يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"原子層化學氣相沉積"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
  3. 3
  4. 4

    المؤلفون: 鍾維修, Chung, Wei-Xiu

    المساهمون: 吳泰伯, Wu, Tai-Bor

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: [ 1 ] 摩爾定律:http://www.intel.com/technology/mooresLaw/index.htm [ 2 ] 黃維邦,”利用Pt(O)電極開發五氧化二鉭薄膜之選擇性化學氣相沉積技術研究”,清華大學碩士論文 (2001) [ 3 ] 張哲豪,”金屬-絕緣體-半導體與金屬-絕緣體-金屬結構介電薄膜原子層化學氣相沉積”,清華大學博士論文 (2007) [ 4 ] R.Chou, ICSTCT 2004 presentation [ 5 ] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Y. Zhiping, P. M. Zeitzoff, and J. C. S. Woo, IEEE Trans. Electron Devices, 46, no. 7, pp. 1537–1544, Jul. 1999. [ 6 ] J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372. [ 7 ] H. Iwai and S.I Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit and System (2002) [ 8 ] G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices ” , IWGI, 14 (2001) [ 9 ] A. Toriumi , K.Kita , K. Tomida , Y. Zhao , J. Widiez , T. Nabatame , H. Ota and M. Hirose , “Material science-based device performance engineering for metal gate high-k CMOS ”, IEEE (2007) [ 10 ] D.H. Triyoso ,R.I. Hegde , J.M. Grant , J.K. Schaeffer ,D.Roan , B.E. White, Jr., and P.J. Tobin , “Evaluation of lanthanum based gate dielectrics deposited by atomic layer deposition” , J. Vac. Sci. Technol. B 23(1) (2005) [ 11 ] Xinye liu , Sasangan Ramanathan , Ana Longdergan , Anuranjan Srivastava , Eddie Lee , Thomas E. Seidel , Jeffrey T. Barton , Dawen Pang , and Roy G. Gordon , “ALD of Hafnium oxide thin films from Tetrakis(ethylmethyLamino)hafnium and ozone” , Journal of The Electrochemical Society, 152 (3) (2005) [ 12 ] John Robertson , “Maximizing performance for higher K gate dielectrics” , Journal of applied physics 104, 124111 (2008) [ 13 ] G.He , M.Liu , L.Q. Zhu , M.Chang , Q.Fang , L.D. Zhang , “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)” , Surface Science 576 (2005) [ 14 ] J. M. J. Lopes, a U. Littmark, M. Roeckerath, St. Lenk, J. Schubert , and S. Mantl , and A. Besmehn , “Effects of annealing on the electrical and interfacial properties of amorphous Lanthanum scandate high-k films prepared by molecular beam deposition” , Journal of applied physics 101, 104109 (2007) [ 15 ] Woong-Sun Kim, Sang-Kyun Park, Dae-Yong Moon, Tae-Sub Kim, Byoung-Woo Kang, Jin-Kyo Seo, Heon-Do Kim and Jong-Wan Park , “Comparison of the Deposition Characteristics and Electrical Properties for La2O3, HfO2 and LHO Films” , Journal of the Korean Physical Society, Vol. 53, No. 6 ( 2008) [ 16 ] Wei He, Daniel S. H. Chan, Sun-Jung Kim, Young-Sun Kim, Sung-Tae Kim, and Byung Jin Cho, “Process and Material Properties of HfLaOx Prepared by Atomic Layer Deposition” , Journal of the Electrochemical Society, 155 (10) (2008) [ 17 ] Chen Yang , Huiqing Fan , Shaojun Qiu , Yingxue Xi , Yunfei Fu , “Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation” , Journal of Non-Crystalline Solids 355 (2009) [ 18 ] Woong-Sun Kim, Tae-Sub Kim, Byung-Woo Kang, Myoung-Gyun Ko, Sang-Kyun Park, and Jong-Wan Park ,” Characteristics of Lanthanum hafnium oxide deposited by electron cyclotron resonance atomic Layer deposition” , J. Vac. Sci. Technol. B 26(4) (2008) [ 19 ] K. Kukli, M. RitaLa, T. Sajavaara, J. Keinonen, and M. Leskelä, “Comparison of hafnium oxide films grown by atomic Layer deposition from iodide and chloride precursors”, Chem. Vap. Deposition 8, 199 (2002) [ 20 ] G. Papoian, J. K. Norskov, R. Hoffmann, “A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorptions on the Pt(111) surface” , J. Am. Chem. Soc. 122, 4129 (2000). [ 21 ] D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, “Atomic Layer deposition of hafnium and zirconium oxides using metal amide precursors” , Chem. Mater. 14, 4350 (2002). [ 22 ] K. Kukli, M. RitaLa, J. Lu, A. Hårsta, and M. Leskelä, ” Properties of HfO2 thin films grown by ALD from hafnium tetrakis(ethylmethyLamide) and water” , J. Electrochem. Soc., 149, F18 (2002). [ 23 ] M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. BolesLawski, “In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic Layer deposition”, Appl. Phys. Letts. 87, 133103 (2005) [ 24 ] J.-H. Lee, J. P. Kim, J.-H. Lee, Y.-S. Kim, H.-S. Jung, N.-I. Lee, H.-K. Kang, K.-P. Suh, M.-M. Jeong, K.-T. Hyun, H.-S. Baik, Y. S. Chung, X. Liu, S. Ramanathan, T. Seidel, J. Winkler, A. Londergan, H. Y. Kim, J. M. Ha, and N. K. Lee, Dig.-Int. Electron Devices Meet. 2002, 221 (2002). [ 25 ] http://www.cns.fas.harvard.edu/research/pdf/ALD_An_%20 Enabler_for_Nanoscience_and_Nanotechnology.pdf [ 26 ] Beom-Yong Kim, Myoung-Gyun Ko, Eun-Joo Lee, Min-Soo Hong, You-Jin Jeon and Jong-Wan Park , “Atomic Layer Deposition of La2O3 Thin Films by Using an Electron Cyclotron Resonance Plasma Source” , Journal of the Korean Physical Society, Vol. 49, No. 3 (2006) [ 27 ] X. P. Wang, H. Y. Yu, M.-F. Li, C. X. Zhu, S. Biesemans, Albert Chin, Y. Y. Sun, Y. P. Feng, Andy Lim, Yee-Chia Yeo, Wei Yip Loh, G. Q. Lo, and Dim-Lee Kwong, “Wide Vfb and Vth Tunability for Metal-Gated MOS Devices With HfLaO Gate Dielectrics” , IEEE electron device letters, vol. 28, no. 4 (2007) [ 28 ] P. Pisecny, K. Husekova, K. Frohlich, L. Harmatha, J. Soltys, D. Machajdik, J.P. Espinos, M. Jergel, J. Jakabovic , “Growth of Lanthanum oxide films for application as a gate dielectric in CMOS technology” , Materials Science in Semiconductor Processing (2004) [ 29 ] 李清楠,”下電極材料對原子層化學氣相沉積Al2O3高介電薄膜應用在奈米尺度世代DRAM影響之研究”,清華大學碩士論文 (2005) [ 30 ] Yuniarto Widjaja, Charles B. Musgrave, Appl. Phys. Letts. 80, 3304 (2002) [31 ] Michel Houssa, “High-k gate dielectrics”, published by Insitute of Physics Publishing (2004) [ 32 ] Suvi Haukka, Eeva-Liisa, and Toumo untoLa, “Analysis of hydroxyl group controlled atomic Layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water”, J. Appl. Phys. 95, 4777 (2004) [ 33 ] H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films”, published by Academic Press, P 103~P.159 [ 34 ] 李雅明,”固態電子學”,全華科技圖書 (1995) [ 35 ] Koji Kita and Akira Toriumi, “Intrinsic Origin of Electric Dipoles Formed at High-k/SiO2 Interface”, IEEE (2009) [ 36 ] Koji Kita and Akira Toriumi, “Origin of electric dipoles formed at high-k/SiO2 interface”, Applied physics letters 94, 132902 (2009); http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35101

