 地方選舉, 公民投票, 政黨標籤, 區位迴歸, 資料視覺化, Local elections, referendum, Party label, ecological regression, data visualization
وصف الملف: 12522935 bytes; application/pdf
Relation: 選舉研究, 28(1), 53-101; https://nccur.lib.nccu.edu.tw//handle/140.119/138039; https://nccur.lib.nccu.edu.tw/bitstream/140.119/138039/1/321.pdf
-
4Dissertation/ Thesis
المؤلفون: 張禎尹
المساهمون: 邱淑怡, Chiu, Shu-I
مصطلحات موضوعية: 情緒分析, 多標籤資料不平衡, 相似詞替換, NRC情感辭典, 雙向長短期記憶網絡(BiLSTM), NRC情感辭典 (EmoLex), 掩碼語言模型(MLM), emotion analysis, EmoLex, multi-label data imbalance, synonym replacement, Bidirectional Long Short-Term Memory (BiL STM), Masked Language Model (MLM)
وصف الملف: 4425172 bytes; application/pdf
Relation: [1] Zi-xian Liu, De-gan Zhang, Gu-zhao Luo, Ming Lian, and Bing Liu. A new method of emotional analysis based on cnn–bilstm hybrid neural network. Cluster Computing, 23:2901–2913, 2020. [2] Cuiyan Wang, Riyu Pan, Xiaoyang Wan, Yilin Tan, Linkang Xu, Roger S McIntyre, Faith N Choo, Bach Tran, Roger Ho, Vijay K Sharma, et al. A longitudinal study on the mental health of general population during the covid-19 epidemic in china. Brain, behavior, and immunity, 87:40–48, 2020. [3] Tian-Ru Huang. Did covid-19 form an unexpected shield? post-pandemic suicide deaths surge to a 14-year high: ”so many more people” in two groups. The Storm Media, 2024. [4] Jasmin Bogatinovski, Ljupčo Todorovski, Sašo Džeroski, and Dragi Kocev. Comprehensive comparative study of multi-label classification methods. Expert Systems with Applications, 203:117215, 2022. [5] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural networks, pages 37–45, 2012. [6] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11):2673–2681, 1997. [7] Christos Pavlatos, Evangelos Makris, Georgios Fotis, Vasiliki Vita, and Valeri Mladenov. Enhancing electrical load prediction using a bidirectional lstm neural network. Electronics, 12(22):4652, 2023. [8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. [9] Yoon Kim. Convolutional neural networks for sentence classification, 2014. [10] Kai Zhou and Fei Long. Sentiment analysis of text based on cnn and bi-directional lstm model. pages 1–5, 2018. [11] Saif M Mohammad and Peter D Turney. Crowdsourcing a word–emotion association lexicon. Computational intelligence, 29(3):436–465, 2013. [12] Qihuang Zhang, Grace Y. Yi, Li-Pang Chen, and Wenqing He. Sentiment analysis and causal learning of covid-19 tweets prior to the rollout of vaccines. PLOS ONE, 18(2):e0277878, February 2023. ISSN 1932-6203. doi:10.1371/journal.pone. 0277878. [13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pretraining of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. [14] Ritesh Kumar. Augment your small dataset using transformers: Synonym replacement for sentiment analysis part 1. Towards Data Science, 2020. [15] Qihuang Zhang, Grace Y Yi, Li-Pang Chen, and Wenqing He. Sentiment analysis and causal learning of covid-19 tweets prior to the rollout of vaccines. Plos one, 18 (2):e0277878, 2023. [16] Hua Qian and Craig R Scott. Anonymity and self-disclosure on weblogs. Journal of Computer-Mediated Communication, 12(4):1428–1451, 2007. [17] Marcus Müller, Sabine Bartsch, and Jens O Zinn. Communicating the unknown: An interdisciplinary annotation study of uncertainty in the coronavirus pandemic. International Journal of Corpus Linguistics, 26(4):498–531, 2021. [18] Sun Peng. Jieba: Chinese word segmentation tool. 2012. [19] Tomasz Szandała. Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired neurocomputing, pages 203–224, 2021. [20] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 15(3), 2024.; G0111753136; https://nccur.lib.nccu.edu.tw//handle/140.119/153378; https://nccur.lib.nccu.edu.tw/bitstream/140.119/153378/1/313601.pdf
-
5Dissertation/ Thesis
المؤلفون: 莊格維, Chuang, Ko-Wei
المساهمون: 李蔡彥 黃瀚萱, Tsai-Yen Li Hen-Hsen Huang
مصطلحات موضوعية: 雜訊標籤學習, 群眾學習, 對抗意識攻擊, 對抗訓練, Noisy label learning, Learning from Crowdsourcing, Adversarial-awareness-attack, Adversarial training
وصف الملف: 1622150 bytes; application/pdf
Relation: G0109971002; https://nccur.lib.nccu.edu.tw//handle/140.119/153280; https://nccur.lib.nccu.edu.tw/bitstream/140.119/153280/1/100201.pdf
-
6Dissertation/ Thesis
المؤلفون: 何山婷, Highsmith, Allie
المساهمون: 南樂 陳佩甄, Lev Nachman Chen, Eno
وصف الملف: 4743787 bytes; application/pdf
Relation: G0111926020; https://nccur.lib.nccu.edu.tw//handle/140.119/152629; https://nccur.lib.nccu.edu.tw/bitstream/140.119/152629/1/602001.pdf
-
7Dissertation/ Thesis
المؤلفون: 張妤菡, Chang, Yu-Han
المساهمون: 蘇威傑, Su, Wei-Chieh
مصطلحات موضوعية: 補充包, 綠色行銷, 綠色標籤, 綠色消費, refill pouch, green marketing, green label, green consumerism
وصف الملف: 2724226 bytes; application/pdf
Relation: Alghanim, S., & Ndubisi, N.O. (2022). The paradox of sustainability and luxury consumption: The role of value perceptions and consumer income. Sustainability, 14(14694). Araya, S., Elberg, A., Noton, C., & Schwartz, D. (2022). Identifying food labeling effects on consumer behavior. Marketing Science, 41(5), 982-1003. Bailey, A. A., Mishra, A. S., & Tiamiyu, M. F. (2018). Application of GREEN scale to understanding US consumer response to green marketing communications. Psychology & Marketing, 35, 863-875. Chan, R.Y.K. (2001). Determinants of Chinese consumers' green purchase behavior. Psychology & Marketing, 18(4), 389-413. Chen, Y. (2008). The driver of green innovation and green image-green core competence. Journal of Business Ethics, 81, 531-543. Chen, Y.-S.; Chang, T.-W.; Li, H.-X.; Chen, Y.-R. (2020). The Influence of Green Brand Affect on Green Purchase Intentions: The Mediation Effects of Green Brand Associations and Green Brand Attitude. Int. J. Environ. Res. Public Health, 17, 4089. Dangelico, R. M., & Vocalelli, D. (2017). "Green Marketing": An analysis of definitions, strategy steps, and tools through a systematic review of the literature. Journal of Cleaner Production, 165, 1263-1279. Ertz, M., François, J., & Durif, F. (2017). How consumers react to environmental information: An experimental study. Journal of International Consumer Marketing, 29(3), 162-178. Guerreiro, J.; Pacheco, M. (2021). How Green Trust, Consumer Brand Engagement and Green Word-of-Mouth Mediate Purchasing Intentions. Sustainability, 13, 7877. Haws, K.L., Winterich, K.P. and Naylor, R.W. (2014), Seeing the world through GREEN-tinted glasses: Green consumption values and responses to environmentally friendly products. Journal of Consumer Psychology, 24: 336-354. Ho, Emily & Hagmann, David & Loewenstein, George. (2020). Measuring Information Preferences. Management Science, 67. 10.1287/mnsc.2019.3543. Kotler, P., & Armstrong, G. (2010). Principles of marketing. Pearson Education. Lee, Y. K., Kim, M., & Katz-Gerro, T. (2019). Personal values, perceived consumer effectiveness, and demographic effects on green purchasing behavior of Korean consumers. Environmental Engineering and Management Journal, 18(2), 483-494. Luz, V. V. da, Mantovani, D., & Nepomuceno, M. V. (2020). Matching green messages with brand positioning to improve brand evaluation. Journal of Business Research, 119, 25-40. Maniatis, P. (2016). Investigating factors influencing consumer decision-making while choosing green products. Journal of Cleaner Production, 132, 215-228. Michaud, C., & Llerena, D. (2008). Sustainable consumption and preferences: An experimental analysis. Mishra, P., & Sharma, P. (2014). Green marketing: Challenges and opportunities for business. BVIMR Management Edge, 7(1). Park, H., & Lin, L. (2018). Exploring attitude-behavior gap in sustainable consumption: Comparison of recycled and upcycled fashion products. Journal of Business Research, 1-6. Shrivastava, P., & Hart, S. (1995). Creating sustainable corporations. Business Strategy and the Environment, 4, 154-165. Sun, Y., Liu, N., & Zhao, M. (2019). Factors and mechanisms affecting green consumption in China: A multilevel analysis. Journal of Cleaner Production, 209, 481-493. Tinne, W. S. (2016). Impact of packaging on consumer buying behavior at Dhaka City. Global Disclosure of Economics and Business, 5(2), 93-100. Wu, S., & Chen, Y. (2014). The impact of green marketing and perceived innovation on purchase intention of green products. International Journal of Marketing Studies, 65(5), 81-101. Vilasanti da Luz, V., Mantovani, D., & Vinhal Nepomuceno, M. (2020). Matching green messages with brand positioning to improve brand evaluation. Journal of Business Research, 119, 25-40.; G0111351014; https://nccur.lib.nccu.edu.tw//handle/140.119/152079; https://nccur.lib.nccu.edu.tw/bitstream/140.119/152079/1/101401.pdf
-
8Dissertation/ Thesis
المؤلفون: 黃鈺倫, Huang, Yu-Lun
المساهمون: 劉吉軒 張瑜芸, Liu, Jyi-Shane Chang, Yu-Yun
مصطلحات موضوعية: 深度學習, 多標籤分類, 線上醫療諮詢, 提問意圖, 語言行為, 統計分析, deep learning, multi-label classification, online medical consultation, query intent, speech acts, statistical analysis
وصف الملف: 3209538 bytes; application/pdf
Relation: Adams, C. (2002). Practitioner review: The assessment of language pragmatics. Journal of Child Psychology and Psychiatry, 43(8), 973–987. Ahangar, A. A., Sarani, A., & Dastuyi, S. Z. (2015). Apology speech act realization in sarawani balochi: A case study of male university students. Acta Scientiarum. Language and Culture, 37(2), 157–170. Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. Algotiml, B., Elmadany, A., & Magdy, W. (2019). Arabic tweet-act: Speech act recognition for arabic asynchronous conversations. Proceedings of the Fourth Arabic Natural Language Processing Workshop, 183–191. Amanullah, S., & Ramesh Shankar, R. (2020). The impact of covid-19 on physician burnout globally: A review. Healthcare, 8(4), 421. Aminifard, Y., Safaei, E., & Askari, H. (2014). Speech act of suggestion across language proficiency and gender in iranian context. International Journal of Applied Linguistics and English Literature, 3(5), 198–205. Archer, D., Culpeper, J., & Davies, M. (2008). Pragmatic annotation. Corpus Linguistics: An International Handbook, 1, 613–642. Austin, J. (1962). How to do things with words. Harvard University Press. Baeza-Yates, R., Calderón-Benavides, L., & González-Caro, C. (2006). The intention behind web queries. String Processing and Information Retrieval: 13th International Conference, SPIRE 2006, Glasgow, UK, October 11-13, 2006. Proceedings 13, 98–109. Baptista, S., Teixeira, A., Castro, L., Cunha, M., Serrão, C., Rodrigues, A., & Duarte, I. (2021). Physician burnout in primary care during the covid-19 pandemic: A cross-sectional study in portugal. Journal of Primary Care & Community Health, 12, 1–8. Bayat, B., Krauss, C., Merceron, A., & Arbanowski, S. (2016). Supervised speech act classification of messages in german online discussions. The Twenty-Ninth International Flairs Conference. Borji, A. (2023). A categorical archive of chatgpt failures. arXiv preprint arXiv:2302.03494. Broder, A. (2002). A taxonomy of web search. ACM Sigir forum, 36(2), 3–10. Broom, A. (2005). Virtually he@lthy: The impact of internet use on disease experience and the doctor-patient relationship. Qualitative Health Research, 15(3), 325–345. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few- shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901. Cai, R., Zhu, B., Ji, L., Hao, T., Yan, J., & Liu, W. (2017). An cnn-lstm attention approach to understanding user query intent from online health communities. 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 430–437. Casanueva, I., Temčinas, T., Gerz, D., Henderson, M., & Vulić, I. (2020). Efficient intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807. Chatterjee, A., & Sengupta, S. (2020). Intent mining from past conversations for conversational agent. arXiv preprint arXiv:2005.11014. Chen, J., Lan, Y.-C., Chang, Y.-W., & Chang, P.-Y. (2020). Exploring doctors’ willingness to provide online counseling services: The roles of motivations and costs. International Journal of Environmental Research and Public Health, 17(1), 110. Chen, L., Chen, N., Zou, Y., Wang, Y., & Sun, X. (2022). A transformer-based threshold-free framework for multi-intent nlu. Proceedings of the 29th International Conference on Computational Linguistics, 7187–7192. Chen, N., Su, X., Liu, T., Hao, Q., & Wei, M. (2020). A benchmark dataset and case study for chinese medical question intent classification. BMC Medical Informatics and Decision Making, 20(3), 1–7. Chen, Q., Zhuo, Z., & Wang, W. (2019). Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909. Chiu, M.-H. P. (2016). An investigation of the questions posted on medical consultation websites. Health Information & Libraries Journal, 33(4), 283–294. Choi, E., & Shah, C. (2016). User motivations for asking questions in online q&a services. Journal of the Association for Information Science and Technology, 67(5), 1182–1197. Chou, W.-y. S., Prestin, A., Lyons, C., & Wen, K.