يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"动态效应"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Report
  2. 2
    Academic Journal

    المؤلفون: 雷明, 赵欣娜

    المساهمون: 北京大学光华管理学院, 中国五矿集团公司

    المصدر: 知网

    مصطلحات موضوعية: Malmquist, 碳排放, 绿色核算, 动态效应, 网络效应

    Relation: 经济学报.2014,(04),158-187.; 906644; http://hdl.handle.net/20.500.11897/75708

  3. 3
    Academic Journal
  4. 4
    Conference

    المساهمون: 王偉中

    Time: 28

    وصف الملف: 150 bytes; text/html

    Relation: 中華民國振動與噪音工程學會論文集, 中華民國振動與噪音工程學會, May 1998, Pages 111-121; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/50838

  5. 5
  6. 6
    Dissertation/ Thesis
  7. 7
  8. 8

    المؤلفون: 刘金兴, 梁乃刚

    Relation: 第十八届全国疲劳与断裂学术会议论文摘要集; 刘金兴,梁乃刚. 非均质材料准脆性损伤断裂的广义梁链网模型[C]. 见:第十八届全国疲劳与断裂学术会议. 中国河南郑州. 2016-04-15; http://dspace.imech.ac.cn/handle/311007/60865

  9. 9
    Dissertation/ Thesis

    المؤلفون: Lee, Chia-Wei, 李嘉偉

    المساهمون: 林凡異, Lin, Fan-Yi

    Time: 49

    Relation: [1] Y. Yeh and H.Z. Cummins, ”Localized Fluid Flow Measurements with an He-Ne Laser Spectrometer”, Applied Physics Letters, 4 176 (1964). [2] M. Yoshikawa, N. Suzuki, and T. Suzuki, ”Coherence Characteristics of a Single- Mode GaAlAs Laser Diode”, Journal of the Optical Society of America, 71 171 (1981). [3] S.W. Jame, R.A. Lockey, D. Egan and R.P. Tatam, ”Fibre Optic Base Referance Beam Laser Doppler Velocimeter”, Optics Communications, 119 460 (1995). [4] R. J. Forster, N. Langford, A. Gloag, L. Zhang, J. A. R. Williams, and I. Bennion, ”Narrow Linewidth Operation of an Erbium Fiber Laser Containing a Chirped Bragg Grating Etalon”, Journal of Lightwavw Technology, 15 2130 (1997). [5] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. A. R. Williams, and I. Bennion, ”Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm”, Journal of Lightwavw Technology, 22 57 (2004). [6] U. Sharma, G. Chen, and Jin U. Kang, ”Fiber Optic Confocal Laser Doppler Velocimeter using an All-Fiber Laser Source for High Resolution Measurements”, Optics Express, 13 6250 (2005). [7] N. P. Barnes , B. M. Walsh, D. J. Reichle and R. J. DeYoung, ”Tm:Fiber Lasers for Remote Sensing”, Optical Materials, 31 1061 (2009). [8] W. Huang, H. Gui, L. Lu, J. Xie, H. Ming, D. He, H. Wang and T. Zhao, ”Effect of Angle of Incidence on Self-Mixing Laser Doppler Velocimeter and Optimization of the System”, Optics Communications, 218 1662 (2008). [9] S. Rothberg, ”Numerical Simulation of Speckle Noise in Laser Vibrometry”, Applied Optics, 45 4523 (2006). [10] G. Giuliani, M. Norgia, S. Donati and T. Bosch, ”Laser Diode Self-Mixing Technique for Sensing Applications”, Journal of Optics A: Pure and Applied Optics, 4 S283 (2002). [11] A. Dabas, P.H. Flamant and P. Salamitou, ” Characterization of Pulsed coherent Doppler Lidar with the Speckle Effect”, Journal of Optics A: Pure and Applied Optics, 4 S283 (2002). [12] C.A. Hill, M. Harris and K.D. Ridley, ”Lidar Frequency Modulation Vibrometry in the Presence ofSpeckle”, Applied Optics 42 1091 (2003). [13] M. Denman, N. Halliwell and S. Rothberg, ”Speckle noise reduction in laser vibrometry: Experimental and numerical optimisation”, Second INnternational Conference on Vibration Measurement by Laser Techniques: Advances and Applications, 2868 12 (1996). [14] S.K. Hwang and J.M. Liu, ”Dynamical Characteristics of an Optically Injected Semiconductor Laser” Optics Communications, 183 195 (2000). [15] J. Ohtsubo, ”Semiconductor Lasers Stability, Instability and Chaos”, Heidelberg: Springer-Verlag, Berlin (2008). [16] T.B. Simpson, ”Phase-Locked Microwave-Frequency Modulations in Optically- Injected Laser Diode”, OpticsCommunications, 170 93 (1999). [17] T.B. Simpson, ”Double-Locked Laser Diode for Microwave Photonics Applications”, IEEE Photonics Technology Letter, 11 1476 (1999). [18] D. Rosemary, S.C. Chan, and J.M. Lin, ”Lidar Detection using a Dual-Frequency Source”, Optics Letter , 31 3600 (2006). [19] L.B. Mercer, ”1/f Noise Effects on Self-Heterodyne Linewidth Measurement”, Journal of Lightwave Thchology, 9 485 (1991). [20] H. Ludvigsen, M. Tossavainen and M. Kaivola, ”Laser Linewidth Measurement using Self-Heterodyne Detection with Short Delay”, Optics Communications, 155 180 (1998). [21] M. Han and A. Wang, ”Analysis of a Loss-Compensated Recirculating Delayed Self- Heterodyne Interferometer for Laser Linewidth Measurement”, Applied Physics B, 81 53 (2008). [22] X.P. Chen, M. Han, Y.Z. Zhu, B. Dong and A.B. Wang, ” Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement”, Applied Optics, 45 7712 (2006). [23] ELOVIS, http://www.elovis.de/en/produkte/index.html [24] ASTECH, http://www.astech.de/english/home.html; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/67714