  5. 5

    المؤلفون: 侯承浩, Hou, Chen-Hao

    المساهمون: 吳泰伯, Wu, Tai-Bor

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: 1.1 D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399, 758-762 (1999) 1.2 H. S. Momose, M, Ono, T. Yoshitomi, T. Oghmo, S. Nakamma, M. Saito, and H. Iwai, IEDM Tech. Dig., 593-618 (1994) 1.3 Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. –H. Lo, G. A. Sai-Halong, R. C. Viswanathan, H. –J C. Wann, S. J. Wind, and H. –S. Wong, IEDM Tech. Dig., 593-612 (1994) 1.4 K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Heussner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki, IEDM Tech. Dig., 247-250 (2007). 1.5 Front end process in ITRS 2005, (http://www.itrs.net/, 2005). 1.6 R. Chou, INFOS 2005 presentation. 1.7 J. Kwo and M. Hong, J. Crystal Growth 311, 1944 (2009) 1.8 P. D. Ye, J. Vac. Technol. A 26, 697 (2008). 1.9 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001) 1.10 G. D. Wilk and R. M. Wallace, in H. R Huff (Ed.), and D. C. Gilmer (Ed.), High Dielectric Constant Materials-VLSI MOSFET Applications, Springer (2005) p. 261 1.11 邱彥凱,清華大學博士論文(2007) 1.12 張哲豪,清華大學博士論文 (2006) 1.13 D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002). 1.14 J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372. 1.15 K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006). 1.16 Y. Watanabe, H. Ota, S. Migit, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, T. Nabatame and A. Toriumi, ECS. Trans. 11, 35 (2007) 1.17 Available on line: http://www.cambridgenanotech.com/index.php 1.18 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Lett. 25, 408 (2004). 1.19 Available online: http://www.picosun.com 1.20 Available on line: http://www.cambridgenanotech.com/index.php 2.1 Available on line: http://www.ulvac.com/thermal/mila.asp 2.2 S. Oswald, M. Zier, R. Reiche and K. Wetzig, Surf. Interface Anal., 38, 590 (2006). 2.3 S. Oswald, R. Reiche, M. Zier, S. Baunack, K. Wetzig, Appl. Surf. Sci., 252, 3 (2005). 2.4 M. Zier, S. Oswald , R. Reiche, and K. Wetzig, Microchim Acta, 156, 99 (2007). 2.5 M. Kozłowska, R. Reiche, S. Oswald, H. Vinzelberg, R. Hubner and K. Wetzig, Surf. Interface Anal., 36, 1600 (2004). 2.6 See on line: http://www.ma-tek.com/ 2.7 See on line: http://www.rigaku.com/apps/inplane.html 2.8 See on line: http://www.rigaku.com/xrd/ttrax.html 2.9 J. Hauser, CVC © 1996 NCSU software, Department Elect. Comput. Eng. North Carolina State University, Raleigh, NC. 2.10 F. Stren and W. E. Howard, Phys. Rev., 163, 816 (1967) 2.11 A. Haque and M. Z. Kauser, IEEE Trans. Electron Devices, 49, 1580 (2002). 2.12 S. Mudanai, L. F. Register, A. F. Tasch, and S. K. Banerjee, IEEE Electron Diveces, 22, 145 (2001). 2.13 F. Li, S. Mudanai, L. F. Register, and S. K. Banerjee, IEEE Electron Diveces, 52, 1148 (2005). 3.1 Timp G et al 1999 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p55 3.2 Chau R, Kavalieros J, Roberds B, Schenker R, Lionberger D, Barlage D, Doyle B, Arghavani R, Murthy A and Dewey G 2000 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p45 3.3 Depas M, Vermeire B, Mertens P W, Van Meirhaeghe R L and Heyns M M 1995 Solid-State Electron. 38 1465 3.4 Lo S H, Buchanan D A, Taur Y and Wang W, IEEE Electron Dev. Lett. 18 209 (1997) 3.5 Z. M. Rittersma, J. J. G. P. Loo, Y. V. Ponomarev, M. A. Verheijen, M. Kaiser, F. Roozeboom, S. Van Elshocht, and M. Caymax, Journal of the Electrochemical Society 151, G870 (2004). 3.6 T. Suntola and J. Antson, U.S. Patent. No. 4,058,430 (1977) 3.7 T. Suntola and J. Antson, Finland Patent No. 52,359 (1977) 3.8 T. Suntola, Mater. Sci. Rep., 4, 261 (1989) 3.9 Riikka L. Puurunen, J. Appl. Phys. 97, 121301 (2005) 3.10 The international Technology Roadmap for semiconductors, 2007 edition 3.11 H. Bender, T. Conard, H. Nohira, J. Petry, O. Richard, C. Zhao, B. Brijs, W. Besling, C. Detavernier, W. Vandervorst, M. Caymax, S. De Gendt, J. Chen, J. Kluth, W. Tsai, and J. W. H. Maes, Proceedings of the IWGI, Tokyo, 2001, p. 86. 3.12 M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, and T. Sorsch, T. Conard, B. Brijs, and W. Vandervorst, D. Muller, M. Bude, and J. Grazul, J. Appl. Phys. 92, 7168 (2005) 3.13 S. Ramanathan, G. D. Wilk, D. A. Muller, C. M. Park, and P. C. McIntyre, Appl. Phys. Lett. 79, 2621 (2001). 3.14 S. Ramanathan, P. C. McIntyre, J. Luning, P. Pianetta, and D. A. Muller, Philos. Mag. Lett. 82, 519 (2002). 3.15 F. Tardif, A. Chabli, A. Danel, N. Rochat, and M. Veillerot, J. Electrochem. Soc., 150, G333 (2003). 3.16 M. Specht, M. Stadele, F. Hofmann, in: Proceedings of the 32th European Solid-State Device Research Conference, Firenze, Italy, 2002, pp. 599-602 3.17 L. G. Gosset, J. F. Damlencourt, O. Renault, D. Rouchon, P. Holliger, A. Ermolieff, I. Trimaille, J. J. Ganem, F. Martin, and M. N. Semeria, J. Non-cryst. Solids, 303, 17 (2002) 3.18 Y. Chang, F. Ducroquet, E. Gautier, O. Renault, J. Legrand, J.F. Damlencourt, and F. Martin, Microelectronic Engineering, 72, 326 (2004) 3.19 H. Kang, S. Kim; J. Choi; J.Kim; H. Jeon; C. Bae, Electrochemical and Solid-State Letters, 9, G211, (2006) 3.20 J.R. Hauser, K. Ahmed, Characterization and Metrology for ULSI Technology, p. 235, (1998) 3.21 M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005). 3.22 O. Renault, D. Samour, J.-F. Damlencourt, D. Blin, F. Martin, S. Marthon, N. T. Barrett, P. Besson, Appl. Phys. Lett. 81, 3627 (2002). 3.23 J.-F. Damlencourt, O. Renault, D. Samour, A.-M. Papon, C. Leroux, X. Garros, F. Martin, S. Marthon, and M.-N. Séméria, Solid-State Electron. 47, 1613 (2003). 3.24 E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055-1133, July/Aug. (1967) 3.25 E. H. Nicollian and J. R. Brews: MOS Physics and Technology (Wiley, New York, 1981) 3.26 T. P. Ma and R. C. Barker, Solid-State Electron. 17, 913, (1974) 3.27 S. Kar and W. E. Dahlke, Solid-State Electron. 15, 221, (1972) 3.28 Eric M. Vogel, W. Kirklen Henson, Curt A. Richter, and John S. Suehle, IEEE Trans. Electron Devices, 47, 3, 601 (2000) 3.29 K. T. Queeney, H. Fukidome, E. E. Chaban, and Y. J. Chabal, J. Phys.Chem. B 105, 3903 (2001). 3.30 C.H. Choi, T.S. Jeon, R. Clark, D.L. Kwong, Electron Device Letters, 24, 215 (2003) 3.31 C.H. Choi, S.J. Rhee, T.S. Jeon, N. Lu, J.H. Sim, R. Clark, M. Niwa, D.L. Kwong, International Electron Devices Meeting, 857 (2002) 3.32 H.-J. Li, T. Pompl, C. Young, T. Rhoad, J. Saulters, J. Peterson, M. Gardner, G.A. Brown, G. Bersuker, P.M. Zeitzoff, J. Price, P.Y. Hung, A. Diebold, H.R. Huff, 62nd Device Research Conference, 1, 15 (2004) 3.33 Koike M., Ino T., Kamimuta Y., Koyama M., Kamata Y., Suzuki M., Mitani Y., Nishiyama A., Tsunashima Y., International Electron Devices Meeting, 4.7.1 (2003) 3.34 M. Koyama, M., Kaneko, A.; Ino, T., Koike, M., Kamata, Y., Iijima, R., Kamimuta, Y., Takashima, A., Suzuki, M., Hongo, C., Inumiya, S., Takayanagi, M., Nishiyama, A. International Electron Devices Meeting. Technical Digest 849, (2002) 3.35 J. R. Shallenberger, D. A. Cole, and S. W. Novak, J. Vac. Sci. Technol. A 17, 1086 (1999). 3.36 P. Cova, S. Poulin, O. Grenier, and R. A. Masut, J. Appl. Phys. 97, 73518 (2005). 3.37 H. Jin, S. K. Oh and H. J. Kang, Surf. Interface Anal., 38, 1564 (2006) 3.38 Y. Chung, JC. Lee, HJ. Shin, Appl. Phys. Lett. 86, 022901 (2005) 4.1 B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000). 4.2 H. Kim, P. C. Mclntyre, and K. C. Saraswat, Appl. Phys. Lett. 82, 106 (2003). 4.3 M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. J. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 472 (2002). 4.4 J. Park, M. Cho, S. K. Kim, T. J. Park, S. W. Lee, S. H. Hong, and C. S. Hwang, Appl. Phys. Lett. 86, 112907 (2005). 4.5 K. J. Hubbard and D. G. Schlom, J. Matter. Res. 11, 2757 (1996). 4.6 A. Toriumi, T. Nabatame, and T. Horikawa, Mat. Res. Soc. Symp. Proc., 786, 135 (2003). 4.7 J. Aarik, A. Aidla, H. Mandar, V. Sammelselg, and T. Uustare, J. Cryst. Growth 220, 105 (2000). 4.8 J. Aarik, A. Aidla, H. Mandar, T. Uustare, K. Kukli, and M. Schuisky, Appl. Surf. Sci. 173, 15 (2001). 4.9 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000). 4.10 K. Torii, T. Kawahara, K. Shiraishi, Electron. Device Letts., 26, 722-4, (2005) 4.11 C. H. Hou and T. B. Wu, Unpublished results 4.12 M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk, Mun-Yee Ho, E. B. O. da Rosa, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. 83, 740 (2003). 4.13 K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006). 4.14 Y. Watanabe, H. Ota, S. Migit, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, T. Nabatame and A. Toriumi, ECS. Trans. 11, 35 (2007) 4.15 J. R. Hauser, K. Ahmed, Characterization and Metrology for ULSI Technology, p.235 (1998) 5.1 Moore G E 1965 Electronics 38 114-117 5.2 See Moore’s law at http://www.intel.com/technology/mooreslaw/index.htm 5.3 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Letters, 25, 408 (2004) 5.4 S.E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, M. Zhiyong, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Device Letters, 25, 191 (2004) 5.5 Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, and T. J. Phillips, IEDM Technical Digest, 751, (1997) 5.6 R. Chou, INFOS 2005 presentation 5.7 M. Gutowski, J. E. Jaffe, C.-L. Liu, and M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Appl. Phys. Lett. 80, 1897 (2002). 5.8 Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006). 5.9 M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005) 5.10 M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 68, 1099 (1996). 5.11 P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, IEEE Electron Device Lett. 24, 209 (2003) 5.12 M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett. 89, 012903 (2006). 5.13 C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989). 5.14 T. Tiedje, K. M. Colbow, D. Rogers, Z. Fu, and W. Eberhardt, J. Vac. Sci. Technol. B 7, 837 (1989). 5.15 C. J. Sandroff, M. S. Hegde, and C. C. Chang, J. Vac. Sci. Technol. B 7, 841 (1989). 5.16 A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, Appl. Phys. Lett. 54, 332 (1989). 5.17 R. Fischer, T. Henderson, J. Klem, W. T. Masselink, W. Kopp, H. Morkoç, and C. W. Litton, Electron. Lett. 20, 945 (1984). 5.18 G. M. Metze, H. K. Choi, and B.-Y. Tsaur, Appl. Phys. Lett. 45, 1107 (1984). 5.19 Parvez N. Uppal and Herbert Kroemer, J. Appl. Phys. 58, 2195 (1985). 5.20 T. Nonaka, M. Akiyama, Y. Kawarada, and K. Kaminski, Jpn. J. Appl. Phys. 23, L919 (1984). 5.21 R. Fischer, N. Chand, W. Kopp, H. Morkoç, L. P. Erickson, and R. Youngman, Appl. Phys. Lett. 47, 397 (1985). 5.22 R. Fischer, N. Chand, W. Kopp, C. K. Peng, H. Morkoç, K. R. Gleason, and D. Scheitlin, IEEE Trans. Electron Devices ED-33, 206 (1986). 5.23 M. W. Hong, J. R. Kwo, P. C. Tsai, Y. C. Chang, M. L. Huang, C. P. Chen, T. D. Lin, Jpn. J. Appl. Phys.46 (Part 1 Issue 5B), 3167 (2007). 5.24 A. Kapila, V. Malhotra, Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings, p 275-82, (1996) 5.25 W. Tsai, L.-Å Ragnarsson, L. Pantisano, P.J. Chen, B. Onsia, T. Schram, E. Cartier, A. Kerber, E. Young, M. Caymax, S. De Gendt, and M. Heyns, Dig.-Int. Electron Devices Meet. 2003, 311 (2003). 5.26 H. Hasegawa, M. Akazawa, H. Ishii, and K.-I. Matsuzaki, J. Vac. Sci. Technol. B 7, 870 (1989). 5.27 H. S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, Appl. Phys. Lett. 88, 252906 (2006). 5.28 Z. H. Lu, D. Landheer, J.-M. Baribeau, L. J. Huang, and W. W. Lau, Appl. Phys. Lett. 64, 1702 (1994). 5.29 S. Koveshnikov, W. Tsai, I. Ok and J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006). 5.30 H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, Appl. Phys. Lett. 89, 222903 (2006). 5.31 I. Ok, H.-S. Kim, M. Zhang, C.-Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, IEEE Electron Device Lett. 27, 145 (2006). 5.32 M. Akazawa, H. Ishii, H. Hasegawa, Jap. J. Appl. Phys. B 30, 3744 (1991). 5.33 H. Hasegawa and H. Ohno, J. Vac. Sci. Technol. B 4, 1130 (1986). 5.34 T. Ashley, A. R. Barnes, L. Buckle, S. Datta, A. B. Dean, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, and R. Jefferies, 2004 7th International Conference on Solid-State and Integrated Circuits Technology Proceedings, 3, 2253 (2005) 5.35 N. Yokoi, H. Andoh, and M. Takai, Appl. Phys. Lett., 64, 2578 (1994). 5.36 M. G. Kang, H. H. Park, and H. Kim, Appl. Phys. Lett., 80, 2499 (2002). 5.37 C. L. Chen, L. J. Mahoney, M. J. Manfra, F. W. Smith, D. H. Temme, and A. R. Calawa, IEEE Electron Device Lett., 13, 335 (1992). 5.38 M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science, 283, 1897 (1999). 5.39 H. Simchia, Sh. Bahreani, and M. H. Saani, Eur. Phys. J.: Appl. Phys., 33, 1 (2006). 5.40 P. John, T. Miller, and T. C. Chiang, Phys. Rev. B, 39, 1730 (1989). 5.41 M. O. Schweitzer, F. M. Leibsle, T. S. Jones, C. F. McConville, and N. V. Richardson, Semicond. Sci. Technol., 8, S342 (1993). 5.42 R. Tessler, R. Akhvlediani, R. Edrei, O. Klin, S. Greenberg, E. Weiss, C. Saguy, and A. Hoffman, Appl. Phys. Lett., 88, 031918 (2006). 5.43 A. Rastogi and K. V. Reddy, Thin Solid Films, 270, 616 (1995) 5.44 C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T.-D. Lin, T. B. Wu, J. Kuo, and M. Hong, Appl. Phys. Lett., 89, 242911 (2006). 5.45 Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, Appl. Phys. Lett., 92, 072901 (2008). 5.46 C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, et al.Appl. Phys. Lett., 92, 071901 (2008). 5.47 H. Simchi, Sh. Bahreani, and M. H. Saani, Eur. Phys. J. Appl. Phys., 33, 1 (2006). 5.48 D. G. Hendershot, J. C. Pazik, and A. D. Berry, Chem. Mater., 4, 833 (1992). 5.49 Y. Bu, M. C. Lin, A. D. Berry, and D. G. Hendershot, J. Vac. Sci. Technol. A, 13, 230 (1995). 5.50 A. Etchells and C. W. Fischer, J. Appl. Phys., 47, 4605 (1976). 5.51 C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, et al.Appl. Phys. Lett., 91, 163512 (2007). 5.52 J. C. Kim, IEEE Trans. Parts, Hybrids, Packag., 10, 200 (1974). 5.53 R. Y. Hung and E. T. Yon, J. Appl. Phys., 41, 2185 (1970). 5.54 H. D. Barber and E. L. Heasell, J. Appl. Phys., 36, 176 (1965).; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/33243