-y. (2013). Web 2.0 for health pro- motion: Reviewing the current evidence. American Journal of Public Health, 103(1), e9–e18. Cohan, A., Ammar, W., Van Zuylen, M., & Cady, F. (2019). Structural scaffolds for citation intent classification in scientific publications. arXiv preprint arXiv:1904.01608. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd). Edward Arnold. Cohen, W., Carvalho, V., & Mitchell, T. (2004). Learning to classify email into “speech acts”. Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 309–316. Cramér, H. (1946). A contribution to the theory of statistical estimation. Scandinavian Actuarial Journal, 1946(1), 85–94. Cui, C., Mao, W., Zheng, X., & Zeng, D. (2017). Mining user intents in online interactions: Applying to discussions about medical event on sinaweibo platform. Smart Health: International Conference, ICSH 2017, Hong Kong, China, June 26-27, 2017, Proceedings, 177–183. De Witte, N. A., Carlbring, P., Etzelmueller, A., Nordgreen, T., Karekla, M., Haddouk, L., Belmont, A., Øverland, S., Abi-Habib, R., Bernaerts, S., et al. (2021). Online consultations in mental healthcare during the covid-19 outbreak: An international survey study on professionals’ motivations and perceived barriers. Inter-net Interventions, 25, 100405. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Dopierre, T., Gravier, C., Subercaze, J., & Logerais, W. (2020). Few-shot pseudo-labeling for intent detection. Proceedings of the 28th International Conference on Computational Linguistics, 4993–5003. Elmadany, A., Mubarak, H., & Magdy, W. (2018). Arsas: An arabic speech-act and sentiment corpus of tweets. OSACT, 3, 20. Elmadany, A., Abdou, S., & Gheith, M. (2018). Improving dialogue act classification for spontaneous arabic speech and instant messages at utterance level. arXiv preprint arXiv:1806.00522. Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and propositions (3rd). Wiley. Fu, H., & Wu, S. (2015). Determining the user intent of chinese-english mixed language queries based on search logs. iConference 2015 Proceedings. Gangadharaiah, R., & Narayanaswamy, B. (2019). Joint multiple intent detection and slot labeling for goal-oriented dialog. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 564–569. Gilardi, F., Alizadeh, M., & Kubli, M. (2023). Chatgpt outperforms crowd-workers for text-annotation tasks. arXiv preprint arXiv:2303.15056. Girgis, L., Van Gurp, G., Zakus, D., & Andermann, A. (2018). Physician experiences and barriers to addressing the social determinants of health in the eastern mediterranean region: A qualitative research study. BMC Health Services Research, 18(1), 1–7. Gunawan, J. (2023). Exploring the future of nursing: Insights from the chatgpt model. Belitung Nursing Journal, 9(1), 1–5. Halliday, M. A. K. (1975). Learning how to mean: Explorations in the development of language. In Foundations of language development (pp. 239–265). Elsevier. Hashemian, M. (2021). A cross-cultural study of refusal speech act by persian l2 learners and american native speakers. Journal of Research in Applied Linguistics, 12(1), 81–98. Hu, J., Wang, G., Lochovsky, F., Sun, J.-t., & Chen, Z. (2009). Understanding user’s query intent with wikipedia. Proceedings of the 18th international conference on World wide web, 471–480. Hui, V. (2022). Exploring help-seeking behavior in online health communities among women with domestic violence experiences [Doctoral dissertation, University of Pittsburgh]. Íñigo-Mora, I. (2004). On the use of the personal pronoun we in communities. Journal of Language and Politics, 3(1), 27–52. Irie, Y., Matsubara, S., Kawaguchi, N., Yamaguchi, Y., & Inagaki, Y. (2006). Layered speech-act annotation for spoken dialogue corpus. LREC, 1584–1589. Jansen, B. J., & Booth, D. (2010). Classifying web queries by topic and user intent. CHI’10 Extended Abstracts on Human Factors in Computing Systems, 4285–4290. Jenset, G. B. (2008). Basic statistics for corpus linguistics. Handout for methods seminar in English linguistics, 1–20. Jeong, M., Lin, C.-Y., & Lee, G. G. (2009). Semi-supervised speech act recognition in emails and forums. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 1250–1259. Jiao, W., Wang, W., Huang, J.-t., Wang, X., & Tu, Z. (2023). Is chatgpt a good translator? a preliminary study. arXiv preprint arXiv:2301.08745. Jimmy, J., Zuccon, G., Palotti, J., Goeuriot, L., & Kelly, L. (2018). Overview of the clef 2018 consumer health search task. CLEF 2018 Working Notes, 2125. Joinson, A. N. (2001). Self-disclosure in computer-mediated communication: The role of self-awareness and visual anonymity. European Journal of Social Psychology, 31(2), 177–192. Joty, S., & Hoque, E. (2016). Speech act modeling of written asynchronous conversations with task-specific embeddings and conditional structured models. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1746–1756. Joukhadar, A., Ghneim, N., & Rebdawi, G. (2021). Impact of using bidirectional encoder representations from transformers (bert) models for arabic dialogue acts identification. Ingénierie des Systèmes d Inf., 26(5), 469–475. Kachru, Y. (1998). Culture and speech acts: Evidence from indian and singaporean english. Studies in the Linguistic Sciences, 28(1), 79–98. Kalla, D., & Smith, N. (2023). Study and analysis of chat gpt and its impact on differ- ent fields of study. International Journal of Innovative Science and Research Technology, 8(3). Kang, S., Kim, H., & Seo, J. (2010). A reliable multidomain model for speech act classification Pattern Recognition Letters, 31(1), 71–74. Kang, S., Ko, Y., & Seo, J. (2013). Hierarchical speech-act classification for discourse analysis. Pattern Recognition Letters, 34(10), 1119–1124. Khanpour, H., Guntakandla, N., & Nielsen, R. (2016). Dialogue act classification in domain-independent conversations using a deep recurrent neural network. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2012–2021. Kim, H.-S., Seon, C.-N., & Seo, J.-Y. (2011). Review of korean speech act classifica- tion: Machine learning methods. Journal of Computing Science and Engineering, 5(4), 288–293. Kim, Y., Guo, L., Yu, B., & Li, Y. (2023). Can chatgpt understand causal language in science claims? Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, 379–389. Ko, Y. (2015). New feature weighting approaches for speech-act classification. Pattern Recognition Letters, 51, 107–111. Kohandani, M., Farzaneh, N., & Kazemi, M. (2014). A critical analysis of speech acts and language functions in top notch series. Procedia-Social and Behavioral Sciences, 98, 1009–1015. Lampert, A., Dale, R., & Paris, C. (2006). Classifying speech acts using verbal response modes. Proceedings of the Australasian Language Technology Workshop 2006, 34–41. Larson, S., Mahendran, A., Peper, J. J., Clarke, C., Lee, A., Hill, P., Kummerfeld, J. K., Leach, K., Laurenzano, M. A., Tang, L., et al. (2019). An evaluation dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027. Laurenti, E., Bourgon, N., Benamara, F., Mari, A., Moriceau, V., & Courgeon, C. (2022). Give me your intentions, i’ll predict our actions: A two-level classification of speech acts for crisis management in social media. 13th Conference on Language Resources and Evaluation (LREC 2022), 4333–4343. Lebanoff, L., Newton, C., Hung, V., Atkinson, B., Killilea, J., & Liu, F. (2021). Semantic parsing of brief and multi-intent natural language utterances. Proceedings of the Second Workshop on Domain Adaptation for NLP, 255–262. Lee, J.-w., & Kim, G. C. (1997). A dialogue analysis model with statistical speech act processing for dialogue machine translation. Spoken Language Translation. Lester, B., Choudhury, S. R., Prasad, R., & Bangalore, S. (2021). Intent features for rich natural language understanding. arXiv preprint arXiv:2104.08701. Levin, L., Langley, C., Lavie, A., Gates, D., Wallace, D., & Peterson, K. (2003). Domain specific speech acts for spoken language translation. Proceedings of the Fourth SIGdial Workshop of Discourse and Dialogue, 208–217. Li, W., & Wu, Y. (2019). Multi-level gated recurrent neural network for dialog act classification arXiv preprint arXiv:1910.01822. Liu, B., & Lane, I. (2016). Attention-based recurrent neural network models for joint intent detection and slot filling. arXiv preprint arXiv:1609.01454. Liu, H., Zhang, X., Fan, L., Fu, X., Li, Q., Wu, X.-M., & Lam, A. Y. (2019). Re-constructing capsule networks for zero-shot intent classification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 4799–4809. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing ACM Computing Surveys, 55(9), 1–35. Liu, X., Eshghi, A., Swietojanski, P., & Rieser, V. (2019). Benchmarking natural language understanding services for building conversational agents. arXiv preprint arXiv:1903.05566. Liu, Z., & Jansen, B. J. (2015). Subjective versus objective questions: Perception of question subjectivity in social q&a. Social Computing, Behavioral-Cultural Modeling, and Prediction: 8th International Conference, SBP 2015, Washington, DC, USA, March 31-April 3, 2015. Proceedings 8, 131–140. Lu, J., Sridhar, S., Pandey, R., Hasan, M. A., & Mohler, G. (2019). Investigate translations into drug addiction through text mining of reddit data. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2367–2375. Mao, Y., & Zhao, X. (2019). I am a doctor, and here is my proof: Chinese doctors’ identity constructed on the online medical consultation websites. Health Communication, 34(13), 1645–1652. Mao, Y., & Zhao, X. (2020). By the mitigation one knows the doctor: Mitigation strategies by chinese doctors in online medical consultation. Health Communication, 35(6), 667–674. Martikainen, S., Falcon, M., Wikström, V., Peltola, S., & Saarikivi, K. (2022). Perceptions of doctors’ empathy and patients’ subjective health status at an online clinic: Development of an empathic anamnesis questionnaire. Psychosomatic Medicine, 84(4), 513. Martínez, N. D. C. (2011). Cognitive modeling in illocutionary meaning. Review of Cognitive Linguistics, 9(2), 392–412. Mathew, K. V., Tarigoppula, V. S. A., & Frermann, L. (2021). Multi-modal intent classification for assistive robots with large-scale naturalistic datasets. Proceedings of the 19th Annual Workshop of the Australasian Language Technology Association, 47–57. Mauni, H. Z., Hossain, T., & Rab, R. (2020). Classification of underrepresented text data in an imbalanced dataset using deep neural network. 2020 IEEE Region 10 Symposium (TENSYMP), 997–1000. McHugh, M. L. (2013). The chi-square test of independence. Biochemia Medica, 23(2), 143–149. McRoy, S. W., & Hirst, G. (1995). The repair of speech act misunderstandings by abductive inference. Computational Linguistics, 21(4), 435–478. Meyer, D., Zeileis, A., & Hornik, K. (2023). Vcd: Visualizing categorical data [R package version 1.4-11]. https://CRAN.R-project.org/package=vcd Mezzi, R., Yahyaoui, A., Krir, M. W., Boulila, W., & Koubaa, A. (2022). Mental health intent recognition for arabic-speaking patients using the mini international neuropsychiatric interview (mini) and bert model. Sensors, 22(3). Mohiuddin, T., Nguyen, T.-T., & Joty, S. (2019). Adaptation of hierarchical structured models for speech act recognition in asynchronous conversation. arXiv preprint arXiv:1904.04021. Moldovan, C., Rus, V., & Graesser, A. C. (2011). Automated speech act classification for online chat. MAICS, 710, 23–29. Morady Moghaddam, M. (2013). Discourse structures of condolence speech act. Two Quarterly Journal of English Language Teaching and Learning University of Tabriz, 4(10), 105–125. Nahl, D., & Bilal, D. (2007). Information and emotion: The emergent affective paradigm in information behavior research and theory. Information Today, Inc. Nakamura, K. (2005). Appreciation strategies of german and japanese native speakers and german learners of japanese. Proceedings of the 4th Annual JALT Pan-SIG Conference, 14–15. Nambisan, P. (2011). Information seeking and social support in online health communities: Impact on patients’ perceived empathy. Journal of the American Medical Informatics Association, 18(3), 298–304. Negargar, S. (2015). A contrastive study of speech acts of greeting in two persian and english soap operas with regard to the level of formality, structure and frequency. IMPACT: International Journal of Research in Humanities, Arts and Literature, 3(6), 47–60. Niu, P., Chen, Z., Song, M., et al. (2019). A novel bi-directional interrelated model for joint intent detection and slot filling. arXiv preprint arXiv:1907.00390. Nourdad, N., Mohammadnia, Z., & Khiabani, L. R. (2016). Evaluation of speech acts in the newly developed iranian efl english textbooks. Modern Journal of Language Teaching Methods (MJLTM), 4(2), 1–10. OpenAI. (2023). Gpt-4 technical report. O’Shea, J., Bandar, Z., & Crockett, K. (2010). A machine learning approach to speech act classification using function words. Agent and Multi-Agent Systems: Technologies and Applications: 4th KES International Symposium, KES-AMSTA 2010, Gdynia, Poland, June 23-25, 2010, Proceedings. Part II 4, 82–91. Pearson, K. (1900). X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157–175. Pinhanez, C. S., Candello, H., Pichiliani, M. C., Vasconcelos, M., Guerra, M., de Bayser, M. G., & Cavalin, P. (2018). Different but equal: Comparing user collaboration with digital personal assistants vs. teams of expert agents. arXiv preprint arXiv:1808.08157. Plakidis, M., & Rehm, G. (2022). A dataset of offensive german language tweets annotated for speech acts. Proceedings of the Thirteenth Language Resources and Evaluation Conference, 4799–4807. Poupari, Z., & Bagheri, M. S. (2013). Correlation of speech acts and language functions in top notch series vs. ili textbooks from a pragmatic point of view. International Journal of English Linguistics, 3(2), 72. Purohit, H., Dong, G., Shalin, V., Thirunarayan, K., & Sheth, A. (2015). Intent classification of short-text on social media. 