  10. 10
    Dissertation/ Thesis

    المؤلفون: 連俊光, Lien, Chun-Kuang

    المساهمون: 賴君亮, 臺灣大學:機械工程學研究所

    وصف الملف: 686847 bytes; application/pdf

    Relation: [1] J. Stefan, Ann Phys. U. Chem. (Wiedemann) N. F.Vol.42, pp269 [2] John Crank, Free and Moving Boundary Problems, Clarendon Press, 1984 [3] 呂璞石,黃振賢,金屬材料, 1978, 文京書局 [4] B.Mutaftschiev, “Nucleation Theory,” in Handbook of Crystal Growth,ed. D. T. J. Hurle, Vol.2 Fundamentals, Part A: Thermodynamics and Kinetics, North-Holland, 1993, pp.187-247 [5] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed.(Oxford University Press, London, 1975) [6] L. N. Tao, The Stefan Problem with Arbitrary Initial and Boundary Conditions, Quarterly of Applied Mathematics, October 1978, 223-233 [7] L. N. Tao, The Analyticity and Genral Solution of the Cauchy-Stefan Problem, Quarterly Journal of Mechanics and Applied Mathematics, 1983, Vol. 36: 487-504 [8] 黃忠賢,持續移動的邊界條件對固化現象之影響-模擬ESR系統 中金屬熔液固化之簡化模式,國立台灣大學機械工程學研究所 碩士論文 1995 [9] W. W. Mullins, and R. F. Sekerka, Stability of a Planar Interface during Solidification of a Dilute Binary Alloy, Journal of Applied Physics, 1964, Vol. 35, 444-451 [10] Morphological Stability, Crystal Growth: an Introduction (ed. P. Hartman), 1973, 403-442 [11] J. S. Langer, Instability and Pattern Formation in Crystal Growth, Reviews of Modern Physics, 1980, Vol. 52, 1-28 [12] R. N. Hills, D. E. Loper, and P. H. Roberts, a Thermodynamically Consistent Model of a Mushy Zone, Quarterly Journal of Mechanics and Applied Mathematics, 1983 , Vol. 36: 505-540 [13] H. E. Huppert, and M.G. Worster, Dynamic Slidification of a Binary Melt,Nature,1985, Vol. 314, 703-707 [14] M.G. Worster, Solidification of an Alloy from a Cooled Boundary, J. Fluid Mech., 1986, Vol. 167, 481- 501 [15] D. L. Felthan and M.G. Worster, Similarity Solution Describing the Melting of a Mushy Layer, Journal of Crystal Growth 208, 2000, 746-756 [16] M.Kaviany, Principle of Heat Transfer in Porous Media, Springer-Verlag, 1973, London. [17] Szekely and Chhabra, The Effect of Natural Convection on the Shape and Movement of the Melt-Solid Interface in the Controlled Solidification, Metallurgical Transactions B, Vol.1, 1970, pp 1195-1203 [18] F. M. Chiesa and R. I. L. Guthie, Natural Convection Heat Transfer Rate during the Solidification and Melting of Metals and Alloy Systems, Journal of Heat Transfer, Vol.96, 1974, pp377-384 [19] M. Ben