-
1Academic Journal
المؤلفون: LIWei(李蔚)
المصدر: Zhejiang Daxue xuebao. Lixue ban, Vol 37, Iss 6, Pp 633-639 (2010)
مصطلحات موضوعية: 椭圆型变分不等式, 修正代数多重网格法, 并行计算, Electronic computers. Computer science, QA75.5-76.95, Physics, QC1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1008-9497
-
2Academic Journal
المؤلفون: 王鸣
المساهمون: 北京大学数学系
المصدر: 知网
Relation: 数学进展.1994,(03),250+238-250.; 1014892; http://hdl.handle.net/20.500.11897/13116
-
3Report
مصطلحات موضوعية: 计算流体力学, 多重网格方法, 区域分解方法, Euler方程, Computational fluid dynamics, computational fluid mechanics, CFD, materials science computing, mechanical engineering computing, physics computing, charge flow devices, computational aerodynamics
Relation: 力学季刊; 兰黔章,吕晓斌. 全机绕流Euler方程多重网格分区计算方法[J]. 力学季刊,2003,24(2):179-184.; http://dspace.imech.ac.cn/handle/311007/41742
-
4Academic Journal
المؤلفون: 吴东兵
المساهمون: 北京大学
المصدر: CSCD
Relation: 北京大学学报. 自然科学版.1992,28(5),557.; 1381255; http://hdl.handle.net/20.500.11897/430696
-
5Academic Journal
المؤلفون: 应隆安
المساهمون: 北京大学
المصدر: CSCD
Relation: 计算数学.1992,14(1),118.; 1380944; http://hdl.handle.net/20.500.11897/430597
-
6Report
المؤلفون: 盧中仁
المساهمون: 國立臺灣大學機械工程學系暨研究所
جغرافية الموضوع: 計畫年度:90 第二期, 起迄日期:2000-08-01/2001-07-31
وصف الملف: application/pdf; 427165 bytes
Relation: 892212E002109; http://ntur.lib.ntu.edu.tw/handle/246246/15702; http://ntur.lib.ntu.edu.tw/bitstream/246246/15702/1/892212E002109.pdf
-
7Report
المؤلفون: 于欣
مصطلحات موضوعية: 交错网格紧致差分格式, 满足等价性, 压力poisson方程, compact difference scheme, staggered mesh, iteration method, Iterative method, multi-grid method, 紧差分格式, 紧致差分格式, 交错网格, 迭代法, Iteration, 多重网格法
Relation: 计算数学; 于欣. 交错网格紧致差分格式和满足等价性的压力Poisson方程[J]. 计算数学,1997,19(1):83.; http://dspace.imech.ac.cn/handle/311007/35278
-
8Dissertation/ Thesis
المؤلفون: 吳長哲, Wu, Chang-Che, 葉立明, Yeh, Li-Ming
المساهمون: 應用數學系所
مصطلحات موضوعية: 多重網格法, 不可壓縮, 不可相容, 多孔介質, 水流問題, Navier-Stokes 方程式, 局部守恆, 數值方法, 不連續係數, 橢圓方程式, Laplace 方程式, Poisson 方程式, Transport 部分, Diffusive 部分, Prolongation 運算, Restriction 運算, Neumann 邊界條件, Multigrid method, Incompressible, Immiscible, Porous media, Waterflooding problem, Navier-Stokes equations, LCELM, Numerical simulation, Strongly discontinuous coefficients, Elliptic equation, Laplace equation, Poisson Equation, Transport part
-
9
المؤلفون: 黃振禹, Huang, Chen-yu
المساهمون: 淡江大學航空太空工程學系碩士班, 湯敬民, Tang, Jing-min
مصطلحات موضوعية: 無塵室, FDS, 多重網格, 火災, Clean room, Fire, Multi-Grid
وصف الملف: 143 bytes; application/octet-stream
Relation: 1. Jones, W. W., “Modeling smoke movent through compartment structures” ,Proceedings of 12th Joint panel Meeting of the UJNR Panel on Fire research and safety, pp.34-41.1992 2. Dembsey, N., Pagni, P. and Williamson, B., “Compartment Fire Experiment: Comparison with Models”, Fire Safety Journal, Vol.25, pp. 187-228. 1995 3. Chow, W. K., “Prediction of fire environment in apartment using zone models”, Journal of Fire Sciences, Vol. 14,No. 4,pp.263-312. 1996 4. Reneke, P. A. & Peatross, M. J., “A Comparison CFAST Predictions to USCG Real-Scale Fire Tests” , Journal of Fire Protection Engineering, Vol. 11, No.1,pp.43-67. 2001 5. Chow, W. K., “On the ”Cabins” Fire Safety Design Concept in the New Hong Kong Airport Terminal Buildings”, Journal of Fire Sciences, Vol. 15,pp.404-423. 1997 6. Kot, S. C., “Design and Operation of Tunnel Ventilation System under Fire Scenario” , International Journal on Engineering Performance-Based Fire Codes, Vol. 1, No. 3,pp. 168-177. 