2015 IEEE international conference on Smart City/SocialCom/SustainCom, 222–228. Qadir, A., & Riloff, E. (2011). Classifying sentences as speech acts in message board posts. Proceedings of the 2011 Conference on Empirical Methods In Natural Language Processing, 748–758. Qin, L., Che, W., Li, Y., Wen, H., & Liu, T. (2019). A stack-propagation framework with token-level intent detection for spoken language understanding. arXiv preprint arXiv:1909.02188. R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding by generative pre-training. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. Raheja, V., & Tetreault, J. (2019). Dialogue act classification with context-aware self-attention. arXiv preprint arXiv:1904.02594. Rasor, T., Olney, A., & D’Mello, S. (2011). Student speech act classification using machine learning. Twenty-Fourth International FLAIRS Conference. Ravuri, S., & Stoicke, A. (2015). A comparative study of neural network models for lexical intent classification. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 368–374. Ravuri, S., & Stolcke, A. (2015). Recurrent neural network and lstm models for lexical utterance classification. 16th Annual Conference of the International Speech Communication Association. Ries, K. (1999). Hmm and neural network based speech act detection. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), 1, 497–500. Rojowiec, R., Roth, B., & Fink, M. (2020). Intent recognition in doctor-patient interviews. Proceedings of the Twelfth Language Resources and Evaluation Confer- ence, 702–709. Roman, M., Shahid, A., Khan, S., Koubaa, A., & Yu, L. (2021). Citation intent classification using word embedding. IEEE Access, 9, 9982–9995. Rosenbaum, A., Soltan, S., Hamza, W., Versley, Y., & Boese, M. (2022). Linguist: Language model instruction tuning to generate annotated utterances for intent clas- sification and slot tagging. arXiv preprint arXiv:2209.09900. Sadohara, K., Kojima, H., Narita, T., Nihei, M., Kamata, M., Onaka, S., Fujita, Y., & Inoue, T. (2013). Sub-lexical dialogue act classification in a spoken dialogue system support for the elderly with cognitive disabilities. Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive Technologies, 93– 98. Saha, T., Jayashree, S. R., Saha, S., & Bhattacharyya, P. (2020). Bert-caps: A transformer-based capsule network for tweet act classification. IEEE Transactions on Computational Social Systems, 7(5), 1168–1179. Saha, T., Saha, S., & Bhattacharyya, P. (2019). Tweet act classification: A deep learning based classifier for recognizing speech acts in twitter. 2019 International Joint Conference on Neural Networks (IJCNN), 1–8. Saha, T., Upadhyaya, A., Saha, S., & Bhattacharyya, P. (2021). Towards sentiment and emotion aided multi-modal speech act classification in twitter. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 5727–5737. Sahu, G., Rodriguez, P., Laradji, I. H., Atighehchian, P., Vazquez, D., & Bahdanau, D. (2022). Data augmentation for intent classification with off-the-shelf large language models. arXiv preprint arXiv:2204.01959. Sallam, M. (2023). Chatgpt utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare, 11(6), 887. Schuurmans, J., & Frasincar, F. (2019). Intent classification for dialogue utterances. IEEE Intelligent Systems, 35(1), 82–88. Searle, J. R. (1975). Indirect speech acts. In P. Cole & J. Morgan (Eds.), Syntax and semantics 3: Speech acts (pp. 59–82). Academic Press. Searle, J. R. (1976). A classification of illocutionary acts. Language in Society, 5(1), 1–23. Shah, S., Calderon, M. D., Soin, A., Manchikanti, L., et al. (2020). The effect of covid-19 on interventional pain management practices: A physician burnout survey. Pain Physician, 23(4S), S271. Shala, L., Rus, V., & Graesser, A. C. (2010). Automated speech act classification in arabic. Subjetividad y Procesos Cognitivos, 14, 284–292. Shams, R., & Afghari, A. (2011). Effects of culture and gender in comprehension of speech acts of indirect request. English Language Teaching, 4(4), 279–287. Shang, G., Tixier, A. J.-P., Vazirgiannis, M., & Lorré, J.-P. (2020). Speaker-change aware crf for dialogue act classification. arXiv preprint arXiv:2004.02913. Shen, A. C.-T. (2011). Cultural barriers to help-seeking among taiwanese female victims of dating violence. Journal of Interpersonal Violence, 26(7), 1343–1365. Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., Clark, K., Pfohl, S., Cole-Lewis, H., Neal, D., et al. (2023). Towards expert-level medical question answering with large language models. arXiv preprint arXiv:2305.09617. Smith, L. N. (2017). Cyclical learning rates for training neural networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 464–472. Soldaini, L., Yates, A., Yom-Tov, E., Frieder, O., & Goharian, N. (2016). Enhancing web search in the medical domain via query clarification. Information Retrieval Journal, 19, 149–173. Soleimani, H., & Yeganeh, M. N. (2016). An analysis of pragmatic competence in 2013 presidential election candidates of iran: A comparison of speech acts with the poll outcomes. Theory and Practice in Language Studies, 6(4), 706. Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Ess-Dykema, C. V., & Meteer, M. (2000). Dialogue act modeling for automatic tagging and recognition of conversational speech. Computational Linguistics, 26(3), 339–373. Subramanian, S., Cohn, T., & Baldwin, T. (2019). Target based speech act classification in political campaign text. arXiv preprint arXiv:1905.07856. Sun, S., Xie, Z., Yu, K., Jiang, B., Zheng, S., & Pan, X. (2021). Covid-19 and healthcare system in china: Challenges and progression for a sustainable future. Globalization and Health, 17(1), 1–8. Sun, S., Pan, W., & Wang, L. L. (2010). A comprehensive review of effect size reporting and interpreting practices in academic journals in education and psychology. Journal of Educational Psychology, 102(4), 989. Tanaka, H., & Yokoo, A. (1999). An efficient statistical speech act type tagging system for speech translation systems. Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, 381–388. Tang, T., Tang, X., & Yuan, T. (2020). Fine-tuning bert for multi-label sentiment analysis in unbalanced code-switching text. IEEE Access, 8, 193248–193256. Tangcharoensathien, V., Calleja, N., Nguyen, T., Purnat, T., D’Agostino, M., Garcia-Saiso, S., Landry, M., Rashidian, A., Hamilton, C., AbdAllah, A., et al. (2020). Framework for managing the covid-19 infodemic: Methods and results of an online, crowdsourced who technical consultation. Journal of Medical Internet Research, 22(6), e19659. Tohti, T., Abdurxit, M., & Hamdulla, A. (2022). Medical qa oriented multi-task learning model for question intent classification and named entity recognition. Information, 13(12), 581. Tran, Q. H., Zukerman, I., & Haffari, G. (2017). Preserving distributional information in dialogue act classification. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2151–2156. Tseng, M.-Y. (2021). Toward a cognitive-pragmatic account of metonymic schemes of thought: Examples from online medical consultation. Journal of Pragmatics, 173, 177–188. Tseng, M.-Y., & Zhang, G. (2018). Pragmeme, adaptability, and elasticity in online medical consultations. Journal of Pragmatics, 137, 40–56. Tseng, M.-Y., & Zhang, G. (2020). Perceptions of and attitudes toward elastic language in online health communication in chinese. Lingua, 233, 102750. Tseng, M.-Y., & Zhang, G. (2022). Conceptual metonymy and emotive-affective meaning at the interface: Examples from online medical consultations. Lingua, 268, 103192. Uludag, K. (2023). Testing creativity of chatgpt in psychology: Interview with chatgpt. Available at SSRN 4390872. Vaezi, R., Tabatabaei, S., & Bakhtiarvand, M. (2014). A comparative study of speech acts in the textbooks by native and non-native speakers: A pragmatic analysis of new interchange series vs. locally-made efl textbooks. Theory and Practice in Language Studies, 4(1), 167. van Rijsbergen, C. J. (1975). Information retrieval. Butterworth. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. Vosoughi, S., & Roy, D. (2016). Tweet acts: A speech act classifier for twitter. Proceedings of the International AAAI Conference on Web and Social Media, 10(1), 711–714. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461. Wang, J., Liang, Y., Meng, F., Li, Z., Qu, J., & Zhou, J. (2023). Cross-lingual summarization via chatgpt. arXiv preprint arXiv:2302.14229. Wang, Y., Wang, S., Li, Y., & Dou, D. (2022). Recognizing medical search query intent by few-shot learning. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 502–512. Wang, Y., Shen, Y., & Jin, H. (2018). A bi-model based rnn semantic frame parsing model for intent detection and slot filling. arXiv preprint arXiv:1812.10235. Webb, N., & Liu, T. (2008). Investigating the portability of corpus-derived cue phrases for dialogue act classification. Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), 977–984. Wei, H. (2012). Cross-cultural comparisons of english request speech acts in native speakers of english and chinese. Cross-Cultural Communication, 8(4), 24. White, M., & Dorman, S. M. (2001). Receiving social support online: Implications for health education. Health Education Research, 16(6), 693–707. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45. https://doi. org/10.18653/v1/2020.emnlp-demos.6 Wu, C., Luo, G., Guo, C., Ren, Y., Zheng, A., & Yang, C. (2020). An attention-based multi-task model for named entity recognition and intent analysis of chinese online medical questions. Journal of Biomedical Informatics, 108, 103511. Wu, T.-W., Su, R., & Juang, B. (2021). A label-aware bert attention network for zero- shot multi-intent detection in spoken language understanding. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 4884–4896. Wu, X., Duan, R., & Ni, J. (2023). Unveiling security, privacy, and ethical concerns of chatgpt. arXiv preprint arXiv:2307.14192. Wu, Y., Wang, H., Zhang, D., Chen, G., & Zhang, H. (2022). Incorporating instructional prompts into a unified generative framework for joint multiple intent detection and slot filling. Proceedings of the 29th International Conference on Computational Linguistics, 7203–7208. Xiang, Y.-T., Zhao, N., Zhao, Y.-J., Liu, Z., Zhang, Q., Feng, Y., Yan, X.-N., Cheung, T., & Ng, C. H. (2020). An overview of the expert consensus on the mental health treatment and services for major psychiatric disorders during covid-19 outbreak: China’s experiences. International Journal of Biological Sciences, 16(13), 2265. Xu, G., Lee, H., Koo, M.-W., & Seo, J. (2017). Convolutional neural network using a threshold predictor for multi-label speech act classification. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), 126–130. Xu, H., & Huang, C.-R. (2014). Annotate and identify modalities, speech acts and finer-grained event types in chinese text. Proceedings of Workshop on Lexical and Grammatical Resources for Language Processing, 157–166. Xu, J., Zhang, Q., & Huang, X. (2013). Understanding the semantic intent of domain-specific natural language query. Proceeding of International Joint Conference on Natural Language Processing, 552–560. Xu, P., & Sarikaya, R. (2013). Convolutional neural network based triangular crf for joint intent detection and slot filling. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 78–83. Yan, L., & Tan, Y. (2014). Feeling blue? go online: An empirical study of social support among patients. Information Systems Research, 25(4), 690–709. Yoo, D., Ko, Y., & Seo, J. (2017). Speech-act classification using a convolutional neural network based on pos tag and dependency-relation bigram embedding. IEICE Transactions on Information and Systems, 100(12), 3081–3084. Yoosefvand, A., & Rasekh, A. E. (2014). A comparative study of gratitude speech act between persian and english speakers. Journal of Applied Linguistics and Language Research, 1(2), 44–61. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K., & Hsieh, C.