  6. 6

    المؤلفون: 林民和, Lin, Ming-Ho

    المساهمون: 吳泰伯, 甘炯耀, Wu, Tai-Bor, Gan, Jon-Yiew

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: 1. Chau R, Kavalieros J, Roberds B, Schenker R, Lionberger D, Barlage D, Doyle B, Arghavani R, Murthy A and Dewey G, “30nm Physical Gate Length CMOS Transistors with 1.0 ps n-MOS and 1.7 ps p-MOS Gate Delays”, INTERNATIONAL ELECTRON DEVICES MEETING, 2000 (Piscataway: IEEE) p45 2. Moore G E 1965 Electronics 38 114-117 3. N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, “Void nucleation in thin HfO layer on Si”, J. Appl. Phys. Vol. 42 (2003) pp. L 138–L 140 4. K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact With silicon”, J. Mater. Res. 11, 2757 (1996) 5. Riikka L. Puurunen and W. Vandervorst,” Island growth as a growth mode in atomic layer deposition: A phenomenological model”, J. Appl. Phys. 96, 7686 (2004) 6. M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, W. H. Lin, A. See, S. K. Lahiri and M. E. Loomans,” Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition”, Appl. Phys. Lett., 81, 4218 (2002) 7. http://www.ntrc.itri.org.tw/dict/content.jsp?newsid=476 8. R. Chou, Intel, ICSTCT 2004 presentation 9. B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Y. Zhiping, P. M. Zeitzoff, and J. C. S. Woo, “The Impact of High-Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s”, IEEE Trans. Electron Devices, 46, no. 7, pp. 1537–1544, Jul. 1999. 10. J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372. 11. 邱彥凱,”原子層化學氣相沉積之高介電薄膜於金屬-氧化物-金屬與金屬-絕緣層-金屬結構下之應用”,清華大學博士論文(2007) 12. 簡銘萱,”探討利用原子層化學氣相沉積法鍍製Al2O3、HfO2之高介電結構薄膜,應用在奈米尺度世代DRAM影響之電性研究”,清華大學碩士論文(2007) 13. 李清楠, “下電極材料對原子層化學氣相沉積Al2O3高介電薄膜櫻用在奈米尺度世代DRAM影響之研究”, 清華大學碩士論文(2005) 14. Yuniarto Widjaja, Charles B. Musgrave, “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 (2002) 15. 李雅明,”固態電子學”,全華科技圖書 (1995) 16. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Introducing atomic layer epitaxy for the deposition of optical thin films ”, Thin Solid Film 286, 54 (1996) 17. R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films ”, Thin Solid Films 368, 1 (2000) 18. Suvi Haukka, Eeva-Liisa, and Toumo untola, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water”, J. Appl. Phys. 95, 4777 (2004) 19. H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films ”, published by Academic Press, P. 103~P.159 20. Michel Houssa,”High-k Gate Dieletrics”,published by Institude of Physics Publishing (2004) 21. J. Moulson and J. M. Herbet, “Electronceramics-materials, Properties, Applications” published by Capman and Hall (1990) 22. L. L. Hencb and J. K. West, “Principles of Electronic Ceramic”, published by John Wiley and Sons, Inc. (1990) 23. M. W. Barsoum, “Fundamentals of Ceramics” published by McGraw-Hill, Inc. (1997) 24. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” , published by Johm Wiley Sons. (1991) 25. Sang Bom Kang, Yun Sook Chae, Mee Young Yoon, Hyeun Seog Leem, Chang Soo Park, Sang In Lee, and Moon Yong Lee, “Low temperature processing of conformal TiN by ACVD (Advanced chemical vapor deposition) for Multilevel Metallization in high density ULSI devices”, IEEE, IITC 102-104 (1998) 26. http://proj.moeaidb.gov.tw/eta/Handout/2004071310.pdf 27. J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kesselsa, “Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor”, Journal of The Electrochemical Society Vol 154 , 7, G165-G169 (2007) 28. http://che.cycu.edu.tw/outstanding/material_lab/material/mechanism.pdf 29. Nicollian, E. H., and J. R. Brews.,“MOS Physics and Technology” ,New York, Wiley, 1982. 30. 蔡伩哲, “以高介電值材料作為矽基板上閘極介電層之研製與特性分析”,中原大學碩士論文(2002) 31. Jihoon Choi, Seokhoon Kim, Jinwoo Kim, Hyunseok Kang, Hyeongtag Jeon, Choelhwyi Bae, “Effects of N2 remote plasma nitridation on the structural and electrical characteristics of the HfO2 gate dielectrics grown using remote plasma atomic layer deposition methods”, J. Vac. Sci. Technol. A 24„4, 2006 32. Hyungchul Kim, Seokhoon Kim, Sanghyun Woo, Hye Yeong Chung, Honggyu Kim, Jongsan Park, and Hyeongtag Jeona, “Characteristics of Thin Hf-Silicate Gate Dielectrics after Remote N2 and N2O Plasma Post-Treatments”, Journal of The Electrochemical Society, 155 ,12, G299-G303 (2008) 33. J. Morais, L. Miotti, G. V. Soares, S. R. Teixeira, R. Pezzi, K. P. Bastos, and I. J. R. Baumvol, A. L. P. Rotondaro, J. J. Chambers, M. R. Visokay, and L. Colombo, “Integrity of hafnium silicate/silicon dioxide ultrathin films on Si”, Appl. Phys. Lett., Vol. 81, No. 16, 14 October 2002 34. Jiurong Liu, Ryan M. Martin, and Jane P. Chang, “Characteristics of Hf-silicate thin films synthesized by plasma enhanced atomic layer deposition”, J. Vac. Sci. Technol. A 26„5, ( 2008) 35. Kwun-Bum Chung, W. J. Lee, C. Y. Kim, Mann-Ho Cho, and Dae Won Moon , “Nucleation Behavior of Atomic Layer Deposited SiO2 for Hf-Silicate Films”, Journal of The Electrochemical Society, 156 , 5 , G43-G47 (2009) 36. G. Pant, A. Gnade, M. J. Kim, R. M. Wallace, B. E. Gnade, M. A. Quevedo-Lopez, P. D. Kirsch, and S. Krishnan,” Effect of thickness on the crystallization of ultrathin HfSiON gate dielectrics”, Appl. Phys. Lett., 89, 032904 (2006) 37. M.-H. Cho, K. B. Chung, C. N. Whang, D. W. Lee, and D.-H. Ko, “Phase separation and electronic structure of Hf-silicate film as a function of composition”, Appl. Phys. Lett., 87, 242906 (2005) 38. C. S. Kang, H.-J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J. H. Han, and J. C. Lee,” Bonding states and electrical properties of ultrathin HfON gate dielectrics”, Appl. Phys. Lett., 81, 2593 (2002) 39. T. J. Park, J. H. Kim, M. H. Seo, J. H. Jang, and C. S. Hwang, “Improvement of thermal stability and composition changes of atomic layer deposited HfO2 on Si by in situ O3 pretreatment”, Appl. Phys. Lett., 90, 152906 (2007) 40. 張哲豪, “金屬-絕緣體-半導體與金屬-絕緣體-金屬結構之高介電薄膜電子層化學氣相沉積”, 清華大學博士論文 (2007) 41. H.-H. Tseng, M. E. Ramon, L. Hebert, P. J. Tobin, D. Triyoso, J. M. Grant, Z. X. Jiang, D. Roan, S. B. Samavedam, D. C. Gilmer, S. Kalpat, C. Hobbs,W. J. Taylor, O. Adetutu, and B. E. White, “ALD HfO2 using heavy water (D2O) for improved MOSFET stability”, in IEDM Tech. Dig., 2003, pp. 83–86. 42. Taeho LEE, Han-Kyoung KO, Jinho AHN_, In-Sung PARK, Hyunjun SIM, Hokyung PARK and Hyunsang HWANG, “Electrical Properties of Atomic Layer Deposited HfO2 Gate Dielectric Film Using D2O as Oxidant for Improved Reliability”, Jpn. J. Appl. Phys., Vol. 45, No. 9A (2006); http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29040