1999 7. McGrattan, K. B., Baum, H. R. & Rehm, R. G., “Large Eddy Simulations of Smoke Movement” , ASHRAE Transactions: Symposia, Vol. 1,No. 4,pp.426-435. 1999 8. Brooks, W. N., “Predicting the Position of the Smoke Later Interface Height Using NFPA 92B Calculation Methods and a CFD fire Model” ,ASHRAE Transactions: Symposia, Vol. 1,No.3,pp.414-425. 1999 9. Hu, S. C. Wu, Y. Y. and Liu, C. J., “Measurements of Air Flow Characteristics In a Full-Scale clean Room. ” Building Environment, Vol. 31,No. 2. pp.119-128 .1996 10. Davis, W. D. and Notarianni, K. A., 1997 “NASA Fire Dectection Study,” NISTIR 6030 11. Nam, S.,2000 ”Numerical Simulation of Smoke movement In Clean Room Environment” , Fire Safety Journal , Vol. 34 ,pp.169-189 12. NFPA. 1993. “NFPA 92A, Recommended practice for smoke control systems”, Quincy, Mass.: National Fire Protection Association. 13. NFPA. 1991. “NFPA 92B, Guide for smoke management systems in malls, atria, and large areas”, Quincy, Mass.: National Fire Protection Association. 14. 陸忠憲,「潔淨室通風控制與火災煙流」,工業安全科技88年第三十期 15. 黃建平、吳博文,「廠房及密閉環境煙控危害功能性防護系統建立結案報告」,88年六月 16. 邱晨瑋,「十二吋晶圓廠無塵室煙控信能式設計之研究」,97年四月 17. Deardorff, J.W., “ A numerical study of three-dimensional turbulent channel flow at large Reynolds”, J. Fluid Mech.,1970 ,vol. 41,pp.453-480. 18. J. Smagorinsky. General Circulation Experiments with the Primitive Equations. The Basic Experiment. Monthly Weather Review, 91(3):99-164,March 1963 19. H.R. Baum and .B. McGrattan. Simulation of Large Industrial Outdoor Fires. In fire Safety Science- Proceedings of the sixth International Symposium. International Association for fire SafetyScience,2000. 20. NIST, Fire Dynamics Simulation (version4)-Technical Reference Guide,2006. 21. Klote, J.H. and Milke, J.A., “Principle of smoke Management Systems”,ASHRAE and SFPE, 2002.; U0002-2008200903400200; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35593; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/35593/1/
-
10Dissertation/ Thesis
المؤلفون: 林海峰
المساهمون: 北京大学
المصدر: 万方 ; http://d.g.wanfangdata.com.cn/Thesis_Y1608613.aspx
Relation: 北京大学.; 725118; http://hdl.handle.net/20.500.11897/362591
-
11Dissertation/ Thesis
المؤلفون: 李偉任, Lee, Wei-Jen, 吳金典, Wu, Chin-Tien
المساهمون: 應用數學系數學建模與科學計算碩士班
مصطلحات موضوعية: 多重網格, 有限元素法, 奇異解, Multigrid, singular element, singular funciton, FEM, Adaptive mesh-refinement, corner singularities, stress intensity factors, cut-off function
-
12Dissertation/ Thesis
المؤلفون: 邹春桃
المساهمون: 北京大学
المصدر: 万方 ; http://d.g.wanfangdata.com.cn/Thesis_Y1413250.aspx
Relation: 北京大学.; 720671; http://hdl.handle.net/20.500.11897/358226
-
13Dissertation/ Thesis
المؤلفون: 林仟松, Lin, Chian-Song
المساهمون: 陳宜良, Chern, I-Liang, 臺灣大學:數學研究所
مصطلحات موضوعية: 耦合界面問題, 代數多重網格法, 非等向, 不連續係數, 橢圓界面問題, Coupling interface method, Algebraic multigrid method, Anisotropic, Discontinuous coefficients, Elliptic interface problem
وصف الملف: application/pdf; 2103400 bytes
Relation: U0001-1507200818233400; http://ntur.lib.ntu.edu.tw/handle/246246/180559; http://ntur.lib.ntu.edu.tw/bitstream/246246/180559/1/ntu-97-R95221016-1.pdf
-
14Dissertation/ Thesis
المؤلفون: 董憲文, Dong, Xian-Wen
المساهمون: 陳宜良, Chern, I-Liang, 臺灣大學:數學研究所
مصطلحات موضوعية: 靜電勢能, 波瓦松-波茲曼方程式, 藕合界面方法, 阻尼牛頓法, 多重網格法, Poisson-Boltzmann equation, electrostatic potential, coupling interface method, Multigrid method