-J. (2019). Large batch optimization for deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962. Zhang, C., Du, N., Fan, W., Li, Y., Lu, C.-T., & Philip, S. Y. (2017). Bringing semantic structures to user intent detection in online medical queries. 2017 IEEE International Conference on Big Data (Big Data), 1019–1026. Zhang, C., Fan, W., Du, N., & Yu, P. S. (2016). Mining user intentions from medical queries: A neural network based heterogeneous jointly modeling approach. Proceedings of the 25th International Conference on World wide web, 1373–1384. Zhang, H., Liang, H., Zhang, Y., Zhan, L., Wu, X.-M., Lu, X., & Lam, A. (2022). Fine-tuning pre-trained language models for few-shot intent detection: Supervised pre-training and isotropization. arXiv preprint arXiv:2205.07208. Zhang, H., Zhang, Y., Zhan, L.-M., Chen, J., Shi, G., Wu, X.-M., & Lam, A. (2021). Effectiveness of pre-training for few-shot intent classification. arXiv preprint arXiv:2109.05782. Zhang, R., Gao, D., & Li, W. (2012). Towards scalable speech act recognition in twitter: Tackling insufficient training data. Proceedings of the Workshop on Semantic Analysis in Social Media, 18–27. Zhang, T., Cho, J. H., & Zhai, C. (2014). Understanding user intents in online health forums. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, 220–229. Zhang, Y. (2010). Contextualizing consumer health information searching: An analysis of questions in a social q&a community. Proceedings of the 1st ACM International Health Informatics Symposium, 210–219. Zhang, Y. (2013). Toward a layered model of context for health information searching: An analysis of consumer-generated questions. Journal of the American Society for Information Science and Technology, 64(6), 1158–1172. Zhang, Y. (2021). How doctors do things with empathy in online medical consultations in china: A discourse-analytic approach. Health Communication, 36(7), 816– 825. Zhao, X., & Mao, Y. (2021). Trust me, i am a doctor: Discourse of trustworthiness by chinese doctors in online medical consultation. Health Communication, 36(3), 372–380. Zhong, Q., Ding, L., Liu, J., Du, B., & Tao, D. (2023). Can chatgpt understand too? a comparative study on chatgpt and fine-tuned bert. arXiv preprint arXiv:2302.10198. Zhu, W., Ni, Y., Wang, X., & Xie, G. (2021). Discovering better model architectures for medical query understanding. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers, 230–237. Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., & Yang, D. (2023). Can large language models transform computational social science? arXiv preprint arXiv:2305.03514. Zimmermann, C., Del Piccolo, L., Bensing, J., Bergvik, S., De Haes, H., Eide, H., Fletcher, I., Goss, C., Heaven, C., Humphris, G., et al. (2011). Coding patient emotional cues and concerns in medical consultations: The verona coding definitions of emotional sequences (vr-codes). Patient Education and Counseling, 82(2), 141–148. Zummo, M. L. (2015). Exploring web-mediated communication: A genre-based linguistic study for new patterns of doctor-patient interaction in online environment. Communication & Medicine, 12(2-3), 187.; G0110753134; https://nccur.lib.nccu.edu.tw//handle/140.119/149645; https://nccur.lib.nccu.edu.tw/bitstream/140.119/149645/1/313401.pdf
-
9Report
المؤلفون: 徐宏修
المساهمون: 嘉藥學校財團法人嘉南藥理大學資訊多媒體應用系
مصطلحات موضوعية: 無限射頻識別標籤, 導電油墨, 印刷, RFID label, conductive ink, printing
وصف الملف: 629883 bytes; application/pdf
Relation: 計畫編號:MOST109-2622-E041-001-CC3; 計畫年度:109; 執行起迄:2020-06~2021-05; https://ir.cnu.edu.tw/handle/310902800/33548; https://ir.cnu.edu.tw/bitstream/310902800/33548/1/1092622E041001CC3(第1年).pdf; https://ir.cnu.edu.tw/bitstream/310902800/33548/-1/捷刻科技公司RFID印刷製程改善計畫.pdf
الاتاحة: https://ir.cnu.edu.tw/handle/310902800/33548
https://ir.cnu.edu.tw/bitstream/310902800/33548/1/1092622E041001CC3(第1年).pdf
https://ir.cnu.edu.tw/bitstream/310902800/33548/-1/捷刻科技公司RFID印刷製程改善計畫.pdf -
10Dissertation/ Thesis
المؤلفون: 張惠龍, Chang, Hui-Lung
المساهمون: 王文杰, Wang, Wen-Chieh
مصطلحات موضوعية: 永續金融揭露, 永續分類, 監管技術標準, 市場參與者, 財務顧問, 淨零碳排, 標籤指標, 主要不利影響, 漂綠, Sustainable financial disclosure, Taxonomy, Regulatory technical standard, Financial market participant, Financial adviser, Zero carbon emission, Label index, Principal adverse impact, Greenwashing
وصف الملف: 2542020 bytes; application/pdf
Relation: 一、中文 (按著者姓氏筆劃) (一)書籍 1.王文杰,(2014)。嬗變中之中國大陸法制。臺灣:國立交通大學出版社。 2.王毅、蘇利陽,(2019)。綠色發展改變中國 : 如何看中國生態文明建設。北京 : 外文出版社有限責任公司。 3.朱雲鵬等,(2014)。綠色所得與綠色消費。臺灣:五南圖書出版股份有限公司。 4.范姜肱、范薑新圳、張瑞剛,(2022),氣候變遷與綠色金融保險 : 企業倫理視角。臺灣:全華圖書股份有限公司。 5.郝晉輝,(2020)。綠色金融。臺灣:城邦印書館。 6.魯政委、錢立華、方琦,(2022)。碳中和與綠色金融創新。北京:中信出版集團股份有限公司。 (二)期刊 1.王剛、賀章獲,(2016)。我國商業銀行發展綠色金融的現狀、挑戰與對策。環境保護,第19期,頁18-21。 2.李孟嬌,(2018)。金融科技於綠色金融角色與應用。經濟前瞻,第178期,頁38-42。 3.宋俐瑩,(2021)。研析歐盟推動綠色政綱與台歐能源合作契機。臺灣經濟研究月刊,第44卷第5期,頁55-62。 4.林士傑,(2021)。國際ESG風險與監理趨勢及銀行業永續金融發展商機。銀行公會會訊,第123期,頁1-6。 5.林茂文,(2022)。臺灣2050淨零排碳路徑及策略之綜析。石油季刊,第52卷第2期,頁1-39。 6.林竣達,(2019)。永續金融在歐盟的發展情勢。臺灣新社會智庫,第64期,頁66-71。 7.施懿宸、梁楠楠、楊晨輝、萬秋旭,(2020)。歐盟永續金融分類法解析與借鑒。金融縱橫,第4期,頁26-31。 8.馬險峰,(2021)。碳達峰碳中和目標下的中國綠色金融發展。環境經濟研究,第4期,頁1-7。 9.殷紅,(2015)。綠色金融戰略與實踐。中國金融,第20期,頁35-37。 10.陳麗娟,(2021)。歐盟永續金融興起之概況。國會季刊,第49卷第1期,頁3-16。 11.黃瑞婷,(2021)。永續金融大躍進!海水退潮時的真實世界-解析歐盟的永續金融揭露規範(Sustainable Finance Disclosure Regulation, SFDR)與對臺灣企業的影響與建議。內部稽核,第114期,頁10-15。 12.黃帥升,(2021)。歐盟永續金融揭露規範(SFDR)之內涵與衝擊因應。會計研究月刊,第427期,頁72-77。 13.黃敏瑜,(2020)。日本金融領域的永續新規範。經濟前瞻,第190期,頁16-21。 14.溫麗琪、鄭伊庭,(2022)。從經濟發展到環境永續:看中國大陸碳達峰到碳中和。兩岸經貿,第358期,頁6-9。 15.楊宥薰,(2021)。拆穿綠色包裝-淺談新加坡永續金融分類法。集保雙月刊,第259期,頁9-21。 16.雷曜、張薇薇,(2020)。歐盟綠色新政與中歐綠色金融合作。中國大陸金融,第14期,頁39-41。 17.劉軍紅、湯祺,(2022)。日本碳中和戰略及其前景。現代國際關係,第4期,頁18-25。 18.鄭欽哲,(2008)。赤道原則採行之國際法意涵-邁向永續金融。中華國際法與超國界法評論,第4卷第1 期,頁201-227。 19.錢立華、方琦、魯政委,(2021)。碳中和下的銀行保險業氣候信息披露制度研究。綠色金融,第4期,頁3-14。 20.薛翔之、鄭伊庭,(2022)。永續金融分類法-牽動國內外經濟活動秩序。前瞻經濟,第200期,頁105-112。 21.簡立忠,(2019)。引進綠色衡量指標,促進綠債市場深化發展。證券服務,第669期,頁44-46。 22.曠彩芬、潘世毅,(2021)。金融市場化、融資持續性與戰略性新興企業創新投資。科技創業月刊,34(8),頁40-44。 (三)研究報告 1.CSRone永續智庫、國立政治大學商學院信義書院、資誠永續發展服務股份有限公司,(2023)。2023臺灣暨亞太永續報告現況與趨勢。臺北。 2.王穎達、闕棟鴻、黃莉婷、陳立衡、施沛宏,(2022)。國際綠色金融分析,計畫名稱:國家總體能源政策發展規劃及決策支援能量建構 (編號:M455CG4100)。新竹:工業技術研究院。 3.中華民國企業永續發展協會,(2021)。臺灣首份永續金融大調查。臺北。 4.中國人民銀行、歐盟委員會,(2021)。共同分類目錄報告-減緩氣候變化。北京:永續金融國際平台。 5.中央財經大學綠色金融國際研究院,(2023)。澳大利亞綠色金融發展現狀與中澳綠色金融合作展望。北京。 6.中央財經大學綠色金融國際研究院,(2023)。美國綠色金融發展現狀與中美綠色金融合作展望。北京。 7.永續金融國際平台(International Platform of Sustainable Finance; IPSF)永續金融分類目錄工作組,(2022)。共同分類目錄報告-減緩氣候變化。歐洲:歐盟委員會。 8.北京綠色金融與永續發展研究院、保爾森基金會綠色金融中心,(2022)。金融科技推動中國綠色金融發展:案例與展望。北京。 9.尚光琪、施惠敏、黃睦芸、鄭喧蓉,(2023)。因公出國人員報告書:參訪日本永續金融政策。臺北:金融監督管理委員會。 10.林奇澤,(2021)。剖析歐盟氣候中和策略及發行綠色債券之願景。臺北:台灣金融研訓院。 11.林其昂、羅光達、周德宇,(2022)。永續金融和推動永續發展目標:2021-2030的展望。臺北:財團法人臺北外匯市場發展基金會。 12.徐宏鈞、楊宥薰,(2021)。國際證券主管機關推動永續金融之研究。臺北:財團法人中華民國證券暨期貨市場發展基金會。 13.陳鴻達,(2022)。永續分類標準對電子業的衝擊與建議。臺北:台灣金融研訓院。 14.陳鴻達、王嘉緯、林奇澤、黃瀞儀、彭宇如、賴思如、吳雅惠,(2021)。環境、社會及公司治理(ESG)對我國銀行業經營之挑戰與商機。臺北:台灣金融研訓院。 15.黃泓智、陳恩儀、賴柏升、陳健偉,(2022)。資產管理人才培育與產業發展基金委託專題研究-國際永續金融揭露規範與具體作法之研究。臺北:財團法人中華民國證券暨期貨市場發展基金會。 16.楊曉文,(2021)。訂定我國投信事業ESG揭露相關規範暨投信事業ESG投資與風險管理作業流程實務指引。臺北:中華民國證券投資信託暨顧問商業同業公會。 17.楊曉文,(2021)。臺灣發展綠色金融之契機與挑戰。臺北:財團法人臺北外匯市場發展基金會。 18.錢立華、方琦、魯政委,(2020)。歐盟永續金融戰略與進展分析。上海:興業研究諮詢機構。 19.顏華廷、楊皓荃、周雨蓁,(2020)。各國綠色產業政策報告-加拿大綠色產業政策與措施簡介。臺北:經濟部推動綠色貿易專案辦公室。 20.謝人俊,(2021)。出席APEC「亞洲永續金融與優質基礎設施投資」高階視訊研討會報告。臺北:中央銀行。 (四)碩博士論文 1.沈冠丞 (2020)。探討企業永續行為:從漂綠行為說起。國立中央大學,產業經濟研究所,桃園。 2.易先智 (2022)。銀行業永續金融之法律研究-以歐盟為例。中國文化大學,法律學系,臺北。 3.張麗雲 (2021)。金融授信從業人員對落實綠色金融永續發展 ESG 之職能需求探討。國立東華大學,國際企業學系,花蓮。 4.黃智偉 (2021)。從歐盟永續金融揭露規範檢視臺灣資產管理永續揭露及永續基金發展之研究。國立政治大學,經營管理碩士學程(EMBA),臺北。 5.黃瓊慧 (2020)。我國金融業採用ESG及赤道原則推展綠色金融現況研究。國立中央大學,高階主管企業碩士班,桃園。 6.葉孟昇 (2022)。綠色金融對金融業影響之個案探討- 制度理論觀點。國立東華大學,企業管理學系,花蓮。 7.劉蕙綺 (2021)。從國際關係理論及歐盟法規範探討歐盟綠色政綱之發展與實踐。國立政治大學,法學院碩士在職專班,臺北。 8.劉宗嶽 (2019)。中國大陸推動一帶一路的成效與展望及對台商之影響。國立政治大學,經營管理碩士學程(EMBA),臺北。 9.鄭超方 (2021)。永續金融政策對臺灣銀行業績效之影響。淡江大學,財務金融學系碩士在職專班,臺北。 (五)網際網路 1.行政院國家永續發展委員會,臺灣永續發展目標,上網日期2023年6月10日,檢自:https://ncsd.ndc.gov.tw/Fore/AboutSDG。 2.行政院國家永續發展委員會,永續發展政策綱領,上網日期2023年6月22日,檢自:https://ncsd.ndc.gov.tw/_ofu/download/about/永續發展政策綱領.pdf。 3.中華人民共和國中央人民政府,中華人民共和國國民經濟和社會發展第十四個五年規劃和2035年遠景目標綱要,上網日期2022年7月30日,檢自:https://www.gov.cn/xinwen/2021-3/13/content_5592681.htm。 4.中國人民日報海外版,綠色債券支持項目目錄(2021年版)發布—綠色債券有新看點,上網日期2023年6月25日,檢自:https://www.gov.cn/zhengce/2021-05/06/content_5604789.htm。 5.金融監督管理委員會,公司治理3.0-永續發展藍圖,上網日期2023年5月24日,檢自:https://www.fsc.gov.tw/fckdowndoc?file=/公司治理3_0-永續發展藍圖.pdf&flag=doc。 6.金融監督管理委員會,綠色金融行動方案2.0,上網日期2023年7月1日,檢自:https://www.fsc.gov.tw/ch/home.jsp?id=616&parentpath=0,7.html。 7.金融監督管理委員會,資本市場藍圖(推動方案),上網日期2023年4月13日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/ 202012241547580.pdf&filedisplay=「資本市場藍圖」推動方案.pdf&flag=doc。 8.金融監督管理委員會,修正「公開發行公司年報應行記載事項準則」部分條文及第十一條附表七、附表九、第十九條附表二十二、附表二十三修正總說明,上網日期2023年5月10日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=newslaw/ 202111301616100.pdf&filedisplay=公開發行公司年報應行記載事項準則修正總說明.條文對照表及相關附表.pdf&flag=doc。 9.金融監督管理委員會,上市櫃公司永續發展路徑圖,上網日期2023年2月11日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/ 202203031544210.pdf&filedisplay=新聞稿附件-路徑圖推動規劃.pdf&flag=doc。 10.金融監督管理委員會,上市櫃公司永續發展行動方案(2023年),上網日期2023年6月3日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/202303290815110.pdf&filedisplay=上市櫃公司永續發展行動方案.pdf&flag=doc。 11.金融監督管理委員會,臺灣2050淨零轉型「綠色金融」關鍵戰略行動計畫,上網日期2023年6月5日,檢自:https://ws.ndc.gov.tw/Download.ashx?u=臺灣2050淨零轉型綠色金融關鍵戰略行動計畫.pdf。 12.金融監督管理委員會,本國銀行氣候風險財務揭露指引,上網日期2023年4月20日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/ 202111301608270.pdf&filedisplay=附件+-+本國銀行氣候風險財務揭露指引.pdf&flag=doc。 13.金融監督管理委員會,保險業氣候相關風險財務揭露指引,上網日期2023年4月20日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/ 202111301500180.pdf&filedisplay=1130-保險業氣候相關風險財務揭露指引.pdf&flag=doc。 14.金融監督管理委員會,綠色金融行動方案(核定本),上網日期2023年2月14日,檢自:https://www.fsc.gov.tw/websitedowndoc?file=chfsc/ 201802131614480.pdf&filedisplay=1061106綠色金融行動方案(核定本)完整.pdf。 15.金融監督管理委員會,綠色金融行動方案2.0,上網日期2023年2月14日,檢自:https://www.fsc.gov.tw/websitedowndoc?file=chfsc/ 202104191513590.pdf&filedisplay=綠色金融行動方案2.0.pdf。 16.金融監督管理委員會,綠色金融行動方案3.0,上網日期2023年2月14日,檢自:https://www.fsc.gov.tw/websitedowndoc?file=chfsc/ 202209281336330.pdf&filedisplay=綠色金融行動方案3.0.pdf。 17.金融監督管理委員會,發布環境、社會與治理(ESG)相關主題證券投資信託基金之資訊揭露事項審查監理原則,上網日期2023年3月12日,檢自:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202107060002&dtable=News。 18.金融監督管理委員會,發布環境、社會與治理(ESG)相關主題之境外基金資訊揭露事項審查監理原則,上網日期2023年3月12日,檢自:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0&mcustomize=news_view.jsp&dataserno=202201120004&dtable=News。 19.金融監督管理委員會,修正「鼓勵境外基金深耕計畫」,鼓勵境外基金機構長期在臺資產管理業務經營及促進永續發展,上網日期2023年3月25日,檢自:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202211220001&dtable=News。 20.金融監督管理委員會,第一屆永續金融評鑑指標公布,上網日期2023年5月1日,檢自:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202212290001&dtable=News。 21.金融監督管理委員會,證券期貨業永續發展轉型執行策略,上網日期2023年6月11日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=News/ 202203081558470.pdf&filedisplay=1110308新聞稿附件1-永續發展轉型執行策略內容說明.pdf&flag=doc。 22.金融監督管理委員會、環境部、交通部、內政部,永續經濟活動認定參考指引,上網日期2023年7月20日,檢自:https://www.fsc.gov.tw/uploaddowndoc?file=news/202212081505420.pdf&filedisplay=附件1永續經濟活動認定參考指引.pdf&flag=doc。 23.台達電子文教基金會,歐盟祭三項規範 剷除漂綠金融產品-台版永續分類標準上路後 企業該如何因應?,上網日期2022年7月15日,檢自:https://www.delta-foundation.org.tw/blogdetail/3186.html。 24.法國巴黎銀行,永續金融規範,上網日期2022年7月20日,檢自:https://www.bnpparibas-am.com/zh-tw/永續金融揭露規範.html。 25.社會價值投資聯盟,全球ESG政策法規研究,上網日期2023年5月21日,檢自:https://www.casvi.org/h-nd-1012.html。 26.國立東華大學,聯合國17項永續發展目標(SDGs),上網日期2022年7月25日,檢自:https://green.nttu.edu.tw/p/412-1048-0039.php?Lang=zh-tw.html。 27.臺灣證券交易所,新加坡:新加坡交易所將強制公司編製永續報告書,上網日期2022年2月15日,檢自:https://cgc.twse.com.tw/static/20141117/0000000049460b120149bb5f11f10010_新加坡:新加坡交易所將強制公司編製永續報告書.pdf。 28.臺灣經濟新報,永續報告書揭露現況分析,上網日期2023年3月11日,檢自:https://www.tejwin.com/news/永續報告書。 29.國家發展委員會、經濟部、科技部、交通部、內政部、環境部、農業部、金融監督管理委員會,臺灣2050淨零排放路徑及策略總說明,上網日期2023年4月12日,檢自:https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76#:~:text=我國2050淨零排放,落實淨零轉型目標。 30.經濟部,新經濟發展策略諮詢會議110年度第4次會議:面對永續金融趨勢下,國際永續分類標準發展與臺灣產業因應之道,上網日期2022年12月15日,檢自:https://www.moea.gov.tw/Mns/CORD/content/wHandMenuFile.ashx?file_id=27627。 31.經濟部(駐日本代表處經濟組),日本為達成2050年淨零碳排之具體作為,上網日期2023年3月12日,檢自:https://mnscdn.moea.gov.tw/MNS/ietc/bulletin/Bulletin.aspx?kind=54&html=1&menu_id=33779&bull_id=8838。 32.經濟部能源局,解析2021英國淨零戰略報告,上網日期2023年4月17日,檢自https://www.re.org.tw/knowledge/more.aspx?cid=201&id=5439。 33.審計部,金管會參酌歐盟規定研訂永續分類標準,內容涉及跨部會權責,惟相關部會未能參與研訂易衍生執行窒礙,上網日期2023年6月25日,檢自https://www.audit.gov.tw/p/405-1000-8667,c103.php?Lang=zh-tw。 34.美國:SEC擬強化投資顧問和投資公司有關ESG資訊揭露要求,上網日期2023年5月16日,檢自:https://webline.sfi.org.tw/download/resh_ftp/CG/IFDD/220501.pdf 35.遠見天下文化,中共20大/習近平:「綠水青山是金山」,加速綠色低碳產業,上網日期2023年5月10日,檢自:https://esg.gvm.com.tw/ 36.遠見天下文化,上市櫃公司編製永續報告書了嗎?四成沒交、九成未與薪酬連結,上網日期2023年6月4日,檢自:https://esg.gvm.com.tw/article/25405article/14512。 37.遠見天下文化,剷除漂綠基金!歐盟SFDR法規上路,永續評級、治理參與將是關鍵,上網日期2023年7月7日,檢自:https://www.gvm.com.tw/article/78585。 38.廈門國家會計學院,亞太環境、社會與公司治理(ESG)報告發展白皮書上網日期2023年6月2日,檢自:https://www.cpaaustralia.com.au/-/media/project/cpa/corporate/documents/esg-reporting-white-paper-cn-Dec.pdf。 39.財團法人中華民國證券櫃買賣中心債券部,永續發展債券制度專版介紹,上網日期2023年5月25日,檢自:https://www.tpex.org.tw/event/web/trade_11109/3-3.永續發展債券制度專板介紹.pdf。 40.