  7. 7

    المؤلفون: 徐堃豪, Kuen-Hao Shiu

    المساهمون: 洪銘輝, 郭瑞年, Ming-Hwei Hong, Ray-Nien Kwo

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: [1] G. E. Moore, Electronics 38, 114 (1965) [2] http://www.intel.com/technology/mooreslaw/index.htm [3] R. Chau et al., Nikkei Microdevices, p.83-88, (Feb. 2002) [4] International Technology Roadmap for Semiconductors, Semiconductor Industry Association, (2001) [5] K. Saraswat et al., IEDM short course (2007) [6] Michel Houssa, High-? Gate Dielectrics, IOP publishing, (2004) [7] S. Thompson et al., IEDM Technical Digest, p.61, (2002) [8] R. Chau et al., IEDM Technical Digest, p.45, (2000) [9] R. Chau et al., Physica E, Low-dimensional Systems and Nanostructures, Vol. 19, Issues 1-2, p.1, (2003) [10] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, Nature (London) 399, 758 (1999) [11] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rew. Lett. 85, 1298 (2000) [12] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, Solid-State Electron. 38, 1465 (1995) [13] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, IEEE Electron Dev. Lett. 18, 209 (1997) [14] A. T. Fromhold, Quantum Mechanics for Applied Physics and Engineering (New York: Dover) (1981) [15] E. Merzbacher, Quantum Mechanics (New York: Wiley) (1998) [16] Proceedings of the IEEE, Vol. 89, No. 3, (March 2001) [17] K. Rim et al., IEDM short course (2007) [18] S. Takagi et al., IEEE TED, 41, 2357 (1994) [19] J. F. Zheng, W. Tsai, T. D. Lin, Y. J. Lee, C.P. Chen, M. Hong, J. Kwo, S. Cui, and T. P. Ma, Appl. Phys. Lett. 91, 223502 (2007) [20] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, IEEE Electron Dev. Lett. 28, 11 (2007) [21] K Saraswat et al., Materials Science and Engineering B, 135, 3, 242 (2006) [22] K. Rim, J. L. Hoyt, and J. F. Gibbons, IEEE Transactions on Electron Devices, 47, 7, 1406 (2000) [23] K. Mistry et al., IEDM Technical Digest, (2007) [24] G. D. Wilk et al., Journal of Applied Physics, 89, 5243 (May 2001). [25] P. Bai et al., IEDM Tech. Dig., pp. 657-660, (2004) [26] J. Robertson and B. Falabretti, Materials Science and Engineering B 135, 267 (2006) [27] J. Robertson and B. Falabretti, Journal of Applied Physics 100, 014111 (2006) [28] T. S Lay et al., Solid-State Electronics 45, 45, 9, 1679-1682 (2001) [29] W. C. Lee et al., Journal of Crystal Growth 278, 619-623 (2005) [30] G. K. Dalapati et al., Appl. Phys. Lett. 91, 242101 (2007) [31] H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 87, 182904 (2005) [32] Y. Xuan, H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006) [33] H. Kim, P. C. McIntyre and K. C. Saraswat, Appl. Phys. Lett. 82, 106-108 (2003) [34] S. Chatterjee, Y. Kuo and J. Lu, Microelectronic engineering 85, 202-209 (2008) [35] S. M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, Wiley, New York (2002) [36] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaInAs/electric.html [37] M. Hong, C.T. Liu, H. Reese, and J. Kwo, in: J.G.Webster (Ed.), Encyclopedia of Electrical and Electronics Engineering, vol. 19, John Wiley and Sons, New York, 1999, pp. 87-100, and references therein. [38] M. Hong, J.P. Mannaerts, J.E. Bowers, J. Kwo, M. Passlack,W.-Y. Hwang, L.W. Tu, J. Cryst. Growth, 175/176, 422 (1997) [39] M. Hong, J. Kwo, A.R. Kortan, J.P.Mannaerts, A.M. Sergent, Science 283, 1897 (1999) [40] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 84, 434 (2004) [41] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005) [42] I. Ok, H. Kim, M. Zhang, C.-Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J.C. Lee, IEEE Electron Device Lett. 27, 145 (2006) [43] W. P. Li, X. W. Wang, Y. X. Liu, S. I. Shim, and T. P. Ma, Appl. Phys. Lett. 90, 193503 (2007) [44] F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, Y.K. Chen, A.Y. Cho, Sol. State Electron. 41, 1751 (1997) [45] Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, J.S. Weiner, Y.K. Chen, A.Y. Cho, Mater. Res. Soc. Symp. Proc. 573, 219 (1999) [46] F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, W.S. Tseng, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, IEEE Electron Device Lett. 19, 309 (1998) [47] Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, Y.K. Chen, A.Y. Cho, IEEE Electron Device Lett. 20, 457 (1999) [48] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, Appl. Phys. Lett.75, 1116 (1999) [49] M. Hong, J. Kwo, P. J. Tsai , Y. C. Chang, M. L. Huang , C. P. Chen, and T. D. Lin, Japanese Journal of Applied Physics 46, Part 1 No. 5B, 3167 (2007) [50] M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, Appl. Phys. Lett. 76, 312 (2000) [51] C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee, and T. S. Lay, J. Appl. Phys. 100, 104502 (2006) [52] Y. L. Huang, P. Chang, Z. K. Yang, Y. J. Lee, H. Y. Lee, H. J. Liu, J. Kwo, J. P. Mannaerts, and M. Hong, Appl. Phys. Lett. 86, 191905 (2005) [53] M. A. Herman, H. Sitter, Molecular Beam Epitaxy- Fundamentals and Current Status, Springer-Verlag Berlin Heidelberg (1989) [54] Kittel, Introduction to Solid State Physics, Wiley (1996) [55] Scott Bonham, An Introduction to RHEED (1997) [56] John C. Vickerman, Surface Analysis: The Principal Techniques, Wiley (2003) [57] Raymond E. March and Richard J. Hughes; with a historical review by John F.J. Todd., Quadrupole storage mass spectrometry, Wiley (1989) [58] http://en.wikipedia.org/wiki/Atomic_layer_deposition [59] Mikko Ritala, Kaupo Kukli, Antti Rahtu, Petri I. Räisänen, Markku Leskelä, Timo Sajavaara, and Juhani Keinonen, Science 288, 319-321 (2000) [60] B. J. Sealy, Semicond. Sci. Technol. 3, 448 (1988) [61] B. Maiti, P. J. Tobin, C. Hobbs, R. I. Hegde, F. Huang, DLO Meare, D. Jovanovic, M. Mendicino, J. Chen, D. Connelly, O. Adetutu, , J. Mogab, J. Candelaria, and L. B. La., Tech. Dig. Int.-Electron Devices Meet. (IEEE, Piscataway), p.781 (1998) [62] D. Shindo. T. Oikawa, Analytical Electron Microscopy for Materials Science, Springer (2002) [63] David B. Williams and C. Barry Carter, Transmission Electron Microscopy, Plenum (1996) [64] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley (1982) [65] Yuan Taur and Tak H. Ning, Fndamentals of Modern VLSI Devices, Cambridge (2002) [66] Dieter K. Schroder, Semiconductor Material and Device Characterization, Third Edition, Wiley (2006) [67] B. E. Deal, IEEE Trans. Electron Dev., vol. ED-27, p.p. 606-608, March (1980) [68] E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055-1133 (1967) [69] D. Choia, J. S. Harris, M. Warusawithana and D. G. Schlom, Appl. Phys. Lett. 90, 243505 (2007) [70] E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, IEEE Trans. Electron Dev. 47, 601-608, March (2000) [71] L. M. Terman, Solid-State Electron. 5, 285-299, Sept./Oct. (1962) [72] H.-C. Lin, S. Senanayake, K.-Y. Cheng, M. Hong, J. Kwo, B. Yang, and J. P. Mannaerts, IEEE Trans. Electron Devices 50, 880 (2003) [73] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes and G. Groeseneken, IEEE Trans. Electron Devices 55, 2, 547, February (2008) [74] P. D. Ye et al., IEEE EDL, 24, 4, 209, April (2003) [75] P. D. Ye et al., Appl. Phys. Lett., 83, 180, July (2003) [76] P. D. Ye et al., Appl. Phys. Lett., 84, 434, January (2004) [77] H.-S. Kim et al., Appl. Phys. Lett., 89, 222904 (2006) [78] B. Yang et al., Journal of Crystal Growth 251, 837-842 (2003) [79] P. J. Tsai et al., Journal of Crystal Growth 301-302, 1013-1016 (2007); http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/29520