وصف الملف: application/pdf; 3025270 bytes
Relation: U0001-0907200820485100; http://ntur.lib.ntu.edu.tw/handle/246246/180547; http://ntur.lib.ntu.edu.tw/bitstream/246246/180547/1/ntu-97-R95221025-1.pdf
-
15Dissertation/ Thesis
المؤلفون: 吴舒
المساهمون: 北京大学
المصدر: 万方 ; http://d.g.wanfangdata.com.cn/Thesis_Y1181196.aspx
Relation: 北京大学.; 728185; http://hdl.handle.net/20.500.11897/365614
-
16Dissertation/ Thesis
المؤلفون: 王鑫
المساهمون: 北京大学
المصدر: 万方 ; http://d.g.wanfangdata.com.cn/Thesis_Y1180757.aspx
Relation: 北京大学.; 727536; http://hdl.handle.net/20.500.11897/364976
-
17Dissertation/ Thesis
المؤلفون: 舒宇宸, Shu, Yu-Chen
المساهمون: 陳宜良, 臺灣大學:數學研究所
مصطلحات موضوعية: 橢圓界面問題, 複雜界面, 不連續係數, 奇異項, 多重網格法, elliptic interface problems, complex interface, discontinuous coefficients, singular sources, multigrid method
وصف الملف: 4496818 bytes; application/pdf
Relation: [1] L Adams and TP Chartier, New geometric immersed interface multigrid solvers, SIAM Journal on Scientific Computing 25 (2004), 1516–1533. [2] L Adams and TP Chartier, A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems, SIAM Journal on Scientific Computing 26 (2005), 762–784. [3] L Adams and ZL Li, The immersed interface/multigrid methods for interface problems, SIAM Journal on Scientific Computing 24 (2002), 463–479. [4] JB Bell, CN Dawson, and GR Shubin, An unsplit, higher-order Godunov method for scalar conservation-laws in multiple dimensions, Journal of Computational Physics 74 (1988), 1–24. [5] PA Berthelsen, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions, Journal of Computational Physics 197 (2004), 364–386. [6] ZM Chen and J Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik 79 (1998), 175–202. [7] Peskin CS, The immersed boundary method, Acta Numerica (2002), 1–39. [8] SZ Deng, K Ito, and ZL Li, Three-dimensional elliptic solvers for interface problems and applications, Journal of Computational Physics 184 (2003), 215–243. [9] MA Dumett and JP Keener, An immersed interface method for anisotropic elliptic problems on irregular domains in 2d, Numerical Methods for Partial Differential Equations 21 (2005), 397–420. [10] RP Fedkiw, T Aslam, B Merriman, and S Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics 152 (1999), 457–492. [11] AL Fogelson and JP Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM Journal on Scientific Computing 22 (2001), 1630–1654. [12] F Gibou and R Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the stefan problem, Journal of Computational Physics 202 (2005), 577–601. [13] F Gibou, RP Fedkiw, LT Cheng, and MJ Kang, A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, Journal of Computational Physics 176 (2002), 205–227. [14] J Glimm and OA Mcbryan, A computational model for interfaces, Advances in Applied Mathematics 6 (1985), 422–435. [15] R Glowinski, TW Pan, and J Periaux, A fictitious domain method for dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering 111 (1994), 283–303. [16] M Holst, RE Kozack, F Saied, and S Subramaniam, Multigrid-based Newton iterative method for solving the full nonlinear Poisson-Boltzmann equation, Biophysical Journal 66 (1994), A130–A130. [17] M Holst and F Saied, Multigrid solution of the Poisson-Boltzmann equation, Journal of Computational Chemistry 14 (1993), 105–113. [18] JG Huang and J Zou, A mortar element method for elliptic problems with discontinuous coefficients, IMA Journal of Numerical