臺灣集中保管結算所,公司投資人關係整合平台,上網日期2023年6月23日,檢自:https://irplatform.tdcc.com.tw/ir/zh/aboutUs/index。 二、英文 (按著者姓氏字母) (一)書籍 1.Jeffrey Sach, Wing Woo, Naoyuki Yoshino, Farhad Taghizadeh-Hesary, Farhad, (2019). Handbook of Green Finance: Energy Security and Sustainable Development, Singapore: Springer Singapore: Imprint: Springer. 2.Marco Migliorelli, Philippe Dessertine, (2019). The Rise of Green Finance in Europe: Opportunities and Challenges for Issuers, Investors and Marketplaces, Cham: Springer International Publishing: Imprint: Palgrave Macmillan. 3.Organisation for Economic Co-operation and Development, OECD, (2015). Green Finance and Investment Organisation for Economic Co-operation and Development, Paris: OECD Publishing. 4.S.B Tasi, C.H Shen, Hua Song, Baozhuang Niu, (2019). Green Finance for Sustainable Global Growth, Hershey, Pennsylvania: IGI Global. (二)期刊 1.Adam P. Balcerzak, Robert Kenyon MacGregor, Radka MacGregor Pelikánová, Elżbieta Rogalska and Dawid Szostek, (2023). The EU regulation of sustainable investment: The end of sustainability trade-offs?. Entrepreneurial Business & Economics Review, Vol. 11, No. 1, p199-212. 2.Ayesha Afzal, Ehsan Rasoulinezhad and Zaki Malik, (2022). Green finance and sustainable development in Europe. Economic Research-Ekonomska Istraživanja, Vol. 35, No. 1, p5150-5163. 3.Anita Foerster and Michael Spencer (2022). Corporate net zero pledges: a triumph of private climate regulation or more greenwash?. Griffith Law Review, forthcoming. 4.Caterina Lucarelli, Camilla Mazzoli, Michela Rancan and Sabrina Severini, (2020). Classification of Sustainable Activities: EU Taxonomy and Scientific Literature. Sustainability, 12(16), p6460-6485. 5.Catherine Malecki, (2021). The EU Taxonomy Regulation: Giving a Good Name to Sustainable Investment. Environment Liability/Law, Policy and Practice, 26(4), p149-156. 6.Danny Busch, (2023). EU Sustainable Finance Disclosure Regulation. Capital Markets Law Journal, Volume 18, Issue 3, July 2023, Pages 303-328. 7.Enrico Partiti, (2023). Addressing the Flaws of the Sustainable Finance Disclosure Regulation: Moving from Disclosures to Labelling and Sustainability Due Diligence. European Business Organisation Law Review, forthcoming. 8.Gunnar Friede, Timo Busch and Alexander Bassen, (2015). ESG and financial performance: aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, Vol. 5, Issue 4, p210-233. 9.Harrison, Caroline, Partridge, Candace and Aneil Tripathy, (2020). What's in a Greenium: an analysis of pricing methodologies and discourse in the green bond market. The Journal of Environmental Investing, Vol. 10(1), p112-124. 10.Irene Bengo, Leonardo Boni and Alessandro Sancino, (2022). EU financial regulations and social impact measurement practices: A comprehensive framework on finance for sustainable development. Corporate Social Responsibility and Environmental Management, Vol. 29, Issue 4, p731-1108. 11.Jiří Dusík and Alan Bond, (2022). Environmental assessments and sustainable finance frameworks: will the EU Taxonomy change the mindset over the contribution of EIA to sustainable development?. Impact Assessment and Project Appraisal, Vol. 40, No. 2, p90-98. 12.Julie L. MacArthura, Christina E. Hoickab, Heather Castledenc, Runa Dasd, Jenny Lieue, (2020). Canada's Green New Deal: Forging the socio-political foundations of climate resilient infrastructure?. Energy Research & Social Science, 65, p1014-1042. 13.Joachim Richter, (2014). EU regulatory developments. Law and Financial Markets Review, Vol. 8, Issue 2, p185-191. 14.Katrin Hummel and Manuel Szekely, (2022). Disclosure on the sustainable development goals–Evidence from Europe. Accounting in Europe, Vol. 19, No. 1, p152-189. 15.Kristina Smith, (2013). Spreading the green deal around, construction research and innovation. Construction Research and Innovation, Vol. 4, Issue 4, p24-27. 16.Megan Bowman and Stephen Minas, (2019). Resilience through interlinkage: the green climate fund and climate finance governance. Climate Policy, Vol. 19, Issue 3, p342-353. 17.Mete Feridun and Hasan Güngör, (2020). Climate-Related Prudential Risks in the Banking Sector: A Review of the Emerging Regulatory and Supervisory Practices. Sustainability, 12(13), p5325-5332. 18.Nicholas Eng, Carlina DiRusso, Cassandra L. C. Troy, Jason R. Freeman, Meng Qi Liao and Yuan Sun, (2021). I had no idea that greenwashing was even a thing: identifying the cognitive mechanisms of exemplars in greenwashing literacy interventions. Environmental Education Research, Vol. 27, Issue 11, p1599-1617. 19.Volker Brühl, (2022). Green Financial Products in the EU – A Critical Review of the Status Quo. Intereconomics, 57(4), p252-259. (三)研究報告 1.Australia Prudential Regulation Authority, (2021). Prudential Practice Guide-CPG 229 Climate Chang Financial Risks. 2.Australian Council of Superannuation Investors, (2023). ESG Reporting Trends-A detailed assessment of ESG reporting in ASX200 companies. 3.Australia Sustainable Finance Institute, (2022). Designing Australia’s Sustainable Finance Taxonomy. 4.Climate Bond Initiative, (2020). Green Loan-Australia H& New Zealand. 5.Department of Industry, Science, Energy and Resources of Australia, (2021). Australia’s Long-term Emissions Reduction Plan-A whole-of-economy Plan to achieve net zero emissions by 2050. 6.Environment and Climate Change Canada, (2022). Greenhouse Gas Pollution Pricing Act-Annual Report to Parliament for 2020. 7.EU Technical Expert Group on Sustainable Finance, (2020). Taxonomy: Final Report of the Technical Expert Group on Sustainable Finance. 8.European Commission, (2018). Action Plan: Financing Sustainable Growth. 9.European Commission, (2021). JRC Technical Report: Substantial contribution to climate change mitigation – a framework to define technical screening criteria for the EU taxonomy. 10.Financial Services Agency, Ministry of Economy, Trade and Industry, Ministry of the Environment, Japan, (2021). Basic guidelines on climate transition finance. 11.Financial Service Council in Australia, (2022). FSC Guidance Note No. 44-Climate Risk Disclosure in Investment Management. 12.Financial Reporting Council in UK, (2020). The UK Stewardship Code 2020. 13.Green Finance Industry Taskforce of Singapore, (2023). Identifying a Green Taxonomy and Relevant Standards for Singapore and ASEAN. 14.HM (His Majesty's) Government UK, (2023). Mobilising Green Investment -2023 Green Finance Strategy. 15.Ministry of Environment in Japan, (2020). Green Bond Guidelines, Green Loan and Sustainability Linked Loan Guidelines. 16.Nikolai Badenhoop, Angelina Hackmann, Christian Mücke and Loriana Pelizzon, (2023). Quo Vadis Sustainable Funds? Sustainability and taxonomy aligned disclosure in Germany under the SFDR, SAFE White Paper No. 94. 17.Sustainable Finance Action Council of Canada, (2023). Taxonomy Roadmap Report-Mobilizing Finance for Sustainable Growth by Defining Green and Transition Investments. 18.The United States Department of State and the United States Executive Office of the President, (2021). The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050. (四)網際網路 1.2020 Examination Priorities. Retrieved on May 10, 2023, from: https://www.sec.gov/files/national-examination-program-priorities-2020.pdf. 2.A European Green Deal-Striving to be the first climate-neutral continent. Retrieved on April 18, 2023, from: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en. 3.Australia Green Finance State of the Market 2019. Retrieved on November 12 2022, from: https://www.climatebonds.net/files/reports/australia_greenbonds_sotm-2019-update_august_270819_final_v1_.pdf. 4.Climate Solutions Package. Retrieved on March 25, 2023, from: https://www.dcceew.gov.au/sites/default/files/documents/climate-solutions-package.pdf. 5.Disclosure and Engagement Guidance to Accelerate Sustainable Finance for a Circular Economy Compiled. Retrieved on May 20, 2023, from: https://www.meti.go.jp/english/press/2021/0119_004.html. 6.ESG regulation in Singapore – from baby steps to a run. Retrieved on April 3, 2023, from: https://www.engage.hoganlovells.com/knowledgeservices /news/esg-regulation-in-singapore-from-baby-steps-to-a-run. 7.EU labels for benchmarks (climate, ESG) and benchmarks’ ESG disclosures. Retrieved on June 2, 2023, from: https://finance.ec.europa.eu/sustainable-finance/disclosures/eu-labels-benchmarks-climate-esg-and-benchmarks-esg-disclosures_en. 8.European Climate Law. Retrieved on February 20 2023, from: https://climate.ec.europa.eu/eu-action/european-green-deal/european-climate-law. 9.FACT SHEET: The Financial Stability Oversight Council and Progress in Addressing Climate-Related Financial Risk. Retrieved on June 6, 2023, from: https://home.treasury.gov/system/files/261/FSOC_20220728_ Factsheet_Climate-Related_Financial_Risk.pdf. 10.Green Bond Guidelines, Green Loan and Sustainability Linked Loan Guidelines (2020) in Japan published by Ministry of Environment in Japan. Retrieved on April 5, 2023, from: https://www.env.go.jp/policy/guidelines_set_version_with%20cover.pdf. 11.Regulation (EU) 2019/2088 of the European Parliament and of the Council of 27 November 2019 on sustainability-related disclosures in the financial services sector. Retrieved on July 12, 2022, from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R2088.html. 12.Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020 on the establishment of a framework to facilitate sustainable investment, and amending regulation (EU) 2019/2088. Retrieved on July 12,2022, from: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32020R085.html. 13.Regulation (EU) 2022/1288 of the European Parliament and of the Council of 6 April 2022 on supplementing Regulation (EU) 2019/2088 of the European Parliament and of the Council. Retrieved on July 12, 2022, from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022R1288.html. 14.Green economy, security in focus as Indonesia, Australia leaders meet in Sydney. Retrieved on July 15, 2023, from: https://www.reuters.com/world/asia-pacific/green-economy-security-focus-indonesia-australia-leaders-meet-sydney-2023-07-04/. 15.National Climate Task Force – The White House. Retrieved on July 1, 2023, from: https://www.whitehouse.gov/climate/#:~:text=Reducing%20U.S.%20greenhouse%20gas%20emissions,clean%20energy%20to%20disadvantaged%20communities. 16.Three New Green Labels for UK Funds. Retrieved on June 2, 2023, from: https://www.esginvestor.net/three-new-green-labels-for-uk-funds/. 17.Sustainable Finance Disclosure Regulation – Is the financial industry ready for a big one?. Retrieved on July 25, 2022, from: https://www2.deloitte.com/content/dam/Deloitte/pl/Documents/Reports/pl_Deloitte_sustainable_finance_disclosure_regulation.pdf. 18.Report to the House of Commons Standing Committee on Environment and Sustainable Development on the Federal Sustainable Development Act. Retrieved on June 10, 2023, from: https://www.canada.ca/content/dam/eccc/migration/main/dd-sd/ded568bb-a8e1-4bdd-8c22-877d14f1c7b5/envi_report_response_june2017.pdf. 19.Sustainable finance developments in Singapore-making strides with the new and enhanced MAS Grant Schemes. Retrieved on June 2, 2023, from: https://www.pwc.com/sg/en/financial-services/assets/sustainable-finance-developments-in-singapore.pdf. 20.Sustainable Finance Roadmap 2022-2024. Retrieved on March 21, 2023, from: https://www.esma.europa.eu/sites/default/files/library/esma30-379-1051_sustainable_finance_roadmap.pdf. 21.The impacts of sustainable disclosure regulation on the European distribution landscape. Retrieved on June 25, 2022, from: https://www.martincurrie.com/__data/assets/pdf_file/0018/12168/MC-Impact-of-Sustainable-Finance-Disclosure.pdf. 22.UK to enshrine mandatory climate disclosures for largest companies in law. Retrieved on May 25, 2023, from: https://www.gov.uk/government/news/uk-to-enshrine-mandatory-climate-disclosures-for-largest-companies-in-law. 23.What Is the Climate Risk Disclosure Act 2021?. Retrieved on April 9, 2023, from: https://www.diligent.com/insights/esg/climate-risk-disclosure-act/. 24.What is Green Taxonomy and Where Do We Stand in the UK. Retrieved on June 10, 2023, from: https://greenly.earth/en-gb/blog/company-guide/what-is-green-taxonomy-and-where-do-we-stand-in-the-uk. 25.Will ESG Disclosures be Mandated by Law? A Legislative Analysis. Retrieved on March 3, 2023, from: https://www.kslaw.com/news-and-insights/will-esg-disclosures-be-mandated-by-law-a-legislative-analysis/.; G0109961004; https://nccur.lib.nccu.edu.tw//handle/140.119/148529; https://nccur.lib.nccu.edu.tw/bitstream/140.119/148529/1/100401.pdf
-
11Dissertation/ Thesis
المؤلفون: 陳瑩嘉
المساهمون: 都市計劃與開發管理學系
وصف الملف: 99 bytes; text/html
Relation: http://ir.lib.pccu.edu.tw//handle/987654321/52727; http://ir.lib.pccu.edu.tw/bitstream/987654321/52727/2/index.html
-
12Conference
المساهمون: 資管碩一
وصف الملف: 1293729 bytes; application/pdf
Relation: tcse2016論文集, 社團法人台灣軟體工程學會, pp.#39; http://nccur.lib.nccu.edu.tw//handle/140.119/100819; http://nccur.lib.nccu.edu.tw/bitstream/140.119/100819/1/410901.pdf