  8. 8

    المؤلفون: 簡銘萱, Ming-Hsuan Chien

    المساهمون: 吳泰伯, Tai-bor Wu

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: 第六章 參考文獻 1. 虞有澄,”我看英代爾”,天下文化 [1995] 2. 黃維邦,”利用Pt(O)電極開發五氧化二鉭(Ta2O5)薄膜之選擇性化學氣相沉積技術研究”,清華大學碩士論文 [2001] 3. “未來DRAM發展趨勢”,新電子科技雜誌,153 [1998/12] 4. 林振華、林振富,”ULSI DRAM技術”,全華科技圖書股份有限公司 [2001] 5. 張志祥、吳泰伯,”G bit DRAM應用之強介電薄膜技術與發展”,材料會訊,4(3) [1997] 6. D. E. Kotecki,”High-k dielectric materials for DRAM capacitors”, Semiconductor International, 109 [1999] 7. 曾鴻輝,”動態隨機存取記憶體之電容器的製造方法”,電子資訊 4(1),14 [1998] 8. A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology”, IEDM 98 [1998] 9. K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. D Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee, and B. J. Park, “A 0.15um DRAM Technology Node for 4 Gb DRAM”, Symp. On VLSI Tech. Dig. For Tech. Paper, 16 [1998] 10. K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuit and Devices, 27 [1997] 11. H. S. Moon, H. S. Choi, H. G. Jang, C. J. Hwang, S. H. Woo, I. K. Han, and H. S. Yang, “Improvement of properties of dynamic random access memories capacitors by PH3 plasma doping process after the formation of hemispherical-grained silicon”, J. Vac. Sci. Techol. B 17. 1017 [1999] 12. Hirohito Watanabe, Nahomi Aoto, Saburo Adachi, and Takamaro Kikkawa, “Device application and structure observation for hemispherical-grained Si”, J. Appl. Phys. 71, 3538 [1992] 13. N. Matsuo, H. Ogawa, T. Kouzaki, and S. Okada, “Nucleation and growth mechanism of hemispherical grain polycrystalline silicon”, Appl. Phys. Lett. 60, 2607 [1992] 14. J. M. Sallese, A. Ils, D. Bouvet, P. Fazan, and Chris Merritt, “Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation”, J. Appl. PHYS. 88, 5751 [2000] 15. Hiroshi Iwai and Shun’ Ichiro Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit and System [2002] 16. G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices ”, IWGI, 14 [2001] 17. International Technology Roadmap for Semiconductor 2005 18. 劉子平,”下電極材料對化學氣相沉基Ta2O5薄膜應用在動態隨機存取記憶體影響之研究”,清華大學博士論文 [2002] 19. H. Ishiuchi, “Embedded DAM Technologies”, IEDM 33 [1997] 20. 蔡育奇,”系統LSI的記憶電容堆疊構造的現況與未來”,電子月刊,5(1) 161 [1999] 21. 王中樞,”內嵌式DRAM製程技術”,電子月刊 5(12),106 [1999] 22. A. Waxman and K. H. Zaininger, “Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 [1968] 23. V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOxspin tunnel barrier formation”, J. Appl. Phys. 89, 3301 [2001] 24. M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structureal, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 [2000] 25. Han Gao, Cheng Mu, FanWang, Dongsheng Xu, Kai Wu, and Youchang Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 [2003] 26. Aurelian C. Ga lca, E Stenfan Kooil, Herbert Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 [2003] 27. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys, 89 5234 [2001] 28. M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeler, Appl. Phys. Lett. 78, 2670 [2001] 29. E. Fredrikssonand J. O. Carlsson, J. Chem. Vapor Dep. 1.333 [1993] 30. D. Riihela, M. Ritala, R. Matero, and M. Leskela, Thin Solid Films 289, 250 [1996] 31. 連振炘,”金氧半元件物理課程講義chap. 8” [2004] 32. Michel Houssa, “High-k Gate Dielectrics”, published by Institute of Physics Publishing [2004] 33. James Kolodzey, Enam Ahmed Chowdhury, Thomas N. Adam, Guohua Qui, I. Rau, Johnson Olufemi Olowolafe, John S. Suehle, and Yaun Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 [2000] 34. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Applied Physics Review: High-k gate dielectrics : Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 [2001] 35. Dae-Gyu Park, Heung-Jae Cho, Kwan-Yong Lim, Chan Lim, In-Seok Yeo, Jae-SUNG Roh, and Jin Won Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 [2001] 36. Hang Hu, Chunxiang Zhu, Y. F. Lu, M. F. Li, Byung Jin Cho, W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Lett., vol. 23, pp. 514-516, Sep. [2002] 37. Sun Jung Kim, Byung Jin Cho, M. F. Li, XIONGFEI Yu, Chunxiang Zhu, Albert Chin, Dim-Lee Kwong, “PVD HfO2 for high- precision OMIM capacitor applications”, IEEE Electron Device Lett., vol. 24, pp. 387-389, JUNE. [2003] 38. Q. Fang, J. Y. Zhang, Z. M. Wang, G. He, J. Yu, Ian W. Boyd, “High-k dielectrics by UV photo-assisted chemical vapor deposition”, Microelectronic Engineering 66 621-630 [2003] 39. J. F. Kang, H. Y. Yu, C. Ren, M. F. Li, D. S. H. Chan, “Ultra-thin HfO2 gate stack with TaN/ HfN electrodes fabricated using a high temperature process”, Electrochemical and solid-state Letter, 8(11) G311-G313 [2005] 40. 李清楠,”下電極材料對原子層化學氣相沉積Al2O3高介電薄膜應用在奈米尺度世代DRAM影響之研究”,清華大學碩士論文 [2005] 41. 許家旺,”In-situ電漿表面處理對原子層化學氣相沉積Al2O3、HfO2高介電薄膜應用在奈米尺度世代DRAM影響之研究”,清華大學碩士論文 [2006] 42. G. S. Higashi, and C. G. Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectric”, Appl. Phys. Lett. 55, 1963 [1989] 43. Ronald Kuse, Manisha Kundu, Tetsuji Yasuda, Noriyuki Miyata, and Akira Toriumi, “Effect of precursor concentration in atomic layer deposition of Al2O3”, J. Appl. Phys. 94, 6411 [2003] 44. Yunirarto Widjaja, Charles B. Musgrave, “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 [2002] 45. Martin M. Frank, Yves J, Chabal, and Glen D. Wilk, “Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides”. Appl. Phys. Lett. 82, 4758 [2003] 46. J. B. Kim D. R. Kwon, K. Chakrabarti, Chongmu Lee, K. Y. Oh, and J. H. Lee, “Inmprovement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 9, 6739 [2002] 47. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Thin Solid Film” 286, 54 [1996] 48. R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, “Thin Solid Films”368, 1 [2000] 49. D. R. Strongin, J. F. Moore, and M. W. Ruckman, “Synchrotron radiation assisted deposition of aluminum oxide form condensed layer of trimethylaluminum and water at 78K”, Appl. Phys. Lett. 61. 792 [1992] 50. Suvi Haukka, Eeva-Liisa, and Toumo untola, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water”, J. Appl. Phys. 95, 4777 [2004] 51. Mathew D. Halls, Krishnan Raghavachari, “Atomic layer deposition growth reactions of Al2O3 on Si(100)-2x1” J. Phys. Chem. B2004, 108, 4058-4062 52. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivaiton of 3-5 compound semiconductors using atomic layer deposition grown Al2O3”, Appl. Phys. Lett. 87, 252104 [2005] 53. H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films ”, published by Academic Press, P. 103~P.159 54. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. Baumyol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapordeposition of amorphous Al2O3 thin films on Si(100)”, Appl. Phys. LETT. 75, 4001 [1999] 55. Alicha A. R. Elshabini-Riad Fred D. ”Thin film technology handbook”, The McGraaw-Hill Companies, Inc, ISBNO-07-115998-7 56. 陳力俊等人主編,”微電子材料與製程”P. 107 [2000] 57. H. N. AlShareef, K. D. Gifford, S. H. Rou, P. H. Hren, O. Auciello, A. I. KIngon, Integrated Ferroelectronics, P.321 [1993] 58. Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electronic Mater, 27 P. 418 [1998] 59. T. Maeder, L. Sagalowicz and P. Muralt, “Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta, and Zr Adhesion Layers” Jpn. J. Appl. Phys. 37, 2007 [1998] 60. 吳世全,電子期刊第五卷第五期,P.129 61. Jae-Hyun Joo, Wan-Don Kim, Tong-Kuk Jeong, Seok-Jun Won, Soon-Yeon Park, Cha-Young Yoo, Sun-Tae Kim, and Joo-Tae Moon, “Rugged metal electrode(RME) for high density memory devices”, Jpn. J. Appl. Phys. 40, 826 [2001] 62. Jae Hyoung Choi, Jeong-Hee Chung, Se-Hoon Oh, Jeong Sik Choi, Cha-young Yoo, Sung-Tae Kim, U-In Chung, and Jeong-Tae Moon, “New approaches to improve the endurance of TiN/HfO2/TiN capacitor during the back-end process for 70 nm DRAM device”, IDEM 03-661, 2003 63. D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A deoisition model”, J. A. ppl. Phys. 96, 820 [2004] 64. C. S. Shin, S. Rudenja, D. Gall, N. Hellgren, T. Y. Lee, I. Petrov, and J. E. Greene, “Growth, surface morphology, and electrical resistivity of strained substoichiometric epitaxial TiNx(0.67; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/33452

