-
1Academic Journal
المؤلفون: 江衍銘, 張斐章, Chiang, Yen-Ming, Chang, Fi-John
مصطلحات موضوعية: 氣象雷達, 類神經網路, 定量降雨預報模式, 串列式架構, 多階段洪水預測模式, Meteorological radar, Artificial neural network, Quantitative precipitation forecasting, Recursive structure, Multi-step-ahead flood forecasting
Relation: 台灣水利 55 (2): 25-33; http://ntur.lib.ntu.edu.tw/handle/246246/176321; http://ntur.lib.ntu.edu.tw/bitstream/246246/176321/1/以類神經網路建構定量降雨及多階段.pdf
الاتاحة: http://ntur.lib.ntu.edu.tw/handle/246246/176321
http://ntur.lib.ntu.edu.tw/bitstream/246246/176321/1/以類神經網路建構定量降雨及多階段.pdf -
2Dissertation/ Thesis
المؤلفون: 陳思瑋, Chen, Szu-Wei
المساهمون: 臺灣大學: 土木工程學研究所, 李天浩
مصطلحات موضوعية: 地形, 颱風, 數值天氣預報, 定量降雨預報, Terrain, Typhoon, Numerical Weather Prediction, Quantitative Precipitation Nowcast
وصف الملف: 12507230 bytes; application/pdf
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/255528; http://ntur.lib.ntu.edu.tw/bitstream/246246/255528/1/ntu-100-R98521319-1.pdf
-
3
المؤلفون: 林志鴻, Lin, Chih-Hung
المساهمون: 陳文福, 中興大學, 周天穎, 謝平城
مصطلحات موضوعية: 洪氾區, floodplain, 截彎取直, 非工程方法, 定量降雨預報, 防洪社區, 集水區, 區域排水, SOBEK二維淹水模式, 重現期距, nonstructural measure, quantity rainfall predict, disaster resilient communities, watershed, regional drainage, SOBEK 2-D flooding simulation model, recurrence interval, envir, geo
Relation: http://hdl.handle.net/11455/34836
الاتاحة: http://hdl.handle.net/11455/34836
-
4
المؤلفون: 龔楚, Kung, Chu-Ying
المساهمون: 臺灣大學: 大氣科學研究所, 李清勝, 王重傑
مصطلحات موضوعية: 梅雨鋒面, 氣候概念模式, 定量降雨預報, 強降雨, 綜觀環境, 豪大雨預報檢查表, Mei-yu front, conceptual climatology model, quantitative precipitation forecast, heavy rain, synoptic environment, heavy rainfall checklist, geo, envir
Relation: http://ntur.lib.ntu.edu.tw/bitstream/246246/248772/1/ntu-99-R97229008-1.pdf; http://ntur.lib.ntu.edu.tw/handle/246246/248772
-
5
المؤلفون: 龔楚, Kung, Chu-Ying
المساهمون: 臺灣大學: 大氣科學研究所, 李清勝, 王重傑
مصطلحات موضوعية: 梅雨鋒面, 氣候概念模式, 定量降雨預報, 強降雨, 綜觀環境, 豪大雨預報檢查表, Mei-yu front, conceptual climatology model, quantitative precipitation forecast, heavy rain, synoptic environment, heavy rainfall checklist
وصف الملف: 3458573 bytes; application/pdf
Relation: http://ntur.lib.ntu.edu.tw/handle/246246/248772; http://ntur.lib.ntu.edu.tw/bitstream/246246/248772/1/ntu-99-R97229008-1.pdf
-
6Dissertation/ Thesis
المؤلفون: 林志鴻, Lin, Chih-Hung
المساهمون: 陳文福, 中興大學, 周天穎, 謝平城
مصطلحات موضوعية: 洪氾區, floodplain, 截彎取直, 非工程方法, 定量降雨預報, 防洪社區, 集水區, 區域排水, SOBEK二維淹水模式, 重現期距, nonstructural measure, quantity rainfall predict, disaster resilient communities, watershed, regional drainage, SOBEK 2-D flooding simulation model, recurrence interval
Relation: U0005-2306200919541900; http://hdl.handle.net/11455/34836
الاتاحة: http://hdl.handle.net/11455/34836
-
7
المؤلفون: 林志鴻, Lin, Chih-Hung
المساهمون: 陳文福, 中興大學
مصطلحات موضوعية: 洪氾區, floodplain, 截彎取直, 非工程方法, 定量降雨預報, 防洪社區, 集水區, 區域排水, SOBEK二維淹水模式, 重現期距, nonstructural measure, quantity rainfall predict, disaster resilient communities, watershed, regional drainage, SOBEK 2-D flooding simulation model, recurrence interval, envir, geo
Relation: http://hdl.handle.net/11455/33883
الاتاحة: http://hdl.handle.net/11455/33883
-
8Dissertation/ Thesis
المؤلفون: 林志鴻, Lin, Chih-Hung
المساهمون: 陳文福, 中興大學
مصطلحات موضوعية: 洪氾區, floodplain, 截彎取直, 非工程方法, 定量降雨預報, 防洪社區, 集水區, 區域排水, SOBEK二維淹水模式, 重現期距, nonstructural measure, quantity rainfall predict, disaster resilient communities, watershed, regional drainage, SOBEK 2-D flooding simulation model, recurrence interval
Relation: http://hdl.handle.net/11455/33883
الاتاحة: http://hdl.handle.net/11455/33883
-
9Dissertation/ Thesis
المؤلفون: 江衍銘, Chiang, Yen-Ming
المساهمون: 張斐章, 臺灣大學:生物環境系統工程學研究所