-
13Conference
المساهمون: 資訊工程系
مصطلحات موضوعية: 機械手臂、RFID、RFID標籤、人物流監控
وصف الملف: 1345495 bytes; application/pdf
Relation: 第十屆資訊科技國際研討會暨第六屆網路智能與應用研討會; http://ir.lib.cyut.edu.tw:8080/handle/310901800/32507; http://ir.lib.cyut.edu.tw:8080/bitstream/310901800/32507/2/ROBOT.pdf
-
14
المؤلفون: 賴玲玲
وصف الملف: 113 bytes; text/html
Relation: 博物館學季刊 36(4),頁51-69; 全文連結 https://reurl.cc/5482py; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124912; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/124912/1/index.html
-
15Dissertation/ Thesis
المؤلفون: 林聖傑, LIN, SHENG-JIE
المساهمون: 大數據科技及管理研究所碩士班, 許明暉, 張詠淳
مصطلحات موضوعية: 基於變換器的雙向編碼器表示技術, 集成學習, 多標籤分類, 新冠肺炎, 化學命名實體識別, BERT, Ensemble Learning, Multi-label Classification, Covid-19, Chemical Named Entity Recognition
وصف الملف: 102 bytes; text/html
Relation: http://libir.tmu.edu.tw/handle/987654321/62081; http://libir.tmu.edu.tw/bitstream/987654321/62081/1/index.html
-
16
المؤلفون: 林育珊, Lin, Yu-San
المساهمون: 蔣旭政, Chiang, Hsu-Cheng
مصطلحات موضوعية: 性別歧視, 新聞娛樂化, 大數據分析, 標籤效應, 職場性別不平等, 職業性別歧視, journalism infotainment, occupational gender discrimination, big data analysis, labeling effect, lang, socio
-
17
المؤلفون: 郭芷瑄, Kuo, Chih-Hsuan
المساهمون: 劉子鍵, Liu, Tzu-Chien
مصطلحات موضوعية: 認知負荷, 冗餘效應, 字幕, 指示性標籤, 先備知識程度, cognitive load, redundancy effect, subtitles, labels, prior knowledge, socio, hisphilso
-
18Dissertation/ Thesis
المؤلفون: 黃偉健, Wong, Wai-Kin
المساهمون: 林日璇, Lin, Jih-Hsuan
وصف الملف: 4695203 bytes; application/pdf
Relation: 中文部分\n李端涵(2021)。《社群媒體時代之商標保護及權利行使——以 Hashtag 為中心》。國立臺灣大學法律學院法律學系碩士論文\n邱瀅穎(2018)。《探究臉書新聞小編的編輯日常:從使用Hashtag的戰略與戰術談起》。政治大學傳播學院傳播碩士學位學程學位論文。\n林日璇(2014)。〈社交媒體 vs. 線上遊戲:台灣成人網路使用、媒介慣習與人際互動〉,《中華傳播學刊》,25:99-132。\n林欣諭(2017)。青年族群使用Instagram之心理需求與持續使用意圖研究。國立臺灣師範大學圖書資訊學研究所碩士論文。\n林雅薰(2017)。社群媒體用戶在Instagram中對Hashtag之使用行為探討。淡江大學大眾傳播學系碩士班碩士論文。\n林家琪(2018)。Instagram主題標籤行銷應用之探討。國立臺灣大學國際企業學研究所碩士論文。\n陶振超(2011)。〈媒介訊息如何獲得注意力:突出或相關?認知取徑媒體研究之觀點〉,《新聞學研究》,107:245-290。\n張卿卿、陶振超(2021)。臺灣傳播調查資料庫第二期第四次(2020 年):新傳播科技與生活延伸【執行報告】。中央研究院臺灣傳播調查資料庫。https://doi.org/10.6141/TW-SRDA-D00216-1。\n顏榮泉、陳明溥(2006)。〈知識擷取與社群參與導向之網路專題學習成效及互動探討〉,《師大學報:教育類》,51(2):67-89。\n\n英文部分\nAllan, S. (2010). The Routledge companion to news and journalism. London, UK: Routledge.\nÁvila, J. A. (2021). #MultimediaResponse: Instagram as a Reading Activity in a University English Class. Journal of Adolescent Adult Literacy, 64(5), 531–541. https://doi.org/10.1002/JAAL.1128\nBeege, M., Nebel, S., Schneider, S., & Rey, G. D. (2021). The effect of signaling in dependence on the extraneous cognitive load in learning environments. Cognitive processing, 22(2), 209–225.\nBisaillon, K., & Crish, L. (2015). #The powerful hashtag. Momentum, 46(2), 55-57.\nBruns, A. & Burgess, J. E. (2012) Researching news discussion on Twitter: New methodologies. Journalism Studies, 13.\nChe, Z., Hew, K. F., & Lo, C. K. (2020). Pre-class learning strategies of a flipped lesson: A randomized comparative study of student achievement and cognitive load. In W. W. K. Ma, K.-W. Tong, & W. B. A. Tso (Eds.), Learning environment and design: Current and future impacts (pp. 141-157). Singapore: Springer.\nCunha, E., Magno, G., Comarela, G., Almeida, V., Gonçalves, M. A., & Benevenuto, F. (2011). Analyzing the dynamic evolution of hashtags on Twitter: A language-based approach. Proceedings of the Workshop on Language in Social Media (LSM 2011), 58–65.\nDee-Lucas, D. & Larkin, J. H. (1988). Novice rules for assessing importance in scientific text. Journal of Memory and Language, 27, 288–308.\n\nFisher, J.T., & Weber, R. (2020). Limited capacity model of motivated mediated message processing (LC4MP). In Van Den Bulck, J., (Ed.) International Encyclopedia of Media Psychology. Hoboken, NJ: Wiley Blackwell.\nFitzsimmons, G., Weal, M. J., & Drieghe, D. (2019). The impact of hyperlinks on reading text. PloS one, 14(2).\nFolk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044.\nGagl. (2016). Blue hypertext is a good design decision: no perceptual disadvantage in reading and successful highlighting of relevant information. PLoS ONE 14(2). https://doi.org/10.1371/journal.pone.0210900\nGlynn, S. M. (1978). Capturing readers’ attention by means of typographical cuing strategies. Educational Technology, 18(11), 7–12. http://www.jstor.org/stable/44418459\nHayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: The Guilford Press.\nKalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351–371.\nKalyuga, S., & Singh, A. M. (2016). Rethinking the boundaries of cognitive load theory in complex learning. Educational Psychology Review, 28(4), 831–852.\nLang, A., Dhillon, K., & Dong, Q. (1995). The effects of emotional arousal and valence on television viewers’ cognitive capacity and memory. Journal of Broadcasting & Electronic Media, 39(3), 313–327.\nLang, A. (2000). The limited capacity model of mediated message processing. Journal of Communication, 50(1), 46–70.\nLang, A. (2006). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. Journal of Communication, 56(1), 57–80.\nLang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: Affect, activation and action. In P. J. Lang, R. F. Simons & M. T. Balaban (Eds.), Attention and orienting: Sensory and motivational processes (pp. 97-136). Hillsdale, NJ: Lawrence Erlbaum.\nLaucuka, A. (2018). Communicative functions of hashtags. Economics and Culture, Sciendo, 15(1), 56–62.\nLiu, R., Xu, X., Yang, H., Li, Z., & Huang, G. (2022). Impacts of cues on learning and attention in immersive 360-degree video: An eye-tracking study. Frontiers in psychology, 12.\nLorch R.F. Jr. (1989). Text signaling devices and their effects on reading and memory processes. Educational Psychology Review, 1, 209–234.\nLorch R.F., Lorch E.P.(1995). Effects of organizational signals on text-processing strategies. J Educ Psychol. ,187, 537–544.\nLorch, R. F., Lorch, E. P., & Klusewitz, M. A. (1995). Effects of typographical cues on reading and recall of text. Contemporary Educational Psychology, 20(1), 51–64.\nLorch, R., Lemarié, J., & Grant, R. (2011). Signaling hierarchical and sequential organization in expository text. Scientific Studies of Reading, 15(3), 267–284.\nMayer, R. E. (2005). Cognitive theory of multimedia learning. The Cambridge handbook of multimedia learning, 41, 31–48.\nMcKelvey, S., & Grady, J. (2017). #JoinTheConversation: the evolving legal landscape of using hashtags in sport,Journal of Legal Aspects of Sport, 27, 90–105.\nMeyer, B. J. F. (1975). The organization of prose and its effects on memory. Amsterdam, the Netherlands: North-Holland.\n\nMulligan, N. W. (1998). The role of attention during encoding in implicit and explicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 27–47. https://doi.org/10.1037/0278-7393.24.1.27\nMurthy, D. (2013). Twitter, social communication in the Twitter age. Polity Press: Cambridge.\nNobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2), 384–413. https://doi.org/10.1037/0278-7393.27.2.384\nNorris, K., Lucas, L., & Prudhoe, C. (2012). Examining critical literacy: Preparing preservice teachers to use critical literacy in the early childhood classroom. Multicultural Education, 19(2), 59–62.\nO’Brien, H.L., Toms, E.G. (2010). The development and evaluation of a survey to measure user engagement. Journal of the American Society of Information Science and Technology, 61(1) , 50-69.\nO’Brien, H.L. , Cairns, P. (2015). An empirical evaluation of the User Engagement Scale (UES) in online news environments. Information Processing & Management, 51(4), 413-427.\nÖhman, A. (1997). As fast as the blink of an eye: Evolutionary preparedness for preattentive processing of threat. In P. J. Lang, R. F. Simons, & M. T. Balaban (Eds.), Attention and orienting: Sensory and motivational processes (pp. 165–184). Lawrence Erlbaum Associates Publishers.\nPaas, F. (1992). Training strategies for attaining transfer of problemsolving skills in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434.\nPashler, H. E., Johnston, J. C., & Ruthruff, E. (2001). Attention and performance. Annual Review of Psychology, 52, 629-651.\n\nPutri, R., Hadi, M. & Mutiarani, M. (2021). The efficacy of Instagram @gurukumrd as the media in improving students reading skills. Journal of Languages and Language Teaching. 9(3), 350-355.\nRemington, R. W., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional capture by abrupt onsets. Perception & Psychophysics, 51(3), 279-290.\nRoberts, A. J. (2017). Tagmarks. California Law Review, 105(3), 599–666. http://www.jstor.org/stable/44630757\nSchneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018). A meta-analysis of how signaling affects learning with media. Educational Research Review, 23, 1–24. https://doi.org/10.1016/j.edurev.2017.11.001\nSeward, Z.M. (2013). The first-ever hashtag, @-reply and retweet, as Twitter users invented them, retrieved from http:// qz.com/135149/the-first-ever-hashtag-reply-and-retweet-as-twitter-users- invented-them/\nShebilske, W.L., & Rotondo, J.A. (1981). Typographical and spatial cues that facilitate learning from textbooks. Visible Language, 15, 41-54.\nSocialmedia Today. (2014, April 24). History of hashtags. Retrieved from http:// socialmediatoday.com/irfan-ahmad/1897096/history-hashtags-infographic\nSweller, J., & Mayer, R. E. (2005). Implications of cognitive load theory for multimedia learning. The Cambridge handbook of multimedia learning, 19-30.\nTariq, U., Sarfaz, S. (2018). Famous social media application and use of hashtags in Pakistani context: A survey. New Media and Mass Communication, 71, 41-47. DOI:10.13140/RG.2.2.20898.35524\nVan den Berg, J.A. (2014. The story of the hashtag(#): A practical theological tracing of the hashtag(#) symbol on Twitter. HTS Teologiese Studies/Theological Studies, 70(1).\n\nWikström, P. (2014). #srynotfunny : Communicative functions of hashtags on Twitter. SKY Journal of Linguistics, 27, 127–152. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-34891\nZak, E. (2014, April 28). How Twitter’s hashtag came to be. Retrieved from http://blogs.wsj. com/digits/2013/10/03/how-twitters-hashtag-came-to-be/\nZappavigna, M. (2012). Discourse of Twitter and Social Media: How We Use Language to Create Affiliation on the Web. London: Bloomsbury\nZappavigna, M. (2015). Searchable talk: The linguistic functions of hashtags in tweets about Schapelle Corby. Global Media Journal, 9(1), 274-291; G0108464013; https://nccur.lib.nccu.edu.tw//handle/140.119/142667; https://nccur.lib.nccu.edu.tw/bitstream/140.119/142667/1/401301.pdf
-
19Dissertation/ Thesis
المؤلفون: 何儀, Saga Ýrr Hjartardóttir, Hjartardóttir, Saga Ýrr
المساهمون: 柯玉佳, Ko, Yu-Chia
مصطلحات موضوعية: 永續, 永續包裝, 綠色品牌, 顏色, 色彩內涵, 生態標籤, Sustainability, Sustainable packaging, Green branding, Colors, Color connotations, Ecolabels
وصف الملف: 1615879 bytes; application/pdf
Relation: Bibliography\n\nAjzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl, & J. Beckmann, Action Control: From Cognition to Behavior (pp. 11-39). Berlin: Springer.\n\nAmsteus, M., Al-Shaaban, S., Wallin, E., & Sjöqvist, S. (2015). Colors in Marketing: A Study of Color Associations and Context (in) Dependence. International Journal of Business and Social Science.\n\nBashir, S., Khwaja, M., Rashid, Y., Turi, J., & Waheed, T. (2020). Green Brand Benefits and Brand Outcomes: The Mediating Role of Green Brand Image. Sage Open,1-11.\n\nBech-Larsen, T. (1996). Danish Consumers` Attitudes to the Functional and Environmental Characteristics of Food Packaging. Journal of Consumer Policy, 339-363.\n\nBellizzi, J. A., Crowley, A. E., & Hasty, R. W. (1983). The effects of color in store design. Journal of Retailing, 21-45.\n\nBjørner, T., Hansen, L., & Russell, C. (2004). Environmental labeling and consumers’ choice—an empirical analysis of the effect of the Nordic Swan. Journal of Environmental Economics and Management, 411-434.\n\nBoesen, S., Bey, N., & Niero, M. (2019). Environmental sustainability of liquid food packaging: Is there a gap between Danish consumers` perception and learnings from life cycle assessment? Journal of Cleaner Production, 1193-1206.\n\nBower, G. H. (1981). Mood and memory. American Psychologist, 129-148.\n\nBoz, Z., Korhonen, V., & Sand, C. (2020). Consumer Considerations for the Implementation of\nSustainable Packaging: A Review. MDPI.\n\nBurck, J., Uhlich, T., Christoph, B., Höhne, N., & Nascimento, L. (2021). Climate Change Performance Index. Bohn: GermanWatch, NewClimate Institute & Climate Action Network.\n\nCarfora, V., Cavallo, C., Caso, D., Del Giudice, T., De Devitiis, B., Viscecchia, R., . . . Cicia, G. (2019). Explaining consumer purchase behavior for organic milk: Including trust and green self- identity within the theory of planned behavior. Food Quality and Preference, 76, 1-9.\n\nCenter for International Environmental Law. (2019). Plastic & Climate: The Hidden Costs of a Plastic Planet. Center for International Environmental Law.