-
1Academic Journal
المؤلفون: WAN Pengcheng, FENG Weike, TONG Ningning, WEI Wei
المصدر: Xibei Gongye Daxue Xuebao, Vol 41, Iss 3, Pp 587-594 (2023)
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Gong-kuang zidonghua, Vol 48, Iss 4, Pp 105-113 (2022)
مصطلحات موضوعية: 煤自燃温度预测, 气体指标, 深度神经网络, 循环神经网络, sru单元, 粒子群算法, Mining engineering. Metallurgy, TN1-997
-
3Report
Relation: 自动化学报; http://ir.ia.ac.cn/handle/173211/56157
-
4Report
Relation: 自动化学报; http://ir.ia.ac.cn/handle/173211/56425
-
5Report
Relation: 自动化学报; http://ir.ia.ac.cn/handle/173211/56406
-
6Report
Relation: 自动化学报; http://ir.ia.ac.cn/handle/173211/56308
-
7Report
Relation: 自动化学报; http://ir.ia.ac.cn/handle/173211/56239
-
8Report
Relation: 力学学报; http://dspace.imech.ac.cn/handle/311007/87553
-
9Academic Journal
Relation: 自动化仪表,2019,(08); https://dspace.xmu.edu.cn/handle/2288/177086
-
10Academic Journal
Relation: 计算机研究与发展,2019,56(04):854-865; https://dspace.xmu.edu.cn/handle/2288/174995
-
11Report
Relation: 控制与决策; http://ir.sia.cn/handle/173321/25452
الاتاحة: http://ir.sia.cn/handle/173321/25452
-
12Report
مصطلحات موضوعية: 小行星, 循环神经网络卷积神经网络(RNN-CNN), 单应性矩阵, 位姿估计, asteroid, recurrent neural network-convolutional neural network(RNN-CNN), homography matrix, pose estimation
Relation: 传感器与微系统; http://ir.nssc.ac.cn/handle/122/7448
الاتاحة: http://ir.nssc.ac.cn/handle/122/7448
-
13Report
Relation: 机器人; http://ir.sia.cn/handle/173321/24403
الاتاحة: http://ir.sia.cn/handle/173321/24403
-
14Report
Relation: 信息与控制; http://ir.sia.cn/handle/173321/24714
الاتاحة: http://ir.sia.cn/handle/173321/24714
-
15Academic Journal
مصطلحات موضوعية: 古汉语, 断句, 循环神经网络, ancient Chinese, sentence segmentation, recurrent neural network
Relation: 北京大学学报. 自然科学版,2017,(2):255-261; https://dspace.xmu.edu.cn/handle/2288/164718
-
16Academic Journal
مصطلحات موضوعية: 自然语言处理, 中文分词, 门循环单元, 字嵌入, 循环神经网络, natural language processing, Chinese word segmentation, gated recurrent, unit (GRU), character embedding, recurrent neural networks
Relation: 厦门大学学报. 自然科学版,2017,(2):237-243; https://dspace.xmu.edu.cn/handle/2288/164713
-
17Report
المصدر: 杨楠,南琳,张丁一,等. 基于深度学习的图像描述研究[J]. 红外与激光工程,2018,47(2):18-25.
Relation: http://ir.sia.cn/handle/173321/21609
الاتاحة: http://ir.sia.cn/handle/173321/21609
-
18Dissertation/ Thesis
المؤلفون: 蔡樵旭, TSAI, CHIAO-HSU
المساهمون: 公共衛生學系碩士班
مصطلحات موضوعية: 腎病, 空氣污染, 深度學習, 長短期記憶, 循環神經網絡, Renal disease, Air pollution, Deep learning, Long and short-term memory, Recurrent neural network
وصف الملف: 102 bytes; text/html
Relation: http://ir.cmu.edu.tw/ir/handle/310903500/59840; http://ir.cmu.edu.tw/ir/bitstream/310903500/59840/1/index.html
-
19
-
20Dissertation/ Thesis
المؤلفون: 陳思奇, Chen, Si-Qi
المساهمون: 廖四郎, Liao, Szu-Lang
مصطلحات موضوعية: 深度學習, 卷積神經網絡, 循環神經網絡, C-RNN, 匯率, Deep learning, Convolutional neural network, Circular neural network, Exchange rate
وصف الملف: 1180088 bytes; application/pdf
Relation: [1] Chen, K., Zhou, Y., & Dai, F. (2015, October). A LSTM-based method for stock returns prediction: A case study of China stock market. In 2015 IEEE international conference on big data (big data) (pp. 2823-2824). IEEE.\n[2] Dunis, C. L., & Huang, X. (2002). Forecasting and trading currency volatility: An application of recurrent neural regression and model combination. Journal of forecasting, 21(5), 317-354.\n[3] Dunis, C. L., Laws, J., & Sermpinis, G. (2011). Higher order and recurrent neural architectures for trading the EUR/USD exchange rate. Quantitative Finance, 11(4), 615-629.\n[4] Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389-10397.\n[5] Gao, S. E., Lin, B. S., & Wang, C. M. (2018, December). Share price trend prediction using CRNN with LSTM structure. In 2018 International Symposium on Computer, Consumer and Control (IS3C) (pp. 10-13). IEEE.\n[6] Takeuchi, L., & Lee, Y. Y. A. (2013). Applying deep learning to enhance momentum trading strategies in stocks. In Technical Report. Stanford University.\n[7] Tino, P., Schittenkopf, C., & Dorffner, G. (2001). Financial volatility trading using recurrent neural networks. IEEE Transactions on Neural Networks, 12(4), 865-874.\n[8] Yu, S. S., Chu, S. W., Chan, Y. K., & Wang, C. M. (2019). Share Price Trend Prediction Using CRNN with LSTM Structure. Smart Science, 7(3), 189-197.\n[9] 賴嘉蔚,(2018)。卷積神經網絡預測時間序列能力分析。國立政治大學金融學研究所碩士論文,台北市。取自https://hdl.handle.net/11296/y25ux2; G0107352041; https://nccur.lib.nccu.edu.tw//handle/140.119/131512; https://nccur.lib.nccu.edu.tw/bitstream/140.119/131512/1/204101.pdf