  9. 9

    المؤلفون: 邱彥凱, Yan-Kai Chiou

    المساهمون: 吳泰伯, Tai-Bor Wu

    مصطلحات موضوعية: 高介電材料, 原子層化學氣相沉, high-k, ALD

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: [1] Moore G E 1965 Electronics 38 114-117 [2] See Moore’s law at http://www.intel.com/technology/mooreslaw/index.htm [3] Timp G et al 1999 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p55 [4] Chau R, Kavalieros J, Roberds B, Schenker R, Lionberger D, Barlage D, Doyle B, Arghavani R, Murthy A and Dewey G 2000 Tech. Dig. Int. Electron Device Meet. (Piscataway: IEEE) p45 [5] Depas M, Vermeire B, Mertens P W, Van Meirhaeghe R L and Heyns M M 1995 Solid-State Electron. 38 1465 [6] Lo S H, Buchanan D A, Taur Y and Wang W 1997 IEEE Electron Dev. Lett. 18 209 [7] Merzbacher E 1998 Quantum Mechanics (New York: Wiely) [8] Harari E 1978 J. Appl. Phys. 49 2478 [9] DiMaria D J and Cartier E 1995 J. Appl. Phys. 78 3883 [10] J. H. Stathis 1999 J. Appl. Phys. 86 5757 [11] J. H. Stathis and D. J. DiMaria Appl. Phys. Lett. 71, 3230 (1997) [12] R. Chou, ICSTCT 2004 presentation [13] N. Fukushima et al., IEDM Technical Digest, pp. 257–260, 1997. [14] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Y. Zhiping, P. M. Zeitzoff, and J. C. S. Woo, IEEE Trans. Electron Devices, 46, no. 7, pp. 1537–1544, Jul. 1999. [15] J. Robertson, P.W. Peacock, in: M. Houssa (Ed.), High-κ Gate Dielectrics, IOP, London, 2003, p. 372. [16] K. J. Hubbard, and D. G. Schlom, J. Mater. Res. 11, 2757 (1996) [17] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett. 77, 2710 (2000) [18] R. L. Nigro, V. Raineri, and C. Bongiorno, Appl. Phys. Lett. 83, 129 (2003) [19] H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006) [20] M. Gutowski, J. E. Jaffe, C.-L. Liu, and M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Appl. Phys. Lett. 80, 1897 (2002) [21] Available on line: http://www.cambridgenanotech.com/index.php [22] Available online: http://www.picosun.com [23] K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Vap. Deposition 8, 199 (2002) [24] G. Papoian, J. K. Norskov, R. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000) [25] D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002) [26] K. Kukli, M. Ritala, J. Lu, A. Hårsta, and M. Leskelä, J. Electrochem. Soc., 149, F18 (2002) [27] M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005) [28] J.-H. Lee, J. P. Kim, J.-H. Lee, Y.-S. Kim, H.-S. Jung, N.-I. Lee, H.-K. Kang, K.-P. Suh, M.-M. Jeong, K.-T. Hyun, H.-S. Baik, Y. S. Chung, X. Liu, S. Ramanathan, T. Seidel, J. Winkler, A. Londergan, H. Y. Kim, J. M. Ha, and N. K. Lee, Dig.-Int. Electron Devices Meet. 2002, 221 (2002) [29] Martin M. Frank, Yves J. Chabal, and Glen D. Wilk, Appl. Phys. Lett. 82, 4758 (2003) [30] Mathew D. Halls and Krishnan Raghavachari, J. Chem. Phys. 118, 10221 (2003) [31] R. D. Fenno, M. D. Halls, and K. Raghavachari, J. Phys. Chem. B 109, 4969 (2005) [32] B. Cheng, M. Cao, R. Rao, A. Inani, P. Vande Voorde, W. M. Greene, J.M.C Stork, Z. Yu, P.M. Zeitzoff and J.C.S. Woo, IEEE Trans. Electron Devices 46, 7, 1537 (1999) [33] R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998) [34] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, A. A. Hallmark, R. Droopad, W. J. Ooms, L. Slame, S. Bradshaw, and C. D. Overgaard, Appl. Phys. Lett. 76, 1324 (2000) [35] L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 35 (2000) [36] K. J. Choi, J. B. Park and S. G. Yoon, J. Electrochem. Soc. 150, 4, F75 (2005) [37] G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys. 89, 5243 (2001) [38] J. Schaeffer, N. V. Edwards, R. Liu, D. Roan,a B. Hradsky, R. Gregory, J. Kulik, E. Duda, L. Contreras, J. Christiansen, S. Zollner, P. Tobin, B.-Y. Nguyen,a R. Nieh,a M. Ramon, R. Rao, R. Hegde, R. Rai, J. Baker, and S. Voight, J. Electrochem. Soc. 150, 4, F67 (2003) [39] T. Suntola and J. Antson, US Patent No. 4058430, (1977) [40] J. Aarik, A. Aidla, A. Kikas, T. Käämbre, R. Rammula, P. Ritslaid, T. Uustare and V. Sammelselg, Appl. Surf. Sci. 230, 292 (2004) [41] K. Forsgren, A. Hårsta, J. Aarik, A. Aidla, J. Westlinder and J. Olsson, J. Electrochem. Soc. 149, F139 (2002) [42] H. S. Chang, S.-K. Baek, H. Park, H. Hwang, J. H. Oh, W. S. Shin, J. H. Yeo, K. H. Hwang, S. W. Nam, H. D. Lee, C. L. Song, D. W. Moon, and M.-H. Cho, Electrochemical and Solid-State Letters 7, 6, F42 (2004) [43] Wontae Cho, Ki-Seok An, Taek-Mo Chung, Chang Gyoun Kim, Byung-Soo So, Yil-Hwan You, Jin-Ha Hwang, Donggeun Jung, and Yunsoo Kim, Chem. Vap. Deposition 12, 665 (2006) [44] S. Choi, J. Koo, H. Jeon, and Y. Kim, J. Korean Phys. Soc. 44, 35 (2004). [45] M. Cho, D. S. Jeong, J. Park, H. B. Park, S. W. Lee, T. J. Park, C. S. Hwang, G. H. Jang, and J. Jeong, Appl. Phys. Lett. 85, 5953 (2004) [46] X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T. E. Seidel, J. T.Barton, D. Pang, and R. G. Gordon, J. Electrochem. Soc. 152, G213 (2005) [47] Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, and C. Park, J. Appl. Phys. 92, 5443 (2002) [48] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980) [49] S. A. Chambers, T. Droubay, T. C. Kaspar, and M. Gutowski, J. Vac. Sci. Technol. B 22, 2205 (2004) [50] J Robertson and P W Peacock: Electronic structure and band offsets of high-dielectric-constant gate oxides, High-κ Gate Dielectrics, Michel Houssa (Ed.), Institute of Physics Publishing, (2004) P372-396 [51] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett., 89, 012903 (2006) [52] L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella and J. L. Freeouf, B. Holländer,and J. Schubert, Appl. Phys. Lett. 84, 726 (2004) [53] H. Itokawa, T. Maruyama, S. Miyazaki, M. Hirose, Int. Conf. on Solid State Devices and Materials, Tokyo, JSAP, Japan, p.158, (1999) [54] P. W. Peacock and J. Robertson, J. Appl. Phys. 92, 4712 (2002) [55] S. Sayan, E. Grafunkel, and S. Suzer, Appl. Phys. Lett. 80, 2135 (2002) [56] Ragesh Puthenkovilakam and Jane P. Chang, J. Appl. Phys. 96, 2701 (2004) [57] K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskela¨, Thin Solid Films 416, 72 (2002) [58] Kaupo Kukli, Mikko Ritala, Jun Lu, Anders Ha°rsta and Markku Leskela¨, J. Electrochem. Soc. 151, F189 (2004) [59] J. Robertson, J. Non-Cryst. Solids 303, 94 (2002) [60] J.R. Hauser, K. Ahmed, Characterization and Metrology for ULSI Technology, p. 235, (1998) [61] C. Hayzelden, “Gate Dielectric Metrology”, in Handbook of Silicon Semiconductor Metrology, edited by Alain C. Diebold, p 17-47 (Marcel-Dekker, New York, 2001) [62] M. Houssa, V.V. Afanas’ev, A. Stesmans, and M.M. Heyns, Appl. Phys. Lett. 77, 1885 (2000) [63] Dieter K. Schroder, Semiconductor material and device characterization (Third Edition) 2006 [64] W.F.A. Besling, E. Young, T. Conard, C. Zhao, R. Carter, W. Vandervorst, M. Caymax, S. De Gendt, M. Heyns, J. Maes, M. Tuominen, Suvi Haukka , J. Non-cryst. Solids 303, 123 (2002) [65] Martin M. Frank, Yves J. Chabal and Glen D. Wilk, Appl. Phys. Lett., 82, 4758 (2003) [66] E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055-1133, July/Aug. (1967) [67] E. H. Nicollian and J. R. Brews: MOS Physics and Technology (Wiley, New York, 1981) [68] T. P. Ma and R. C. Barker, Solid-State Electron. 17, 913, (1974) [69] S. Kar and W. E. Dahlke, Solid-State Electron. 15, 221, (1972) [70] Eric M. Vogel, W. Kirklen Henson, Curt A. Richter, and John S. Suehle, IEEE Trans. Electron Devices, 47, 3, 601 (2000) [71] Yan-Kai Chiou, Che-Hao Chang, Chen-Chan Wang, Kun-Yu Lee, Tai-Bor Wu, Raynien Kwo and Minghwei Hong, J. Electrochem. Soc. 154, G99 (2007) [72] Stanly Wolf, Silicon processing for the VLSI era, volume 3: the submicron MOSFET [73] Young-Hee Kim and Jack C. Lee, Microelectronics Reliability 44, 183–193, (2004) [74] Patrick Fiorenza, Raffaella Lo Nigro, Vito Raineri and Dario Salinas, Microelectronics Reliability 84, 441–445, (2007) [75] J. H. Stathis, J. Appl. Phys. 86, 10, 5757 (1999) [76] M. Niwa, Y. Harada, K. Eruguchi, and D. L. Kwong, Proc. Int. Symp. ULSI Process Integration II, vol. 2001-2, (2001), p.519 [77] Thomas Kauerauf, Robin Degraeve, Eduard Cartier, Charlotte Soens, and Guido Groeseneken, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 4, APRIL (2002) [78] M.V. Fischetti, D.A. Neumayer, E.A. Cartier, J. Appl. Phys. 90 (9) (2001) 4587 [79] F. Lime, K. Oshima, M. Casse, B. Ghibaudo, S. Cristoloveanu, B. Guillaumot, H. Iwai, Solid-State Electron. 47 (2003) 1617 [80] M. Houssa, L. Pantisano, L.-A°. Ragnarsson, R. Degraeve, T. Schrama, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Materials Science and Engineering R 51 (2006) 37–85 [81] V. Narayanan, K. Maitra, B. P. Linder, V. K. Paruchuri, E. P. Gusev, P. Jamison, M. M. Frank, M. L. Steen, D. La Tulipe, J. Arnold, R. Carruthers, D. L. Lacey, and E. Cartier IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO.7, JULY (2006) [82] Nan Wu, Qingchun Zhang, N. Balasubramanian, Daniel S. H. Chan, and Chunxiang Zhu, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO.4, APRIL (2007) [83] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mater. Sci. Eng., R. 22, 269 (1998) [84] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000) [85] M. Balog, M. Schieber, S. Patai, and M. Michman, J. Cryst. Growth 17, 298 (1972) [86] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, IEEE Electron Device Lett. 21, 181 (2000) [87] Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, Tech. Dig.- Int. Electron Devices Meet., 149 (1999) [88] L. Manchanda, M. L. Green, R. B. van Dover, M. D. Morris, A. Kerber, Y. Hu, J. P. Han, P. J. Silverman, T. W. Sorsch, G. Weber et al., Tech. Dig. - Int. Electron Devices Meet., 23 (2000) [89] M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel: J. Appl. Phys. 90, 2057 (2001) [90] V. Mikhelashvili, R. Brener, O. Kreinin, B. Meyler, J. Shneider, and G. Eisenstein Appl. Phys. Lett. 85, 24 (2004) 5950-5952 [91] Moon-Kyun Song, Sang-Woo Kang and Shi-Woo Rhee, Journal of The Electrochemical Society, 152 (2) C108-C112 (2005) [92] Q. Li, S.J. Wang, T.H. Ng, W.K. Chim, A.C.H. Huan, C.K. Ong Thin Solid Films. 504 (2006) 45 – 49 [93] M.-H. Cho, K. B. Chung, H. S. Chang, and D. W. Moon, Appl. Phys. Lett. 85(18) 2004, 4115-4117 [94] T. Nishimura, T. Okazawa, Y. Hoshino, and Y. Kido J. Appl. Phys 96(11) 2004, 6113-6119 [95] Takayuki OKADA, Mohammad SHAHJAHAN, Kazuaki SAWADA and Makoto ISHIDA, J. J. of Appl. Phys. 44(4B) 2005, 2320–2322 [96] M. J. Guittet, J. P. Crocombette , and M. Gautier-Soyer, Phys. Rev. B63, 125117 (2001). [97] J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, 2nd ed. (Physical Electronics, Eden Prairie, MN, 1992) [98] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J. W. Maes, in VLSI Tech. Dig. , 2002, pp.188–189 [99] E. H. Nicollian, Solid-State Electron., vol. 16, p.121, 1972 [100] W. J. Zhu, T. Tamagawa, Member, IEEE, M. Gibson, T. Furukawa, and T. P. Ma, Fellow, IEEE ELECTRON DEVICE LETTERS, vol. 23, No. 11, November 2002 [101] “International Technology Roadmap for Semiconductors,” Semiconductor Industry Assoc., 2001 [102] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., vol. 23, pp. 185–187, Apr. 2002 [103] S. Meng, C. Basceri, B. W. Busch, G. Derderian, and G. Sandhu, Appl. Phys. Lett. 83, 4429 (2003) [104] J. H. Choi, J.-H. Chung, S.-H. Oh, J. S. Choi, C.-Y. Yoo, S.-T. Kim, U. Chung, and J.-T. Moon, Dig.-Int. Electron Devices Meet. 2003, 661 (2003) [105] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. McIntyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Device Letters, 25, 191 (2004) [106] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002) [107] Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett., 80, 3304 (2002) [108] M. D. Halls and K. Raghavachari, J. Phys. Chem. B 108, 4058 (2004) [109] G. Papoian, J. K. Norskov, R. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000) [110] M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, and W. Vandervorst, P. I. Räisänen, D. Muller, M. Bude, and J. Grazul, J. Appl. Phys. 92, 7168 (2002) [111] R. L. Puurunen, J. Appl. Phys. 95, 4777 (2004) [112] Che-Hao Chang, Yan-Kai Chiou, Chia-Wang Hsu, and Tai-Bor Wu, Electrochemical and Solid-State Letters, 10 (3) G5-G7 (2007) [113] Hang Hu, Chunxiang Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi, and N. Yakovlev, J. Appl. Phys. 94(1), 551 (2003) [114] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, IEEE Electron Device Lett. 23, 514 (2002) [115] C. H. Ng, C. S. Ho, S. F. S. Chu, and S. C. Sun, IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1399–1409, (2005) [116] S. J. Kim, B. J. Cho, M. F. Li, S. J. Ding, C. X. Zhu, M. B. Yu, B. Narayanan, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., vol. 25, no. 8, pp. 538–540, (2004) [117] Xiongfei Yu, Chunxiang Zhu, Hang Hu, Albert Chin, M. F. Li, Byung Jin Cho, Dim-Lee Kwong, P. D. Foo, and Ming Bin Yu, IEEE Electron Device Lett., vol. 24, no. 2, pp. 63–65, (2003) [118] Shi-Jin Ding, Hang Hu, H. F. Lim, S. J. Kim, X. F. Yu, Chunxiang Zhu, , M. F. Li, Byung Jin Cho, Daniel S. H. Chan, Subhash C. Rustagi, M. B. Yu, Albert Chin, , and Dim-Lee Kwong, IEEE Electron Device Lett., vol. 24, no. 12, pp. 730–732, (2003) [119] F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, Microelectron. Eng. 72, 263 (2004) [120] O. Auciello, W. Fan, B. Kabius, S. Saha, J. A. Carlisle, R. P. H. Chang, C. Lopez, E. A. Irene, and R. A. Baragiola, Appl. Phys. Lett. 86, 042904 (2005) [121] N. Lu, H.-J. Li, J. J. Peterson and D. L. Kwong, Appl. Phys. Lett. 90, 082911 (2007) [122] O. Auciello, W. Fan, B. Kabius, S. Saha, and J. A. Carlisle, R. P. H. Chang, C. Lopez, E. A. Irene and R. A. Baragiola, Appl. Phys. Lett. 86, 042904 (2005) [123] Booyong S. Lim, Antti Rahtu, Philippe de Rouffignac and Roy G. Gordon, Appl. Phys. Lett. 84, 3957 (2004) [124] E. Miranda, J. Molina, Y. Kim and H. Iwai, Appl. Phys. Lett. 86, 232104 (2005) [125] L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Holländer and J. Schubert, Appl. Phys. Lett. 88, 112907 (2006) [126] Yi Zhao, Masahiro Toyama, Koji Kita, Kentaro Kyuno, and Akira Toriumi, Appl. Phys. Lett. 88, 072904 (2006) [127] Y. Yamamoto, K. Kita, K. Kyuno and A. Toriumi, Appl. Phys. Lett. 89, 032903 (2006) [128] Z. M. Rittersma, J. C. Hooker, G. Vellianitis, J.-P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, L. Pantisano, W. Deweerd, T. Schram, M. Rosmeulen, S. De Gendt and A. Dimoulas, J. Appl. Phys. 99, 024508 (2006) [129] Seong Keun Kim and Cheol Seong Hwang, J. Appl. Phys. 96, 4, 2323 (2004) [130] Radko Bankras, Jisk Holleman, Jurriaan Schmitz, Marko Sturm, Andrey Zinine, Herbert Wormeester and Bene Poelsema, Chem. Vap. Deposition, 12, 275–279 (2006) [131] Martin M. Frank, Steven J. Koester, Matthew Copel, John A. Ott, Vamsi K. Paruchuri and Huiling Shang, Appl. Phys. Lett. 89, 112905 (2006) [132] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett. 87, 252104 (2005) [133] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005); http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30761