مصطلحات موضوعية: 類神經網路, 多階段洪水預測, 雷達, 數值天氣預報, 序列式傳遞架構, 定量降雨預報, 融合程序, artificial neural network, multi-step-ahead flood forecasting, radar, numerical weather prediction, serial-propagated structure, quantitative precipitation forecasting, merging procedure
وصف الملف: 2064020 bytes; application/pdf
Relation: Abrahart, R.J. and L. See, 2000. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172. Antolik, M.S., 2000. An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. Journal of Hydrology 239: 306-337. Applequist, S., G. Garhs, and R. Pfeffer, 2002. Comparisons of methodologies for probabilistic quantitative precipitation forecasting. Weather and Forecasting 17: 783-799. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology I: Preliminary concepts. Journal of Hydrologic Engineering 5(2): 115-123. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology II: Hydrologic applications. Journal of Hydrologic Engineering 5(2): 124-137. Atiya, A.F., S.M. El-Shoura, S.I. Shaheen, and M.S. El-Sherif, 1999. A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans. on Neural Networks 10(2): 402-409. Atlas, D., R.C. Srivastava, and R.S. Sekhon, 1973. Doppler radar characteristics of precipitation at vertical incidence. Review of Geophysics 11: 1-35. Baltas, E. and M. Mimikou, 1994. Short-term rainfall forecasting using radar data. Water Resources Development 10: 67-78. Baratti, R., B. Cannas, A. Fanni, M. Pintus, G. M. Sechi, and N. Toreno, 2003. River flow forecast for reservoir management through neural networks. Neurocomputing 55(3-4): 421-437. Chang, F.J., L.C. Chang, and H.L. Huang, 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16(13): 2577-2588. Chang, F.J. and Y.C. Chen, 2001. A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. Journal of Hydrology 245: 153-164. Chang, F.J. and Y.C. Chen, 2003. Estuary water-stage forecasting by using Radial Basis Function neural network. Journal of Hydrology 270: 158-166. Chang, F.J., Y.M. Chiang, and L.C. Chang, 2007. Multi-step-ahead flood forecasting by neural networks. Hydrological Sciences Journal 52(1): 114-130. Chang F.J. and Y.T. Chang, 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advanced in Water Resources 29: 1-10. Chang, F.J. and Y.Y. Hwang, 1999. A Self-organization algorithm for real-time flood forecast. Hydrological Processes 13(2): 123-138. Chang L.C. and F.J. Chang, 2001. Intelligent control for modeling of real time reservoir operation. Hydrological Processes 15: 1621-1634. Chang, L.C. and F.J. Chang, 2002. An efficient parallel algorithm for LISSOM neural network. Parallel Computing 28: 1611-1633. Chang, L.C., F.J. Chang, and Y.M. Chiang, 2004. A two-step ahead recurrent neural network for streamflow forecasting. Hydrological Processes 18: 81-92. Chang Y.T., L.C. Chang, and F.J. Chang, 2005. Intelligent control for modeling of real time reservoir operation: Part II ANN with operating curves. Hydrological Processes 19: 1431-1444. Chiang, Y.M., F.J. Chang, B.J.D. Jou, and P.F. Lin, 2007. Dynamic artificial neural network for real-time precipitation estimation and forecasting from radar observations. Journal of Hydrology (in press) Chiang, Y.M., L.C. Chang, and F.J. Chang, 2004. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290: 297-311. Ciach, G.J. and W.F. Krajewski, 1999. Radar-rain gauge comparisons under observational uncertainties. Journal of Applied Meteorology 38: 1519-1525. Coulibaly, P., 2003. Impact of meteorological predictions on real-time spring flow forecasting. Hydrological Processes 17:3791-3801. Coulibaly, P., F. Anctil, and B. Bobee, 2000. Neural network-based long-term hydropower forecasting system. Computer-Aided Civil and Infrastructure Engineering 15: 355-364. Coulibaly, P., F. Anctil, and B. Bobee, 2001. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6(5): 367-376. Dawson, C.W. and R.L. Wilby, 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43(1): 47-67. Dawson, C.W. and R.L. Wilby, 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25(1): 80-108. Droegemeier, K. and Coauthors, 2000. Hydrological aspects of weather prediction and flood warnings. Bulletin of the American Meteorological Society 81: 2665-2680. Duan, Q., S. Sorooshian, and V.K. Gupta, 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4): 1015-1031. Dumais, R.E. and K.C. Young, 1995. Using a self-learning algorithm for single-station quantitative precipitation forecasting in Germany. Weather and Forecasting 10: 105-113. Elman, J.L., 1990. Finding structure in time. Cobnitive Science 14: 179-211. French, M.N., W.F. Krajewski, and R.R. Cuykendall, 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137: 1-31. Ganguly A.R. and R.L. Bras, 2003. Distributed quantitative precipitation forecasting Using information from radar and numerical weather prediction models. Journal of Hydrometeorology 4: 1168-1180. Gao, X.Z., S.J. Ovaska, and A.V. Vasilakos, 2002. Temporal difference method-based multi-step-ahead prediction of long term deep fading in mobile networks. Computer Communications 25: 1477-1486. Germann, U. and I. Zawadzki, 2002. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly Weather Review 130: 2859-2873. Glahn, H.R., and D.L. Lowry, 1972. The use of Model Output Statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology 11: 1203-1211. Grayson, R.B., I.D. Moore, and T.A. McMahon, 1992. Physically based hydrologic modeling-2, is the concept realistic. Water Resources Research 28(10): 2659-2666. Grecu, M. and W.F. Krajewski, 2000. A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. Journal of Hydrology 239: 69-84. Grimes, D.I.F., E. Coppola, M. Verdecchia, and G. Visconti, 2003. A neural network approach to real-time rainfall estimation for Africa using satellite data. Journal of Hydrometeorology 4: 1119-1133. Golding B.W., 2000. Quantitative precipitation forecasting in the UK. Journal of Hydrology 239: 286-305. Govindaraju, R.S. and A.R. Rao, 2000. Artificial Neural Networks in Hydrology. Kluwer Academic Publishers. Hall, T., 1999. Precipitation forecasting using a neural network. Weather and Forecasting 14: 338-345. Ham, F.M. and I. Kostanic, 2001. Principles of neurocomputing for science & engineering. McGraw-Hill. New York. Han, M., J.H. Xi, S.G. Xu, and F.L. Yin, 2004. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing 52: 3409-3416. Haykin, S., 1999. Neural Network: A comprehensive foundation. 2nd ed. Prentice Hall. Hong, Y., Y.M. Chiang, Y. Liu, K.L. Hsu, and S. Sorooshian, 2006. Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. International Journal of Remote Sensing (in press) Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8): 2254-2258. Hsu, K.L., H.V. Gupta, and S. Sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31: 2517-2530. Hsu, K.L., H.V. Gupta, X.G. Gao, and S. Sorooshian, 1999. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research 35(5): 1605-1618. Hsu, K.L., H.V. Gupta, X.G. Gao, S. Sorooshian, and B. Imam, 2002. Self-organizing linear output (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 38(12): 1302, doi:10.1029/ 2001WR000795. Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36: 1176-1190. Huang, S.J. and R.J. Lian, 2000. A combination of fuzzy logic and neural network controller for multiple-input multiple-output systems. International Journal of Systems Science 31: 343-357. Hydrological Engineering Center, 1990. HEC-1 Flood Hydrograph Package. Program Users Manual. U. S. Army Crops of Engineers: Davis, C.A. Imrie, C.E., S. Durucan, and A. Korre, 2000. River flow prediction using artificial neural network: generalisation beyond the calibration range. Journal of Hydrology 233: 138-153. Johnson, J.T., P.L. MacKeen, A. Witt, E.D. Mitchell, G.J. Stumpf, M.D. Eilts, and K.W. Thomas, 1993. The storm cell identificationand tracking algorithm: an enhanced WSR-88D algorithm. Weather and Forecasting 13: 263-276. Jorgensen, D.P. and P.T. Willis, 1982. A Z-R relationship for hurricianes. Journal of Applied Meteorology 21: 356-366. Karunanithi, N., W.J. Grenney, and D. Whitley, 1994. Neural network for river flow prediction. Journal of Computing in Civil Engineering 8: 201-220. Kitzmiller, D.H., 1996. One-hour forecasts of radar-estimated rainfall by an extrapolative-statistical method. TDL Office Note 96-1, National Weather Service, NOAA, US Department of Commerce, 26 pp. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59-69. Koizumi, K., 1999. An objective method to modify numerical model forecasts with newly given weather data using an artificial neural network. Weather and Forecasting 14: 109-118. Kuligowski R.J. and A. Barros, 1998. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and forecasting 13: 1194-1204. Kuligowski R.J. and A. Barros, 2001. Combined IR-microwave satellite retrieval of temperature and dewpoint profiles using artificial neural networks. Journal of Applied Meteorology 40: 2051-2067. Lallahem, S. and J. Mania, 2003. Evaluation and forecasting of daily groundwater outflow in a small chalky watershed, Hydrological Processes 17: 1561-1577. Luk, K.C., J.E. Ball, and A. Sharma, 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227: 56-65. Maier, H.R. and G.C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modeling and Software 15(1): 101-124. Marshall, J.M. and W.M.K. Palmer, 1948. The distribution of raindrops with size. Journal of Applied Meteorology 5: 165-166. McCuen, R.H., 1985. Statistical methods for engineers. Prentice-Hall, Englewood Cliffs, N.J. McCulloch, W.S. and W. Pitts, 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115-133. Mecklenburg, S., J. Joss, and W. Schmid, 2000. Improving the nowcasting of precipitation in an Alpine region with an enhancedradar echo tracking algorithm. Journal of Hydrology 239: 46-68. Miller, L.J., C.G. Mohr, and A. Weinheimer, 1986. The simple rectification in Cartesian space of folded radial velocities from Doppler radar sampling. Journal of Atmospheric and Oceanic Technology 1: 162-174. Mimikou, M.A. and E.A. Baltas, 1996. Flood forecasting based on radar rainfall measurements. Journal of Water Resources Planning and Management 122: 151-156. Minns, A.W. and M.J. Hall, 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3): 399-417. Morin, E., W.F. Krajewski, D.C. Goodrich, X. Gao, and S. Sorooshian, 2003. Estimating rainfall intensities from weather radar data: the scale-dependency problem. Journal of Hydrometeorology 4: 782-797. Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual maodels, part I - a discussion of principles. Journal of Hydrology 10: 282-290. Parlos, A.G., O.T. Rais, and A.F. Atiya, 2000. Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Networks 13: 765-786. Pierce, C.E., C.G. Collier, P.J. Hardaker, and C.M. Haggett, 2000. GANDOLF: A system for generating automated nowcasts of convective precipitation. Meteorological Application 8: 341-360. Powell, M.J.D., 1985. Radial basis functions for multivariable interpolation: A review. IMA Conference on Algorithms for the Approximation of Functions and Data, 143-167, RMCS, Shrivenham, England. Ranjithan, S., J.W. Eheart, and J.H. Garrett Jr, 1993. Neural network-based screening for groundwater reclamation under uncertainty. Water Resources Research 29(3): 563-574. Rogers, R.R. and M.K. Yau, 1989. A short course in cloud physics. Pergamon, 293 pp. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 1986. Learning internal representations by error propagation. Parallel Distributed Processing 1: 318-362. Sajikumar, N. and B.S. Thandaveswara, 1999. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216: 32-55. Salas, J.D., J.W. Delleur, V. Yevjevich and W.L. Lane, 1985. Applied modeling of hydrologic time series. Water Resources Publications. Sauvageot, H., 1992. Radar Meteorology. Artech House, 366 pp. Schenker, B. and M. Agarwal, 1995. Long-range prediction for poorly-known systems. International Journal of Control 62: 227-238. Seibert, J., 2001. On the need for benchmarks in hydrological modeling. Hydrological Processes 15: 1063-1064. Selvaraj, R., P.B. Deshpande, S.S. Tambe, and B.D. Kulkarni, 1995. Neural networks for the identification of MSF desalination plants. Desalination 101: 185-193. Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199: 272-294. Sivakumar, B., 2005. Hydrologic modeling and forecasting: role of thresholds. Environmental Modeling & Software 20(5): 515-519. Sokol Z., 2006. Nowcasting of 1-h precipitation using radar and NWP data. Journal of Hydrology 328: 200-211. Sorooshian, S., K.L. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rain. Bulletin of the American Meteorological Society 81: 2035-2046. Su, H.T., T.J. McAvoy, and P. Werbos, 1992. Long-term prediction of chemical processes using recurrent neural networks: A parallel training approach. Industrial Applications of Chemical Engineering Research 31: 1338-1352. Tokar, A.S. and P.A. Johnson, 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4(3): 232-239. Toth, E., A. Brath, and A. Montanari, 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132-147. Trafalis, T.B., M.B. Richman, A. White, and B. Santosa, 2002. Data mining techniques for improved WSR-88D rainfall estimation. Computers & Industrial Engineering 43: 775-786. Xiao, R. and V. Chandrasekar, 1997. Development of a neural network based algorithm for rainfall estimation from radar observations. IEEE Transactions on Geoscience and Remote Sensing 35: 160-171. Zealand, C.M., D.H. Burn, and S.P. Simonovic, 1999. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/56138; http://ntur.lib.ntu.edu.tw/bitstream/246246/56138/1/ntu-96-D91622006-1.pdf
-
10Dissertation/ Thesis
المؤلفون: 陳美心, Chen, Mei-Hsin
المساهمون: 周仲島, 臺灣大學:大氣科學研究所
مصطلحات موضوعية: 熱帶降雨潛勢, 定量降雨預報, 校驗, 緊鄰雨區誤差分解, Tropical Rainfall Potential, Quantitative Precipitation Forecast, QPESUMS, Validation, Contiguous Rain Area error decomposition
وصف الملف: 2822430 bytes; application/pdf
Relation: 王光華,2001:由衛星資料探討台灣地區降雨雲特性與降雨量關係。大氣科學,29,109-124。 丘台光、陳嘉榮、張保亮、黃葳芃、王溫和、簡國基、鄧仁星,2005:中央氣象局短時天氣分析與預報系統作業概況。天氣分析與預報研討會論文編彙(94),299-304。 陳萬金、蔡明達、劉振榮、張茂興,2005:利用TRMM微波資料進行台灣陸上降雨反演之研究散射指數法。大氣科學,33,277-300。 曾忠一,1998,大氣衛星遙測學,渤海堂文化事業公司,630頁。 黃葳芃、王溫和、丘台光、陳嘉榮,2005:LAPS-MM5於2005年梅雨季及颱風季的預報表現回顧。天氣分析與預報研討會論文編彙(94),216-220。 劉振榮、陳萬金、林唐煌、劉崇治,2004:衛星遙測在台灣地區大氣科學之應用研究回顧。大氣科學,32,247-274。 Bender, M. A., 1997: The Effect of Relative Flow on the Asymmetric Structure in the Interior of Hurricanes. J. Atmos. Sci., 54, 703–724. Chen, Y., and M. K. Yau, 2003: Asymmetric Structures in a Simulated Landfalling Hurricane. J. Atmos. Sci., 60, 2294–2312. Colton, M., and G. Peo, 1994: Shared Processing Program, Defense Meteorological Satellite Program, Special Sensor Microwave/Imager Algorithm Symposium, 8-10 June 1993. Bull. Amer. Meteor. Soc., 75, 1663-1669. Corbosiero, K. L., J. Molinari, and M. L. Black, 2005: The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification. Mon. Wea. Rev., 133, 2905–2921. Corbosiero, K. L., and J. Molinari, 2002: The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Mon. Wea. Rev., 130, 2110–2123. Corbosiero, K. L., and J. Molinari, 2003: The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. J. Atmos. Sci., 60, 366–376. Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrology., 239, 179-202. Ebert, E. E., S. J. Kusselson, and M. Turk, 2004: Validation of NESDIS operational tropical rainfall potential (TRaP) forecasts for Australian tropical cyclones. Aust. Meteor. Mag., 54, 121-135 Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, G. E. Holpin, and A. J. Gruber, 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 77 , 2875-2887. Ferraro, R., P. Pellegrino, M. Turk, W. Chen, S. Qiu, R. Kuligowski, S. Kusselson, A. Irving, S. Kidder, and J. Knaff, 2005: The Tropical Rainfall Potential (TRaP) Technique. Part II: Validation. Wea. Forecasting, 20, 465–475. Grams, J. S., W. A. Gallus Jr., S. E. Koch, L. S. Wharton, A. Loughe, and E. E. Ebert, 2006: The Use of a Modified Ebert–McBride Technique to Evaluate Mesoscale Model QPF as a Function of Convective System Morphology during IHOP 2002. Wea. Forecasting, 21, 288–306. Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 1241–1259. Kidder, S. Q., S. J. Kusselson, J. A. Knaff, R. R. Ferraro, R. J. Kuligowski, and M. Turk, 2005: The Tropical Rainfall Potential (TRaP) Technique. Part I: Description and Examples. Wea. Forecasting, 20, 456–464. Kuo, H. –C., R. T. Williams, and J. –H. Chen, 1999: A Possible Mechanism for the Eye Rotation of Typhoon Herb. J. Atmos. Sci., 56, 1659–1673. McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba., 2002: Evaluation of Biases of Satellite Rainfall Estimation Algorithms over the Continental United States. J. Appl. Meteor., 41, 1065–1080. Montgomery, M. T., and J. Enagonio, 1998: Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. J. Atmos. Sci., 55, 3176–3207. Murphy, A. H., 1995: The Coefficients of Correlation and Determination as Measures of performance in Forecast Verification. Wea. Forecasting, 10, 681–688. Pfost, R. L., 2000: Operational tropical cyclone quantitative precipitation forecasting. Natl. Wea. Dig., 24, 61–66. Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-Wavenumber Structure and Evolution of the Hurricane Inner Core Observed by Airborne Dual-Doppler Radar. Mon. Wea. Rev., 128, 1653–1680. Rotunno, R., and K. A. Emanuel, 1987: An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Nonhydrostatic Axisymmetric Numerical Model. J. Atmos. Sci., 44, 542–561. Smith, E. A., J. E. Lamm, R. Adler, J. Alishouse, K. Aonashi, E. Barrett, P. Bauer, W. Berg, A. Chang, R. Ferraro, J. Ferriday, S. Goodman, N. Grody, C. Kidd, D. Kniveton, C. Kummerow, G. Liu, F. Marzano, A. Mugnai, W. Olson, G. Petty, A. Shibata, R. Spencer, F. Wentz, T. Wilheit, and E. Zipser, 1998: Results of WetNet PIP-2 Project. J. Atmos. Sci., 55, 1483–1536. Spayd, L. E. Jr., and R. A. Scofield, 1984: A tropical cyclone precipitation estimation technique using geostationary satellite data. NOAA Tech. Memo. NESDIS, 5, 36 pp. [Available from the NOAA/NESDIS Office of Research and Applications, RM 701 WWBG, 5200 Auth Rd., Camp Springs, MD 20746-4304.] Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation Retrieval over Land and Ocean with the SSM/I: Identification and Characteristics of the Scattering Signal. J. Atmos. Ocean. Tech., 6, 254–273. Wilheit, T. T., A. T.C. Chang, and L. S. Chiu, 1991: Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions. J. Atmos. Ocean. Tech., 8, 118–136. Xin, L., G. Recuter, and B. Larochelle, 1997: Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmos. Ocean, 35, 513-521.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/50029; http://ntur.lib.ntu.edu.tw/bitstream/246246/50029/1/ntu-95-R93229004-1.pdf