Analysis 22 (2002), 549–576. [19] K Ito and ZL Li, Solving a nonlinear problem in magneto-rheological fluids using the immersed interface method, Journal of Scientific Computing 19 (2003), 253– 266. [20] K Ito, ZL Li, and Y Kyei, Higher-order, cartesian grid based finite difference schemes for elliptic equations on irregular domains, SIAM Journal on Scientific Computing 27 (2005), 346–367. [21] H. Johansen and P. Colella, A cartesian grid embedded boundary method for Poisson equations on irregular domains, Journal of Computational Physics 147 (1998), 60–85. [22] JD Kandilarov, A rothe-immersed interface method for a class of parabolic interface problems, Numerical Analysis and Its Applications 3401 (2005), 328–336. [23] JD Kandilarov and LG Vulkov, The immersed interface method for a nonlinear chemical diffusion equation with local sites of reactions, Numerical Algorithms 36 (2004), 285–307. [24] MC Lai, ZL Li, and XB Lin, Fast solvers for 3d Poisson equations involving interfaces in a finite or the infinite domain, Journal of Computational and Applied Mathematics 191 (2006), 106–125. [25] L Lee and RJ Leveque, An immersed interface method for incompressible navierstokes equations, SIAM Journal on Scientific Computing 25 (2003), 832–856. [26] RJ Leveque and ZL LI, The immersed interface method for elliptic-equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis 31 (1994), 1019–1044. [27] ZL Li, Immersed interface methods for moving interface problems, Numerical Algorithms 14 (1997), 269–293. [28] ZL Li, A fast iterative algorithm for elliptic interface problems, SIAM Journal on Numerical Analysis 35 (1998), 230–254. [29] ZL Li, The immersed interface method using a finite element formulation, Applied Numerical Mathematics 27 (1998), 253–267. [30] ZL Li, An overview of the immersed interface method and its applications, Taiwanese Journal of Mathematics 7 (2003), 1–49. [31] ZL Li and K Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM Journal on Scientific Computing 23 (2001), 339–361. [32] ZL Li and MC Lai, The immersed interface method for the navier-stokes equations with singular forces, Journal of Computational Physics 171 (2001), 822–842. [33] ZL Li, T Lin, and XH Wu, New cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik 96 (2003), 61–98. [34] ZL Li, DSWang, and J Zou, Theoretical and numerical analysis on a thermo-elastic system with discontinuities, Journal of Computational and Applied Mathematics 92 (1998), 37–58. [35] ZL Li, WC Wang, IL Chern, and MC Lai, New formulations for interface problems in polar coordinates, SIAM Journal on Scientific Computing 25 (2003), 224–245. [36] MN Linnick and HF Fasel, A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, Journal of Computational Physics 204 (2005), 157–192. [37] XD Liu, RP Fedkiw, and MJ Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, Journal of Computational Physics 160 (2000), 151–178. [38] Xu-Dong Liu and Thomas C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Mathematics of Computation 72 (2003), no. 244, 1731–1746. [39] A Mayo, The fast solution of Poissons and the biharmonic-equations on irregular regions, SIAM Journal on Numerical Analysis 21 (1984), 285–299. [40] A Mayo, Fast high-order accurate solution of Laplace equation on irregular regions, SIAM Journal on Scientific and Statistical Computing 6 (1985), 144–157. [41] A Mckenney, L Greengard, and