  10. 10

    المؤلفون: 張哲豪, Che-Hao Chang

    المساهمون: 吳泰伯, Tai-Bor Wu

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Letters, 25, 408, (2004). S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. McIntyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Device Letters, 25, 191 (2004). Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, and T. J. Phillips, IEDM Technical Digest, 751, (1997). R. Chou, ICSTCT 2004 presentation. Front end process in ITRS 2005, (http://www.itrs.net/, 2005). K. J. Hubbard, and D. G. Schlom, J. Mater. Res. 11, 2757 (1996). S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett. 77, 2710 (2000). R. L. Nigro, V. Raineri, and C. Bongiorno, Appl. Phys. Lett. 83, 129 (2003). H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006) M. Gutowski, J. E. Jaffe, C.-L. Liu, and M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Appl. Phys. Lett. 80, 1897 (2002). Available online: http://www.picosun.com. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskel?, Chem. Vap. Deposition 8, 199 (2002) G. Papoian, J. K. Norskov, R. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000). D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002). K. Kukli, M. Ritala, J. Lu, A. H?rsta, and M. Leskel?, J. Electrochem. Soc., 149, F18 (2002). M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005). J.-H. Lee, J. P. Kim, J.-H. Lee, Y.-S. Kim, H.-S. Jung, N.-I. Lee, H.-K. Kang, K.-P. Suh, M.-M. Jeong, K.-T. Hyun, H.-S. Baik, Y. S. Chung, X. Liu, S. Ramanathan, T. Seidel, J. Winkler, A. Londergan, H. Y. Kim, J. M. Ha, and N. K. Lee, Dig.-Int. Electron Devices Meet. 2002, 221 (2002). Martin M. Frank, Yves J. Chabal, and Glen D. Wilk, Appl. Phys. Lett. 82, 4758 (2003). Mathew D. Halls and Krishnan Raghavachari, J. Chem. Phys. 118, 10221 (2003). R. D. Fenno, M. D. Halls, and K. Raghavachari, J. Phys. Chem. B 109, 4969 (2005). C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mater. Sci. Eng., R. 22, 269 (1998). R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998). E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000). G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys. 89 (2001) 5243. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel: J. Appl. Phys. 90, 2057 (2001). V. Mikhelashvili, R. Brener, O. Kreinin, B. Meyler, J. Shneider, and G. Eisenstein Appl. Phys. Lett. 85, 5950 (2004). Moon-Kyun Song, Sang-Woo Kang, and Shi-Woo Rhee Journal of The Electrochemical Society, 152 C108 (2005). M.-H. Cho, K. B. Chung, H. S. Chang, and D. W. Moon, Appl. Phys. Lett. 85, 4115 (2004). T. Nishimura, T. Okazawa, Y. Hoshino, and Y. Kido J. Appl. Phys 96, 6113 (2004) J. R. Hauser and K. Ahmed, “Characterization of ultra-thin oxides using electrical C-V and I–V measurements,” in Characterization and Metrology for ULSI Technology, Seiler et al., Eds. Woodbury, NY: AIP, 1998, p 235. D.-G. Park, H.-J. Cho, K.-Y. Lim, C. Lim, I.-S. Yeo, J.-S. Roh, and J. W. Park, J. Appl. Phys. 89, 6275 (2001). E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, IEEE Trans. Electron Devices 47, 601 (2000). W.-S. Jeon, S. Yang, C. Lee, and S.-W. Kang, J. Electrochem. Soc. 249, C306 (2002). K. J. Laidler and J. N. Meiser, Physical Chemistry, p841 (Houghton Mifflin, 2rd ed., New York, 1995). R. Matero, A. Rahtu, M. Ritala, M. Leskel?, T. and Sajavaara, Thin Solid Films 368, 1 (2000). A. Rahtu, T. Alaranta, and M. Ritala, Langmuir 17, 6506 (2001). R. Tan, Y. Azuma, and I. Kojima, Surf. Interface Anal. 38, 784 (2006). L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella and J. L. Freeouf, B. Holl?nder,and J. Schubert, Appl. Phys. Lett. 84, 726 (2004). S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski, R. A. Bartynski, D. Vanderbilt, J. S. Suehle, S. Suzer, and M. Banaszak-Holl, J. Appl. Phys. 96, 7485 (2004). P. W. Peacock and J. Robertson, J. Appl. Phys. 92, 4712 (2002). L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolie, I. Trimaille, J.-J. Ganem, F. Martin, M.-N. S?m?ri, J. Non-Cryst. Solids 303, 17 (2002). B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006). C. Hayzelden, “Gate Dielectric Metrology”, in Handbook of Silicon Semiconductor Metrology,edited by Alain C. Diebold, p 17-47 (Marcel-Dekker, New York, 2001). M. Halls, K. Raghavachari, M. Frank, and Y. Chabal, Phys. Rev. B 68, 161302 (2003). M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeller, Appl. Phys. Lett. 78, 2670 (2001). R. Kuse, M. Kundu, T. Yasuda, and N. Miyata, and A. Toriumi, J. Appl. Phys. 94, 6411 (2003). E. P. Gusev, E. Cartier, D.A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D’Emic, Microelectron. Eng. 59, 341 (2001). J. Robertson, J. Non-Cryst. Solids 303, 94 (2002). W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, IEEE Electron Device Lett. 20, 179, (1999). M. Park, J. Koo, J. Kim, H. Jeon, C. Bae, and C. Krug, Appl. Phys. Lett. 86, 252110 (2005). Y.-K. Chiou, C.-H. Chang, C.-C. Wang, K.-Y. Lee, T.-B. Wu, R. Kwo, and M. Hong, J. Electrochem. Soc. 154, G99 (2007). Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006). M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005). M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 68, 1099 (1996). P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, IEEE Electron Device Lett. 24, 209 (2003) M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett. 89, 012903 (2006). W. Tsai, L.-? Ragnarsson, L. Pantisano, P.J. Chen, B. Onsia, T. Schram, E. Cartier, A. Kerber, E. Young, M. Caymax, S. De Gendt, and M. Heyns, Dig.-Int. Electron Devices Meet. 2003, 311 (2003). H. Hasegawa, M. Akazawa, H. Ishii, and K.-I. Matsuzaki, J. Vac. Sci. Technol. B 7, 870 (1989). H. S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, Appl. Phys. Lett. 88, 252906 (2006). Z. H. Lu, D. Landheer, J.-M. Baribeau, L. J. Huang, and W. W. Lau, Appl. Phys. Lett. 64, 1702 (1994). C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989). T. Tiedje, K. M. Colbow, D. Rogers, Z. Fu, and W. Eberhardt, J. Vac. Sci. Technol. B 7, 837 (1989). C. J. Sandroff, M. S. Hegde, and C. C. Chang, J. Vac. Sci. Technol. B 7, 841 (1989). A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, Appl. Phys. Lett. 54, 332 (1989). S. Koveshnikov, W. Tsai, I. Ok and J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006). H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, Appl. Phys. Lett. 89, 222903 (2006). I. Ok, H.-S. Kim, M. Zhang, C.-Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, IEEE Electron Device Lett. 27, 145 (2006). M. Akazawa, H. Ishii, H. Hasegawa, Jap. J. Appl. Phys. B 30, 3744 (1991). H. Hasegawa and H. Ohno, J. Vac. Sci. Technol. B 4, 1130 (1986). M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005). W. Stamm and A. Breindel, Angew. Chem. Int. Ed. Engl. 3, 66 (1964). D. K. Dileep, L. K. Krannich, and C. L. Watkins, Inorg. Chem. 29, 3502 (1990). H. Asahi, X. F. Liu, K. Inoue, D. Marx, K. Asami, K. Miki, and S. Gonda, J. Crystal Growth 145, 668 (1994). H. Sugiura, M. Mitsuhara, S. Kondo, and K. Tsuzuki, J. Crystal Growth 201, 594 (2001). T. J. Whitaker, T. Martin, A. D. Johnson, A. J. Pidduck, and J. P. Newey, J. Crystal Growth 164, 125 (1996). K. S. K. Kwa, S. Chattopadhyay, N. D. Jankovic, S. H. Olsen, L. S. Driscoll, and A. G. O’Neill, Semicond. Sci. Technol. 18, 82 (2003). L. J. Huang, W. M. Lau, S. lngrey, D. Landheer and J.-P. No?l, J. Appl. Phys. 76, 8192 (1994). Z. Luo and T. P. Ma, IEEE Electron Device Lett. 25, 655 (2004). X. Garros, C. Leroux, and J.-L. Autran, Electrochem. Solid-State Lett. 5, F4 (2002). Berkeley Device Group. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1981). S. Meng, C. Basceri, B. W. Busch, G. Derderian, and G. Sandhu, Appl. Phys. Lett. 83, 4429 (2003). J. H. Choi, J.-H. Chung, S.-H. Oh, J. S. Choi, C.-Y. Yoo, S.-T. Kim, U. Chung, and J.-T. Moon, Dig.-Int. Electron Devices Meet. 2003, 661 (2003). K. Lee, B. R. Rhee, and C. Lee, Appl. Phys. Lett. 79, 821 (2001). K. H. Kwon, S. Y. Kang, G. Y. Yeom. N. K. Hong, and J. H. Lee, J. Electrochem. Soc. 147, 1807 (2000). C.-K. Huang and T.-B. Wu, Appl. Phys. Lett. 83, 3147 (2003). C. K. Huang, C. H. Chang, and T. B. Wu, J. Appl. Phys. 98, 104105 (2005). M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002). Y. Widjaja and C. B. Musgrave, Appl. Phys. Lett. 80, 3304 (2002). M. D. Halls and K. Raghavachari, J. Phys. Chem. B 108, 4058 (2004). M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, T. Sorsch, T. Conard, B. Brijs, and W. Vandervorst, P. I. R?is?nen, D. Muller, M. Bude, and J. Grazul, J. Appl. Phys. 92, 7168 (2002). R. L. Puurunen, J. Appl. Phys. 95, 4777 (2004). R. Chen and S. F. Bent, Adv. Mater. 18, 1086 (2006). S. G. Kandlikar, M. E. Steinke, S. Maruyama, and T. Kimura. “Molecular Dynamics Simulation and Measurement of Contact Angle of Water Droplet on a Platinum Surface” Proceedings of International Mechanical Engineering Congress and Exposition 2001, IMECE01-2832. (ASME, New York, 2001). S. Meng, E. G. Wang, and S. Gao, J. Chem. Phys. 119, 7617 (2003). H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. 89, 276102 (2002). G. A. Kimmel, N. G. Petrik, Z. Dohn?lek, and B. D. Kay, Phys. Rev. Lett. 95, 166102 (2005) A. Michaelides, A. Alavi, and D. A. King, Phys. Rev. B 69, 113404 (2004). K. Kukli, T. Aaltonen, J. Aarik, J. Lu, M. Ritala, S. Ferrari, A. H?rsta, and M. Leskel?, J. Electrochem. Soc. 152, F75 (2005). J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer Corporation, Minnesota, 1992). B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, p92 (Wiley, 3rd ed., New York, 1993). T.-P. Liu, W.-P. Huang, and T.-B. Wu, IEEE Electron Device Lett. 50, 1425 (2003). T.-P. Liu, W.-P. Huang, and T.-B. Wu, J. Vac. Sci. Technol. A 21, 502 (2003). J.-Y. Tseng, C.-W. Cheng, S.-Y. Wang, T.-B. Wu, K.-Y. Hsieh, and R. Liu, Appl. Phys. Lett. 85, 2595 (2004). Calculated from online database: http://www.lasurface.com/accueil/index.php. H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. De Gendt, M. Heyns, J. Maes, M. Tuominen, J. Non-Cryst. Solids 303, 83 (2002). G. M. Diamond, R. F. Jordan and J. L. Petersen, Organometallics 15, 4030 (1996). B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, p86 (Wiley, 3rd ed., New York, 1993). H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, D.-L. Kwong, J. S. Pan, C. H. Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett. 81, 376 (2002). R. G. Vitchev, J. J. Pireaux, T. Conard, H. Bender, J. Wolstenholme, and C. Defranoux, Appl. Surf. Sci. 235, 21 (2004). R. G. Vitchev, C. Defranoux, J. Wolstenholme, T. Conard, H. Bender, and J. J. Pireaux, J. Electron. Spectrosc. Relat. Phenom. 149, 37 (2005). R. Puthenkovilakam and J. P. Chang, J. Appl. Phys. 96, 2701 (2004). M. Koike, T. Ino, Y. Kamimuta, M. Koyama, Y. Kamata, M. Suzuki, Y. Mitani, and A. Nishiyama, Phys. Rev. B 63, 125117 (2001). H. B. Michaelson, J. Am. Chem. Soc.48, 4729 (1977). J. Robertson, Rep. Prog. Phys. 69, 327 (2006). http://www.nist.gov/srd/surface.htm P. J. Cumpson and M. P. Seah, Surf. Interface Anal. 25, 430 (1997). M. P. Seah and S. J. Spencer, Surf. Interface Anal. 33, 640 (2002).; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30680