\n\nChen, Y.-S. (2010). The Drivers of Green Brand Equity: Green Brand Image, Green Satisfaction, and Green Trust. Journal of Business Ethics, 307-319.\n\nChen, Y.-S., Chang, T.-W., Li, H.-X., & Chen, Y.-R. (2020). The Influence of Green Brand Affect on Green Purchase Intentions: The Mediation Effects of Green Brand Associations and Green Brand Attitude. International Journal of Environmental Research and Public Health.\n\nChu, A., & Rahman, O. (2010). What Color is Sustainable? Examining the Eco-Friendliness of Color. International Foundation of Fashion Technology Institutes. Taipei.\n\nDakofa. (2022). Waste Regulation in Denmark. Retrieved May 2022, from Dakofa: https://dakofa.com/element/test-article-today/\n\nDarnall, N., Ponting, C., & Vasquez-Brust, D. (2012). Why Consumers Buy Green. In Green Growth: Managing the Transition to a Sustainable Economy (pp. 1-25). Springer.\n\nDuan, W., & Sheng, J. (2018). How can environmental knowledge transfer into pro- environmental behavior among Chinese individuals? Environmental pollution perception matters. Journal of Public Health, 289-300.\n\nElliot, A. J., & Niesta, D. (2008). Romantic red: red enhances men’s attraction to women. Journal of Personality & Social Psychology, 1150-1164.\n\nElliot, A. J., Maier, M. A., Moller, A. C., Friedman, R., & Meinhardt, J. (2007). Color and psychological functioning: the effect of red on performance attainment. Journal of Experimental Psychology: General, 154-161.\n\nEnvironment: Ecolabel. (2022). Retrieved May 2022, from European Commission: https://ec.europa.eu/environment/ecolabel/\n\nFantino, E., & Stolarz-Fantino, S. (2012). Associative Learning. Encyclopedia of Human Behavior.\n\nFeber, D., Granskog, A., Lingqvist, O., & Nordigården, D. (2020, October 21). Sustainability in Packaging: Inside the minds of US consumers. Retrieved from McKinsey: https://www.mckinsey.com/industries/paper-forest-products-and-packaging/our- insights/sustainability-in-packaging-inside-the-minds-of-us-consumers\n\nForest Stewardship Council. (2022). What It Means When You See the FSC Labels on a Product. Retrieved May 2022, from Forest Stewardship Council: https://fsc.org/en/fsc- labels#:~:text=What%20does%20the%20label%20mean,the%20finished%20and%20labe led%20product.\n\nFriestad, M., & Wright, P. (1994). The persuasion knowledge model: how people cope with persuasion attempta. Journal of Consumer Research, 1-31.\n\nGrady, C. (2022). 10 Things to Know About Survey Experiments. Retrieved May 2022, from Egap: https://egap.org/resource/10-things-to-know-about-survey- experiments/#:~:text=A%20survey%20experiment%20is%20an,then%20treats%20each %20condition%20differently.\n\nGrubor, A., & Milovanov, O. (2016). Sustinable Branding. ENTRENOVA.\n\nHa, H., & Janda, S. (2012). Predicting consumer intentions to purchase energy-efficient products. Journal of Consumer Marketing, 461-469.\n\nHa, M. T. (2020). Investigating green brand equity and its driving forces. Management Science\nLetters, 2385-2394.\n\nISEAL Alliance. (2015). Sustainability Claims: Good Practice Guide. London: ISEAL Alliance.\n\nLabrecque, L. I., & Milne, G. R. (2012). Exciting Red and Competent Blue: the Importance of Color in Marketing. Journal of the Academy of Marketing Science, 711-727.\n\nLabrecque, L., Patrick, V., & Milne, G. (2013). The Marketers` prismatic palette: A review of color research and future directions. Psychology & Marketing, 187-202.\n\nLim, D., Baek, T., Yoon, S., & Kim, Y. (2020). Colour Effects in Green Advertising. Internation Journal of Consumer Studies.\n\nMagnier, L., & Schoormans, J. (2015). Consumer reactions to sustainable packaging: The interplay of visual appearance, verbal claim and environmental concern. Journal of Environmental Psychology.\n\nMagnier, L., & Schoormans, J. (2017). How Do Packaging Material, Colour and Environmental Claim Influence Package, Brand and Product Evaluations? Packaging Technology and Science.\n\nMize, T. D. (2019). Survey Experiments: Testing Causality in Diverse Samples. Retrieved from Scholarworks: https://scholarworks.iu.edu/dspace/bitstream/handle/2022/22671/2019-01- 18_wim_mize_survey-experiments_slides.pdf?sequence=2&isAllowed=y\n\nMohebbi, B. (2014). The art of packaging: An investigation into the role of color in packaging, marketing, and branding . International Journal of Organizational Leadership, 92-102.\n\nNational Geographic. (2022). Sustainable Shoppin - Which Bag is Best? . Retrieved from National Geographic: https://www.nationalgeographic.org/media/sustainable-shoppingwhich-bag- best/#:~:text=However,%20paper%20is%20very%20resource,additional%20harm%2 0to%20the%20environment.\n\nNeves, J., & Oliveira, T. (2021). Understanding energy-efficient heating appliance behavior change: The moderating impact of the green self-identity. Energy.\n\nNordic Ecolabelling. (2022). The Official Ecolabel of the Nordic Countries. Retrieved May 2022, from Nordic Ecolabelling: https://www.nordic-ecolabel.org/nordic-swan-ecolabel/\n\nObermiller, C., & Spangenberg, E. (1998). Development of a Scale to Measure Consumer Skepticism toward Advertising. Journal of Consumer Psychology, 159-182.\n\nOlesen, S., & Ciacalone, D. (2018). The Influence of Packaging on Consumers` Quality Perception of Carrots. Journal of Sensory Studies.\n\nOtto, S., Strenger, M., Maier-Nöth, A., & Schmid, M. (2021). Food packaging and sustainability. Consumer perception vs. correlated scientific facts: A review. Journal of Cleaner Production.\n\nPancer, E., McShane, L., & Noseworthy, T. (2017). Isolated Environmental Cues and Product Efficacy Penalties: The Color Green and Eco-labels . Journal of Business Ethics, 159-177.\n\nPetljak, K., Naletina, D., & Bilogrević, K. (2019). CONSIDERING ECOLOGICALLY SUSTAINABLE PACKAGING DURING DECISION-MAKING WHILE BUYING FOOD PRODUCTS. Economics of Agriculture, 107-126.\n\nRettie, R., & Brewer, C. (2000). The verbal and cisual components of package design. Journal of Product and Brand Management, 56-71.\n\nRusko, M., & Korauš, A. (2013). Types I, II and III of Ecolabels. Journal of Environmental Protection, Safety, Education and Management.\n\nSamaraweera, M., Sims, J., & Homsey, D. (2021). Will a green color and nature images make consumers pay more for a green product? Journal of Consumer Marketing, 305-312.\n\nSchlack, A., & Albright, T. D. (2007). Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron, 881-890.\n\nShamsuyeva, M., & Endres, H.-J. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part C: Open Access.\n\nSingh, S. (2006). Current Research Development: Impact of color on Marketing. Management Decisions, 783-789.\n\nSouthey, F. (2022, April 19). Denmark `First Country in the World` to Develop its Own Climate Label for Food. Retrieved from FOODnavigator: https://www.foodnavigator.com/Article/2022/04/19/denmark-first-country-in-the- world-to- develop-its-own-climate-label-for- food?fbclid=IwAR3wzrTCeyiYJ010O_RqbjmZyezyMURVZ_xicofomgGYypYa6IezFhU7VPA\n\nSparks, P., & Shepherd, R. (1992). Self-Identity and the Theory of Planned Behavior: Assesing the Role of Identification with "Green Consumerism". Social Psychology Quarterly, 388- 399.\n\nStatista Research Department. (2021, July 5). Recycling rate of municipal waste in Denmark from 2009 to 2017. Retrieved from Statista: https://www.statista.com/statistics/632879/municipal-waste-recycling- denmark/#:~:text=The%20recycling%20rate%20of%20municipal%20waste%20in%20De nmark%20decreased%20from,to%2046.9%20percent%20in%202016.\n\nSu, D., Duong, T., Dinh, M., & Nguyen-Phuoc, D. (2020). Behavior towards shopping at retailers practicing sustainable grocery packaging: The influences of intra-personal and retailer-based contextual factors. Journal of Cleaner Production.\n\nTesta, F., Iraldo, F., Vaccari, A., & Ferrari, E. (2013). Why Eco-labels can be Effective Marketing Tools: Evidence from a Study on Italian Consumers. Business Strategy and the Environment, 252-265.\n\nUnited Nations. (2022, April 4). UN climate report: It’s ‘now or never’ to limit global warming to 1.5 degrees. Retrieved from United Nations: https://news.un.org/en/story/2022/04/1115452\n\nZeltner, P. M. (1975). John Dewey`s Aestheetic Philosophy. John Benjamins Publishing Company.; G0109461012; https://nccur.lib.nccu.edu.tw//handle/140.119/142182; https://nccur.lib.nccu.edu.tw/bitstream/140.119/142182/1/101201.pdf
-
20Dissertation/ Thesis
المؤلفون: 楊孟晴, Yang, Meng-Ching
المساهمون: 陳志銘, Chen, Chih-Ming
مصطلحات موضوعية: 合作閱讀標註系統, 情緒智能, 情緒調節策略, 重新評估認知, 情緒標籤, 社會情緒學習, 情緒療癒閱讀, Collaborative reading annotation system, Emotional intelligence, Emotional regulation strategies, Cognitive reappraisal, Affect labeling, Social-emotional learning, emotional healing reading
وصف الملف: 21060928 bytes; application/pdf
Relation: 一、中文文獻\nGoleman, D.(2016)。EQ:決定一生幸福與成就的永恆力量〔張美惠譯〕。時報文化出版。(原著出版年:2005)\n李佳儒、林清文(2015)。兒童負向情緒調節策略量表編製研究. 教育心理學報, 47(1), 1–21。doi:10.6251/bep.20140903\n鄭聖敏、王振德(2009)。情緒智能量表青少年版指導手冊。心理出版社。\n陳勇汀(2011)。合作式閱讀標註之知識萃取機制研究〔未出版之碩士論文〕。國立政治大學,臺北市。\n\n二、英文文獻\nAtrash, A., Abel, M.-H., & Moulin, C. (2015). Notes and annotations as information resources in a social networking platform. Computers in Human Behavior, 51, 1261–1267. doi:10.1016/j.chb.2014.12.005\nBal P. M., & Veltkamp M. (2013). How does fiction reading influence empathy? an experimental investigation on the role of emotional transportation. PLOS ONE, 8(1), e55341. doi:10.1371/journal.pone.0055341\nBall, E., Franks, H., Jenkins, J., McGrath, M., & Leigh, J. (2009). Annotation is a valuable tool to enhance learning and assessment in student essays. Nurse Education Today, 29(3), 284–291. doi:10.1016/j.nedt.2008.10.005\nBest, J. (2021). To teach and delight: the varieties of learning from fiction. Review of General Psychology, 25(1), 27–43. doi:10.1177/1089268020977173\nBrackett, M. A., Bailey, C. S., Hoffmann, J. D., & Simmons, D. N. (2019). RULER: A theory-driven, systemic approach to social, emotional, and academic Learning. Educational Psychologist, 54(3), 144–161. doi:10.1080/00461520.2019.1614447\nBrosch, T., & Sander, D. (2013). Comment: The appraising brain: towards a neuro-cognitive model of appraisal processes in emotion. Emotion Review, 5(2), 163–168. doi:10.1177/1754073912468298\nBurklund, L., Creswell, J., Irwin, M., & Lieberman, M. (2014). The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Frontiers in Psychology, 5. www.frontiersin.org/article/10.3389/fpsyg.2014.00221\nCarver, C. S., & Scheier, M. F. (2000). Chapter 3—On the structure of behavioral self-regulation. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 41–84). Academic Press. doi:10.1016/B978-012109890-2/50032-9\nChen, C.-M., & Chen, F.-Y. (2014). Enhancing digital reading performance with a collaborative reading annotation system. Computers & Education, 77, 67–81. doi:10.1016/j.compedu.2014.04.010\nConstantinou, E., Van Den Houte, M., Bogaerts, K., Van Diest, I., & Van den Bergh, O. (2014). Can words heal? Using affect labeling to reduce the effects of unpleasant cues on symptom reporting. Frontiers in Psychology, 5. www.frontiersin.org/article/10.3389/fpsyg.2014.00807\nCook, A. L., Fettig, A., Morizio, L. J., Brodsky, L. M., & Gould, K. M. (2018). Culturally relevant dialogic reading curriculum for counselors: Supporting literacy and social-emotional development. Journal of Child and Adolescent Counseling, 4(1), 67–80. doi:10.1080/23727810.2017.1351809\nCook, A. L., Silva, M. R., Hayden, L. A., Brodsky, L., & Codding, R. (2017). Exploring the use of shared reading as a culturally responsive counseling intervention to promote academic and social-emotional development. Journal of Child and Adolescent Counseling, 3(1), 14–29. doi:10.1080/23727810.2017.1280327\nCopersino, M. L. (2017). Cognitive mechanisms and therapeutic targets of addiction. Current Opinion in Behavioral Sciences, 13, 91–98. doi:10.1016/j.cobeha.2016.11.005\nDarling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97–140. doi:10.1080/10888691.2018.1537791\nDowling, K., Simpkin, A. J., & Barry, M. M. (2019). A cluster randomized-controlled trial of the mind out social and emotional learning program for disadvantaged post-primary school students. Journal of Youth and Adolescence, 48(7), 1245–1263. doi:10.1007/s10964-019-00987-3\nDurlak, J. A., Weissberg, R. P., Dymnicki, A. B., Taylor, R. D., & Schellinger, K. B. (2011). The impact of enhancing students’ social and emotional learning: A meta-analysis of school-based universal interventions. Child Development, 82(1), 405–432. doi:10.1111/j.1467-8624.2010.01564.x\nFettig, A., Cook, A. L., Morizio, L., Gould, K., & Brodsky, L. (2018). Using dialogic reading strategies to promote social-emotional skills for young students: An exploratory case study in an after-school program. Journal of Early Childhood Research, 16(4), 436–448. doi:10.1177/1476718X18804848\nFlook, L., Goldberg, S. B., Pinger, L., Bonus, K., & Davidson, R. J. (2013). Mindfulness