A Mayo, A fast Poisson solver for complex geometries, Journal of Computational Physics 118 (1995), 348–355. [42] CS Peskin, Numerical-analysis of blood-flow in heart, Journal of Computational Physics 25 (1977), 220–252. [43] J. Ruge and K. Stuben, Algebraic multigrid, in multigrid methods, (s.f. mccormick, ed.) 4, SIAM, Philadephia 4 (1987), 73–130. [44] Yu-Chen Shu, Interface problem and algebraic multigrid method, Master’s thesis, Math Department of National Taiwan University, Jan 2003. [45] GR Shubin and JB Bell, An analysis of the grid orientation effect in numericalsimulation of miscible displacement, Computer MethodsiIn Applied Mechanics and Engineering 47 (1984), 47–71. [46] AN Tikhonov and AA Samarskii, Homogeneous difference schemes, USSR Comput. Math. and Math. Phys. 1 (1962), 5–67. [47] AK Tornberg and B Engquist, Regularization techniques for numerical approximation of pdes with singularities, Journal of Scientific Computing 19 (2003), 527–552. [48] AK Tornberg and B Engquist, Numerical approximations of singular source terms in differential equations, Journal of Computational Physics 200 (2004), 462–488. [49] JHWalther and G Morgenthal, An immersed interface method for the vortex-in-cell algorithm, Journal of Turbulence 3 (2002), 1–9. [50] WCWang, A jump condition capturing finite difference scheme for elliptic interface problems, SIAM Journal on Scientific Computing 25 (2004), 1479–1496. [51] A Wiegmann and KP Bube, The explicit-jump immersed interface method: Finite difference methods for pdes with piecewise smooth solutions, SIAM Journal on Numerical Analysis 37 (2000), 827–862. [52] JJ Xu, ZL Li, J Lowengrub, and HK Zhao, A level-set method for interfacial flows with surfactant, Journal of Computational Physics 212 (2005), 590–616. [53] S Xu and ZJ Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM Journal on Scientific Computing 27 (2006), 1948–1980. [54] XZ Yang, B Li, and ZL Li, The immersed interface method for elasticity problems with interfaces, Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathematical Analysis 10 (2003), 783–808. [55] YC Zhou, S Zhao, M Feig, and GW Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, Journal of Computational Physics 213 (2006), 1–30.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/59500; http://ntur.lib.ntu.edu.tw/bitstream/246246/59500/1/ntu-96-D93221003-1.pdf
-
18Dissertation/ Thesis
المؤلفون: 林有慶, Lin, Yu-Chin
المساهمون: 陳宜良, 臺灣大學:數學研究所
مصطلحات موضوعية: 代數多重網格法, Kaczmarz法, algebraic multigrid, AMG, Kaczmarz method, smoothing property
وصف الملف: 315120 bytes; application/pdf
Relation: [1] Ming Jiang. Image Reconstruction, Processing and Analysis. Unpublished [2] Richard L. Burden and J. Douglas Faires, Numerical Analysis,7th Edition, Brooks/Cole Publishing Company, 511 Forest Lodge Road, Pacific Grove, CA 93950, USA, 2001. [3] F. Natterer. The mathematics of computerized tomography. John Wiley & Sons, 2001. [4] C. Popa. Algebraic multigrid for general inconsistent linear systems: Preliminary results. Technical Report 06-2, Lehrstuhl fűr Informatik 10 (Systemsimulation), FAU Erlangen-Nűurnberg, 2006. [5] Popa C., On smoothing property of the SOR relaxation, Studii si Cercetari Matematice, 41(5)(1989), 399-406. [6] Popa C., Extensions of block-projections methods with relaxation parameters to inconsistent and rank-defficient least-squares problems; B I T, 38(1)(1998), 