  11. 11

    المؤلفون: 李清楠, CHING-NAN LEE

    المساهمون: 吳泰伯

    Time: 27

    وصف الملف: 155 bytes; text/html

    Relation: 1.Isuppli網站 2.黃維邦, “利用Pt(O)電極開發五氧化二鉭( Ta2O5 )薄膜之選擇性化學氣沈 積技術研究”, 清華大學, 碩士論文 (2001) 3.張志祥, “利用低壓化學氣相沉積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究”, 清華大學, 博士論文 (2000) 4.新電子科技雜誌, “未來DRAM的發展趨勢”, 153 (1998/12) 5.林振華、林振富, “ULSI DRAM技術”, 全華科技圖書股份有限公司 (2001) 6.張志祥, 吳泰伯, “ G bit DRAM應用之強介電薄膜技術與發展”, 材料會訊, 4(3), (1997) 11 7.D. E. Kotecki, “High-k Dielectric Materials for DRAM Capacitors”, Semiconductor International, 109 (1999) 8.曾鴻輝, “動態隨機存取記憶體之電容器的製造方法”, 電子資訊, 4(1), 14 (1998) 9.A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology”, IEDM 98 (1998) 10.K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee, and B. J. Park, “A 0.15um DRAM Technology Node for 4 Gb DRAM”, Symp. On VLSI Tech. Dig. of Tech. Paper, 16 (1998) 11.K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuit and Devices, 27 (1997) 12.H. S. Moon a), H. S. Choi, H. G. Jang, C. J. Hwang, S. H. Woo, I. K. Han, and H. S. Yang, ”Improvement of properties of dynamic random access memories capacitors by PH3 plasma doping process after the formation of hemispherical-grained silicon”, J. Vac. Sci. Technol. B 17, 1017 (1999) 13.Hirohito Watanabe, Nahomi Aoto, Saburo Adachi, and Takamaro Kikkawa, “Device application and structure observation for hemispherical-grained Si”, J. Appl. Phys. 71, 3538 (1992) 14.N. Matsuo, H. Ogawa, T. Kouzaki, and S. Okada, “Nucleation and growth mechanism of hemispherical grain polycrystalline silicon”, Appl. Phys. Lett. 60, 2607 (1992) 15.J. M. Sallese a), A. Ils, D. Bouvet, P. Fazan, and Chris Merritt, “ Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation”, J. Appl. Phys. 88, 5751 (2000) 16.Hiroshi Iwai, and Shun’ichiro Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit, and System (2002) 17.G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices”, IWGI, 14 (2001) 18.International Technology Roadmap for Semiconductor 2003, 2004 19.劉子平, “下電極材料對化學氣相沉積Ta2O5薄膜應用在動態隨機存取記憶體 影響之研究”, 清華大學, 博士論文 (2002) 20.李佩娟, “以反應式濺鍍法製作低溫度係數(Ta,Ti)N薄膜電阻與高介電常數( Ta2O5)1-x-(TiO2)x薄膜電容”, 清華大學, 碩士論文 (1998) 21.K. L. Saenger, and S. M. Rossnagel, “Properties and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Material”, Mat. Res. Soc. Symp. Proc., 598, 57 (2000) 22.M. H. Kim, T. S. Park, and E. Yoon, “Changes in preferred orientation of Pt thin films deposited by DC magnetron sputtering using Ar/O2 gas mixtures”, J. Mater. Res., 14(4), (1999) 1255 23.國家奈米元件實驗室, “積體電路製程技術訓練班講義”, (2004) 24.國家奈米元件實驗室, ”積體電路製程技術見習班講義”, (2004) 25.A. Waxman and K. H. Zaininger, “ Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 (1968) 26.V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys. 89, 3301 (2001) 27.M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structural, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 (2000) 28.Han Gao, Cheng Mu, Fan Wang, Dongsheng Xu, Kai Wu,a) and Youchang Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 (2003) 29.Aurelian C. Ga^lca, E Stefan Kooij,a) Herbert Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 (2003) 30.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys, 89 5234 (2001) 31.M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeller, Appl. Phys. Lett. 78, 2670 (2001) 32.M. Leskela and M. Ritala, J. Phys. (France) Ⅳ5, C5-937, (1995) 33.E. Fredriksson and J. O. Carlsson, J. Chem. Vapor Dep. 1. 333 (1993) 34.D. Riihela, M. Ritala, R. Matero, and M. Leskela, Thin Solid Films 289, 250 (1996) 35.連振炘, “金氧半元件物理課程講義 Chap. 8”, (2004) 36.Michel Houssa, “High-K Gate Dielectrics”, published by Institute of Physics Publishing (2004) 37.James Kolodzey, Enam Ahmed Chowdhury, Thomas N. Adam, Guohua Qui, I. Rau, Johnson Olufemi Olowolafe, John S. Suehle, and Yaun Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 (2000) 38.G. D. Wilk a), R. M. Wallace b),and J. M. Anthony,” Applied Physics Review: High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001) 39.Dae-Gyu Park a), Heung-Jae Cho, Kwan-Yong Lim, Chan Lim, In-Seok Yeo, Jae-Sung Roh, and Jin Won Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 (2001) 40.莊達人, “VLSI製造技術” 41.Szu-Wei Huang and Jenn-Gwo Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by Anodization Followed by furnace annealing”, IEEE Trans. Elec. Dev. 50, 1658 (2003) 42.Chih-Sheng Kou, Jui-Feng Hsu, Szu-Wei Huang, Lurng-Shehng Lee, Ming-Jinn Tsai, and Jenn-Gwo Hwu, “High-k Al2O3 gate dielectrics prepared by oxidation of aluminum film in nitric acid followed by high-temperature annealing”, IEEE Trans. Elec. Dev. 51, 854 (2004) 43.James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology Fundamentals, Practice and Modeling”, published by Prentice Hall Electronics and VLSI Series 44.Toshiro Maruyama, and Susumu Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate”, Appl. Phys. Lett. 60, 322 (1992) 45.J. S. Kim, H. A. Marzouk, P. J. Reucroft, J. D. Roberision, and C. E. Hamrin, Jr., “Fabrication of aluminum oxide thin films by a low-pressure metalorganic chemical vapor deposition technique”, Appl. Phys. Lett. 62, 681 (1993) 46.H. O. Pierson, “Handbook of Chemical Vapor Deposition Principles, Technology and Application”, Noyes Publications U.S.A., (1995) 47.S. Guha a), E. Cartier, N. A. Bojarczuk, J. Bruley b), L. Gignac, and J. Karasinski, “High-quality aluminum oxide gate dielectrics by ultra-high vacuum reactive atomic-beam deposition”, J. Appl. Phys. 90, 512 (2001) 48.G. S. Higashi, and C. G.Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectric”, Appl. Phys. Lett. 55, 1963 (1989) 49.Ronald Kuse,a) Manisha Kundu, Tetsuji Yasuda, Noriyuki Miyata, and Akira Toriumi, “Effect of precursor concentration in atomic layer deposition of Al2O3”, J. Appl. Phys. 94, 6411 (2003) 50.Yuniarto Widjaja, Charles B. Musgrave,a) “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 (2002) 51.Martin M. Frank a),b), Yves J. Chabal b) and Glen D. Wilk b), “Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides”, Appl. Phys. Lett. 82, 4758 (2003) 52.J. B. Kim, D. R. Kwon, K. Chakrabarti, Chongmu Lee a) K.Y. Oh, and J.H. Lee, “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 92, 6739 (2002) 53.M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G, Friedbacher, and M. Grasserbauer, Thin Solid Films 286, 54 (1996) 54.R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, Thin Solid Films 368, 1 (2000) 55.D. R. Strongin, J. F. Moore, and M. W. Ruckman, “Synchrotron radiation assisted deposition of aluminum oxide form condensed layer of trimethylaluminum and water at 78K”, Appl. Phys. Lett. 61. 792 (1992) 56.Suvi Haukka, Eeva-Liisa, and Toumo Suntola, “Surface coverage of ALE precursors on oxides”, Appl. Surf. Sci. 82/83, 548-552 (1994) 57.H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films”, publishes by Academic Press, P.103~P.159 58.T.M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. Baumyol, and G. N. Parsons a), “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100)”, Appl. Phys. Lett. 75, 4001 (1999) 59.Aicha A. R. Elshabini-Riad Fred D. “ Thin Film Technology Handbook”, The McGraw-Hill Companies, Inc, ISBN0-07-115998-7 60.陳力俊等人主編,”微電子材料與製程”, (2000) P.107 61.H. N. AlShareef, K. D. Gifford, S. H. Rou, P. H. Hren, O. Auciello, A. I. KIngon, Integrated Ferroelectrics, (1993) P.321 62.Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electroinc Mater., 27 (1998) P.418 63.T. Maeder, L. Sagalowicz and P. Muralt, “ Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers”, Jpn. J. Appl. Phys. 37, 2007 (1998) 64.吳世全, 電子期刊第五卷第五期, P.129 65.J. R. Mcbride, G. W. Graham, C. R. Peters, and W. H. Weber, “Growth and characterization of reactively sputtered thin-film platinum oxides”, J. Appl. Phys. 69, 1596 (1991) 66.Yoshio Abe, Midori Kawamura and Katsutaka Sasaki, “Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electric properties”, Jpn. J. Appl. Phys. 38, 2092 (1999) 67.Kwangbae Lee a), Byung Roh Rhee, and Chanku Lee, “Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barrier”, Appl. Pyhs. Lett. 79, 821 (2001) 68.Jae-Hyun JOO, Wan-Don Kim, Yong-Kuk Jeong, Seok-Jun Won, Soon-Yeon Park, Cha-Young YOO, Sun-Tae Kim and Joo-Tae Moon, “ Rugged metel electrode (RME) for high density memory devices”, Jpn. J. Appl. Phys. 40, 826 (2001) 69.Jae Hyoung Choi, Jeong-Hee Chung, Se-Hoon Oh, Jeong Sik Choi, Cha-young Yoo, Sung-Tae Kim, U-In Chung, and Jeong-Tae Moon, “New approaches to Improve the Endurance of TiN/HfO2/TiN Capacitor during the Back-end process for 70nm DRAM Device”, IEDM 03-661, 2003 70.D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A deposition model”, J. Appl. Phys. 96, 820 (2004) 71.C. –S. Shin, S. Rudenja, D. Gall, N. Hellgren, T. –Y. Lee, I. Petrov a), and J. E. Greene, “ Growth, surface morphology, and electrical resistivity of strained substoichiometric epitaxial TiNx (0.67; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/27743

  12. 12
  13. 13
  14. 14