for teachers: A pilot study to assess effects on stress, burnout, and teaching efficacy. Mind, Brain, and Education, 7(3), 182–195. doi:10.1111/mbe.12026\nFlook, L., Goldberg, S. B., Pinger, L., & Davidson, R. J. (2015). Promoting prosocial behavior and self-regulatory skills in preschool children through a mindfulness-based kindness curriculum. Developmental Psychology, 51(1), 44–51. doi:10.1037/a0038256\nGao, F. (2013). A case study of using a social annotation tool to support collaboratively learning. The Internet and Higher Education, 17, 76–83. doi:10.1016/j.iheduc.2012.11.002\nGasser, L., Dammert, Y., & Murphy, P. K. (2022). How do children socially learn from narrative fiction: Getting the lesson, simulating social worlds, or dialogic inquiry? Educational Psychology Review. doi:10.1007/s10648-022-09667-4\nGross, J. J. (2013). Emotion regulation: Taking stock and moving forward. Emotion, 13(3), 359–365. doi:10.1037/a0032135\nGyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25(3), 400–412. doi:10.1080/02699931.2010.544160\nHofmann, W., Luhmann, M., Fisher, R. R., Vohs, K. D., & Baumeister, R. F. (2014). Yes, but are they happy? Effects of trait self-control on affective well-being and life satisfaction. Journal of Personality, 82(4), 265–277. doi:10.1111/jopy.12050\nHumphrey, N., Curran, A., Morris, E., Farrell, P., & Woods, K. (2007). Emotional intelligence and education: A critical review. Educational Psychology, 27(2), 235–254. doi:10.1080/01443410601066735\nImmordino-Yang, M. H., Darling-Hammond, L., & Krone, C. R. (2019). Nurturing nature: How brain development is inherently social and emotional, and what this means for education. Educational Psychologist, 54(3), 185–204. doi:10.1080/00461520.2019.1633924\nJagers, R. J., Rivas-Drake, D., & Williams, B. (2019). Transformative social and emotional learning (SEL): Toward SEL in service of educational equity and excellence. Educational Psychologist, 54(3), 162–184. doi:10.1080/00461520.2019.1623032\nKircanski, K., Lieberman, M. D., & Craske, M. G. (2012). Feelings into words: Contributions of language to exposure therapy. Psychological Science, 23(10), 1086–1091. doi:10.1177/0956797612443830\nKuyken, W., Weare, K., Ukoumunne, O. C., Vicary, R., Motton, N., Burnett, R., Cullen, C., Hennelly, S., & Huppert, F. (2013). Effectiveness of the mindfulness in schools programme: Non-randomised controlled feasibility study. The British Journal of Psychiatry, 203(2), 126–131. doi:10.1192/bjp.bp.113.126649\nLieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18(5), 421–428. doi:10.1111/j.1467-9280.2007.01916.x\nLucchi Basili, L., & Sacco, P. L. (2021). Fictional narratives as a laboratory for the social cognition of behavioral change: My ajussi. Humanities, 10(4), 120. doi:10.3390/h10040120\nMakany, T., Kemp, J., & Dror, I. E. (2009). Optimising the use of note-taking as an external cognitive aid for increasing learning. British Journal of Educational Technology, 40(4), 619–635. doi:10.1111/j.1467-8535.2008.00906.x\nMar, R. A. (2018). Evaluating whether stories can promote social cognition: Introducing the social processes and content entrained by narrative (SPaCEN) framework. Discourse Processes, 55(5–6), 454–479. doi:10.1080/0163853X.2018.1448209\nMarks, E. H., Walker, R. S. W., Ojalehto, H., Bedard-Gilligan, M. A., & Zoellner, L. A. (2019). Affect labeling to facilitate inhibitory learning: Clinical considerations. Cognitive and Behavioral Practice, 26(1), 201–213. doi:10.1016/j.cbpra.2018.05.001\nMayer, J. D., Caruso, D. R., & Salovey, P. (2016). The ability model of emotional intelligence: principles and updates. Emotion Review, 8(4), 290–300. doi:10.1177/1754073916639667\nMayer, J. D., Roberts, R. D., & Barsade, S. G. (2008). Human abilities: Emotional intelligence. Annual Review of Psychology, 59(1), 507–536. doi:10.1146/annurev.psych.59.103006.093646\nMcKay-Jackson, C. (2014). A critical approach to social emotional learning instruction through community-based service learning. Journal of Transformative Education, 12(3), 292–312. doi:10.1177/1541344614543191\nMcPhail, K. (2004). An emotional response to the state of accounting education: Developing accounting students’ emotional intelligence. Critical Perspectives on Accounting, 15(4), 629–648. doi:10.1016/S1045-2354(03)00050-9\nMillgram, Y., Joormann, J., Huppert, J. D., Lampert, A., & Tamir, M. (2019). Motivations to experience happiness or sadness in depression: Temporal stability and implications for coping with stress. Clinical Psychological Science, 7(1), 143–161. doi:10.1177/2167702618797937\nMillgram, Y., Joormann, J., Huppert, J. D., & Tamir, M. (2015). Sad as a matter of choice? emotion-regulation goals in depression. Psychological Science, 26(8), 1216–1228. doi:10.1177/0956797615583295\nMoors, A., Ellsworth, P. C., Scherer, K. R., & Frijda, N. H. (2013). Appraisal theories of emotion: state of the art and future development. Emotion Review, 5(2), 119–124. doi:10.1177/1754073912468165\nMumper, M. L., & Gerrig, R. J. (2017). Leisure reading and social cognition: A meta-analysis. Psychology of Aesthetics, Creativity, and the Arts, 11(1), 109–120. doi:10.1037/aca0000089\nNathanson, L., Rivers, S. E., Flynn, L. M., & Brackett, M. A. (2016). Creating emotionally intelligent schools with RULER. Emotion Review, 8(4), 305–310. doi:10.1177/1754073916650495\nNg, S. C., & Sun, H. (2021). Promoting social emotional learning through shared book reading: Examining teacher’s strategies and children’s responses in kindergarten classrooms. Early Education and Development, 1–21. doi:10.1080/10409289.2021.1974232\nNiles, A. N., Craske, M. G., Lieberman, M. D., & Hur, C. (2015). Affect labeling enhances exposure effectiveness for public speaking anxiety. Behaviour Research and Therapy, 68, 27–36. doi:10.1016/j.brat.2015.03.004\nNokelainen, P., Kurhila, J., Miettinen, M., Floreen, P., & Tirri, H. (2003). Evaluating the role of a shared document-based annotation tool in learner-centered collaborative learning. Proceedings 3rd IEEE International Conference on Advanced Technologies, 200–203. doi:10.1109/ICALT.2003.1215056\nOatley, K. (2016). Fiction: Simulation of social worlds. Trends in Cognitive Sciences, 20(8), 618–628. doi:10.1016/j.tics.2016.06.002\nO’Dell, K. (2020). Modern marginalia: Using digital annotation in the composition classroom. Computers and Composition, 56, 102570. doi:10.1016/j.compcom.2020.102570\nOsher, D., Cantor, P., Berg, J., Steyer, L., & Rose, T. (2020). Drivers of human development: How relationships and context shape learning and development1. Applied Developmental Science, 24(1), 6–36. doi:10.1080/10888691.2017.1398650\nPiolat, A., Olive, T., & Kellogg, R. T. (2005). Cognitive effort during note taking. Applied Cognitive Psychology, 19(3), 291–312. doi:10.1002/acp.1086\nPolleck, J. N. (2010). Using book clubs to enhance social–emotional and academic learning with urban adolescent females of color. Reading & Writing Quarterly, 27(1–2), 101–128. doi:10.1080/10573569.2011.532717\nRaimundo, R., Marques-Pinto, A., & Lima, M. L. (2013). The effects of a social–emotional learning program on elementary school children: The role of pupils’ characteristics. Psychology in the Schools, 50(2), 165–180. doi:10.1002/pits.21667\nRazon, S., Turner, J., Johnson, T. E., Arsal, G., & Tenenbaum, G. (2012). Effects of a collaborative annotation method on students’ learning and learning-related motivation and affect. Computers in Human Behavior, 28(2), 350–359. doi:10.1016/j.chb.2011.10.004\nRivers, S. E., Brackett, M. A., Reyes, M. R., Mayer, J. D., Caruso, D. R., & Salovey, P. (2012). Measuring emotional intelligence in early adolescence with the MSCEIT-YV: psychometric properties and relationship with academic performance and psychosocial functioning. Journal of Psychoeducational Assessment, 30(4), 344–366. doi:10.1177/0734282912449443\nRobson, D. A., Allen, M. S., & Howard, S. J. (2020). Self-regulation in childhood as a predictor of future outcomes: A meta-analytic review. Psychological Bulletin, 146(4), 324–354. doi:10.1037/bul0000227\nSalovey, P., & Mayer, J. D. (1990). Emotional intelligence. Imagination, Cognition and Personality, 9(3), 185–211. doi:10.2190/DUGG-P24E-52WK-6CDG\nSchreuder, M.-C., & Savitz, R. S. (2020). Exploring adolescent motivation to read with an online YA book club. Literacy Research and Instruction, 59(3), 260–275. doi:10.1080/19388071.2020.1752860\nSklad, M., Diekstra, R., Ritter, M. D., Ben, J., & Gravesteijn, C. (2012). Effectiveness of school-based universal social, emotional, and behavioral programs: Do they enhance students’ development in the area of skill, behavior, and adjustment? Psychology in the Schools, 49(9), 892–909. doi:10.1002/pits.21641\nSnyder, F., Flay, B., Vuchinich, S., Acock, A., Washburn, I., Beets, M., & Li, K.-K. (2009). Impact of a social-emotional and character development program on school-level indicators of academic achievement, absenteeism, and disciplinary outcomes: A matched-pair, cluster-randomized, controlled trial. Journal of Research on Educational Effectiveness, 3(1), 26–55. doi:10.1080/19345740903353436\nSur, B., Cleary, A., Rohrbaugh, M. J., Ferrer, E., & Sbarra, D. A. (2020). Beyond the “self” in self-regulation: Family interaction modulates situational self-control by adolescent drug users. Journal of Family Psychology, 34(3), 322–332. doi:10.1037/fam0000598\nTamir, M. (2016). Why do people regulate their emotions? A taxonomy of motives in emotion regulation. Personality and Social Psychology Review, 20(3), 199–222. doi:10.1177/1088868315586325\nTamir, M., Halperin, E., Porat, R., Bigman, Y. E., & Hasson, Y. (2019). When there’s a will, there’s a way: Disentangling the effects of goals and means in emotion regulation. Journal of Personality and Social Psychology, 116(5), 795–816. doi:10.1037/pspp0000232\nTamir, M., John, O. P., Srivastava, S., & Gross, J. J. (2007). Implicit theories of emotion: Affective and social outcomes across a major life transition. Journal of Personality and Social Psychology, 92(4), 731–744. doi:10.1037/0022-3514.92.4.731\nTamir, M., Mitchell, C., & Gross, J. J. (2008). Hedonic and instrumental motives in anger regulation. Psychological Science, 19(4), 324–328. doi:10.1111/j.1467-9280.2008.02088.x\nTamir, M., Vishkin, A., & Gutentag, T. (2020). Emotion regulation is motivated. Emotion, 20(1), 115–119. doi:10.1037/emo0000635\nTangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72(2), 271–324. doi:10.1111/j.0022-3506.2004.00263.x\nTaylor, R. D., Oberle, E., Durlak, J. A., & Weissberg, R. P. (2017). Promoting positive youth development through school-based social and emotional learning interventions: A meta-analysis of follow-up effects. Child Development, 88(4), 1156–1171. doi:10.1111/cdev.12864\nTijms, J., Stoop, M. A., & Polleck, J. N. (2018). Bibliotherapeutic book club intervention to promote reading skills and social–emotional competencies in low SES community-based high schools: A randomised controlled trial. Journal of Research in Reading, 41(3), 525–545. doi:10.1111/1467-9817.12123\nTorrisi, S. J., Lieberman, M. D., Bookheimer, S. Y., & Altshuler, L. L. (2013). Advancing understanding of affect labeling with dynamic causal modeling. NeuroImage, 82, 481–488. doi:10.1016/j.neuroimage.2013.06.025\nTrach, J., Lee, M., & Hymel, S. (2018). A social-ecological approach to addressing emotional and behavioral problems in schools: Focusing on group processes and social dynamics. Journal of Emotional and Behavioral Disorders, 26(1), 11–20. doi:10.1177/1063426617742346\nVezzali, L., Stathi, S., Giovannini, D., Capozza, D., & Trifiletti, E. (2015). The greatest magic of harry potter: reducing prejudice. Journal of Applied Social Psychology, 45(2), 105–121. doi:10.1111/jasp.12279\nVlasenko, V. V., Rogers, E. G., & Waugh, C. E. (2021). Affect labelling increases the intensity of positive emotions. Cognition and Emotion, 35(7), 1350–1364. doi:10.1080/02699931.2021.1959302\nWebb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138(4), 775–808. doi:10.1037/a0027600\nWhitehurst, G. J., Falco, F. L., Lonigan, C. J., Fischel, J. E., DeBaryshe, B. D., Valdez-Menchaca, M. C., & Caulfield, M. (1988). Accelerating language development through picture book reading. Developmental Psychology, 24(4), 552–559. doi:10.1037/0012-1649.24.4.552\nYang, S. J. H., Chen, I. Y., & Shao, N. W. Y. (2004). Ontological enabled annotations and knowledge management for collaborative learning in a virtual learning community. Journal of Educational Technology and Society, 7(4), 70-81.\nYih, J., Uusberg, A., Taxer, J. L., & Gross, J. J. (2019). Better together: A unified perspective on appraisal and emotion regulation. Cognition and Emotion, 33(1), 41–47. doi:10.1080/02699931.2018.1504749; G0109913010; https://nccur.lib.nccu.edu.tw//handle/140.119/141417; https://nccur.lib.nccu.edu.tw/bitstream/140.119/141417/1/301001.pdf