151-176. [7] Kőtler, Harald; Popa, Constantin; Prűmer, Marcus; Rűde, Ulrich: Towards an Algebraic Multigrid Method for Tomographic Image Reconstruction - Improving Convergence of ART . In: Wesseling, P.; Onate, E.; Peiaux, J. (Hrsg.) : ECCOMAS CFD 06. [8]H. Kőstler, C. Popa, and U. Rűde. Algebraic multigrid for general inconsistent linear systems: The correction step. Technical Report 06-4, Lehrstuhl fűr Informatik 10 (Systemsimulation), FAU Erlangen-Nűrnberg, 2006. [9]William L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, Pennsylvania, 2000.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/59492; http://ntur.lib.ntu.edu.tw/bitstream/246246/59492/1/ntu-96-R94221031-1.pdf
-
19Dissertation/ Thesis
المؤلفون: 林煜鈞, Lin, Yu-Chun
المساهمون: 陳宜良, 臺灣大學:數學研究所
مصطلحات موضوعية: 多重網格法, 波瓦松-波茲曼方程, algebraic multigrid method, newton, Poission-Boltzmann equation
وصف الملف: 1913716 bytes; application/pdf
Relation: [ 1] A. Brandt, S.F McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications, D.J. Evans, ed., Cambridge University Press, Cambridge, 1984 [ 2] AN Tikhonov and AA Samarskii, Homogeneous difference schemes, USSR Comput. Math. And Math. Phys. 1 5–67 , 1962 . [ 3] I-Liang Chern, Jian-Guo Liu and Wei-Cheng Wang , Accurate Evaluation of Electrostatics for Macromolecules in Solution ,methods and applications of analysis,Vol.10, No.2, pp.309-308, June 2003, 2005. [ 4] I-Liang Chern and Yu-Chen Shu, A Coupling Interface Method for Elliptic Interface Problems , Journal of Computational Physics, 2007 . [ 5] M Holst and F Saied, Multigrid solution of the Poisson-Boltzmann equation, Journal of Computational Chemistry 14 (1993), 105–113. [ 6] P. Debye-H ckel , Physik. Z , 24 , pp185 ,1923. [ 7] Wolfgang. Hackbusch:Multi-Grid Methods and Applications, Springer-Verlag, 1985 . [ 8] Xu-Dong Liu and Thomas C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Mathematics of Computation 72 (2003), no. 244, 1731–1746 .; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/59431; http://ntur.lib.ntu.edu.tw/bitstream/246246/59431/1/ntu-96-R93221035-1.pdf
-
20
المؤلفون: 徐志忠, Hsu, Chih-Chung
المساهمون: 張榮語, Chang, Rong-Yeu
مصطلحات موضوعية: 代數多重網格法, 可延展性, 共位體心有限體積法, Algebraic multigrid method, scalability, collocated finite volume method
Time: 24
وصف الملف: 155 bytes; text/html
Relation: 1. http://www.llnl.gov/CASC/groups/casc-sag.html 2. http://www.top500.org/lists/2004/11/ 3. W. F. Ames,“Numerical Methods for Partial Differential Equations”, Academic Press, New York, 1977 4. O. C. Zienkiewicz and R. L. Taylor, “The Finite Element Method”, McGRAW-Hill, 1989 5. 楊文賢, “有限體積法在塑膠射出成型三維流動分析之研究”, 博士論文, 清華大學, 2001 6. I. Demirdzic, Z. Lilek and M. Peric, “A Colocated Finite Volume Method for Predicting Flows at All Speeds”, Int. J. Numer. Meth. Fluids, 16, 1029-1050, 1993 7. S. R. Mathur and J. Y. Murthy,“A Pressure-Based Method for Unstructured Meshes”, Numer. Heat Transfer B, 31, 195-215, 1997 8. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods”, SIAM Press, Philadelphia, 1994 9. R. P. Fedorenko, ”A Relaxation Method for Solving Elliptic Difference Equations”, Z Vycisl Mat. Fiz., 1, No. 6, 922-927, 1961 10. A. Brandt, ”Multi-level Adaptive Solutions to Boundary-Value problems”, Mathematics of Computation, 31, 333-390, 1977 11. W. Pieter, ” An introduction to multigrid methods”, J. Wiley, New York, 1992 12. A. Brandt, S. McCormick, and J. W. Ruge,”Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations”, Report, Institute for Computational Studies, Colorado State Univ., 1982 13. J. Ruge, ”Algebraic Multigrid (AMG) for geodetic survey problems”, Prelim. Proc. International MG. Conf. 5th copper Mountain, 1983 14. J. Ruge and K. Stüben, ”Algebraic Multigrid (AMG),In “Multigrid Methods”, SIAM, Frontiers in Applied Mathematics, 5, Philadelphiam, 1986 15. T. Grauschopf, M. Griebel, H. Regler, “Additive multilevel-preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs”, Appl. Numer. Math. , 23, 63-96, 1997 16. W. Z. Huang, “Convergence of algebraic multigrid methods for symmetric positive definite matrices with weak diagonal dominance”, Appl. Math. Comp., 46, 145-164, 1991 17. J. Fuhrmann, “A modular algebraic multilevel method”, Tech. Report Preprint 203, Weierstrass-Institut for Angewandte Analysis and Stochastik, Berlin, 1995 18. F. Kickinger, “Algebraic multi-grid for discrete elliptic second order problems”, Institue for Mathematics, Johannes Kepler University Linz, Austria, 1997 19. K. Stüben, “An Introduction to Algebraic Multigrid”, Appendix in the book "Multigrid" by U. Trottenberg; C.W. Oosterlee; A. Schüller, Academic Press, 413-532, 2001 Also available as GMD Report 70, November 1999. 20. K. Stüben, “A Review of Algebraic Multigrid”, Journal of Computational and Appl. Mathematics, 128, 281-309, 2001. Also available as GMD Report 69, November 1999 21. A. Krechel, K. Stüben,“Parallel Algebraic Multigrid Based on Subdomain Blocking”, Parallel Computing, 27, 1009-1031, 2001. Also available as GMD Report 71, December 1999 22. P. Vanek, J. Mandel and M. Brezina,“Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems”, Computing, 56, 179-19, 1996 23. J. Mandel, M. Brezina, P. Vanek, “Energy optimization of algebraic multigrid Bases”, UCD/CCM Report 125, 1998 24. M. Brezina, A. Cleary, R. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick and J. Ruge, “Algebraic Multigrid Based on Element Interpolation (AMGe)”, SIAM Journal of Scientific Computing, 22, 1570-1592, 2000 25. V. E. Henson, P. S. Vassilevski, “Element-free AMGe: General Algorithms for computing the Interpolation Weights in AMG”, SIAM Journal of Scientific Computing, 23, 629-650, 2001 26. G. R. Bhashyam, “A Powerful Nonlinear Simulation Tool”, ANSYS Mechanical, 2002 27. http://www.fluent.com/software/fluent/fl5bench/otherart/oart1.htm 28. http://www.vinas.com/jp/seihin/sms/SMS_AMG_index.html 29. P. K. Khosla and S. G. Rubin, “A Diagonally Dominant Second-Order Accurate Implicit Scheme”, Computer Fluids, 2, 207-209, 1974 30. C.M. Rhie and W.L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation”, AIAA J., 21, 1525-1532, 1983 31. O. Ubbink and R.I. Issa, “A Method for Capturing Sharp Fluid Interfaces on Arbitary Meshes”, J. Comput. Phsys, 153, 26-50, 1999 32. A. Brandt, “Algebraic multigrid theory: the symmetric case”, Appl. Math. Comp., 19, 23-56, 1986 33. C. Iwamura, F. S. Costa, I. Sbarski, A. Easton, N. Li, “An efficient algebraic multigrid preconditioned conjugate gradient solve”, Comput. Methods Appl. Mech. Engrg., 192, 2299-2318, 2003 34. A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. Mccormick, G. N. Miranda and J. W. Ruge, “Robustness and scalability of algebraic multigrid”, SIAM Journal of Scientific Computing, 21, 1886-1908, 2000; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/32184