Amar, P. H. Bouissou, and P. Pelce, An Exact Solution for the Shape of a Crystal Growing in a forced flow, Journal of Crystal Growth 92, 1988, 97- 100 [20] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Oxford : Clarendon Press, 1961 [21] R. Ananth and W. N. Gill, The effect of convection on axisymmetric parabolic dendrites, Chem. Eng. Comm. 68, 1988a,1-14 [22] T. P. Schulze, and M. G. Worster, A Numerical Investigation of Steady Convection in Mushy Layers during the Directional Solidification of Binary Alloys, J. Fluid Mech. 356, 199-202 [23] S. Tait, K. Jahrling, and C. Jaupart, The Planform of Composition Convection and Chimney Formatiom in a Mushy Zone, Nature 359, 1992, 406-408 [24] Flemings, Solidification Processing, McGraw-Hill, 1964. [25] 王富明,固化介面的成長與熱張力氣泡的遷移,國立台灣大學 機械工程學研究所碩士論文 1995 [26] L. N. Tao, on Solidification Problems Including the Density Jump at the Moving Boundary, Quarterly of Applied Mathematics, 1978, 175-185 [27] S. H. Davis, Theory of Solidification, Cambridge University Press [28] P. W. Bates, P. C. Fife, R. A. Gardner, and C. K. R. T. Jones, Phase Field Models for Hypercooled Solidification, Physica D 104, 1997, 1-31 [29] K. Nagashima, Y. Furukawa, Nonequilibrium effect of anisotropic interface kinetics on the directional growth of ice crystals, Journal of Crystal Growth 171, 1997, 577-585 [30] S. R. Coriell,, B. T. Murray, A. A. Chernov, Kinetic self-stabilization of a stepped interface: Growth into a supercooled melt, Journal of Crystal Growth 149, 1995, 120-130 [31] D .E .Coates, J. S. Kirkaldy, Met. Trans. 2(1971) 3467 [32] P. Maugis, W. D. Hopfe, J. E. Morral, J.S. Kirkaldy, Degeneracy of Diffusion Paths in Ternary, Two-Phase Diffusion Couple, J. Appl. Phys. 79(1996)7592 [33] S. R. Coriell, G. B. McFadden, R. F. Sekerka, Multiple Similarity Solutions for Solidification and Melting, Journal of Crystal Growth 191(1998) 573-585 [34] S. R. Coriell, G. B. McFadden, R. F. Sekerka, Selection Mechanisms for Multiple Similarity Solutions for Solidification and Melting, Journal of Crystal Growth 200(1999) 276-286 [35] S. R. Coriell, and R. f. Sekerka, Oscillatory Morphological Instabilities Due To Non-equilibrium Segregation, Journal of Crystal Growth, 1983, Vol. 61, 499-508 [36] G. H. Rodway, J. D. Hunt, J. Crystal Growth 112,1991, 554 [37] A. A. Samarskii, P. N. Vabishchevich, O. P. Iliev, and A. G. Churbanov, Numerical Simulation of Convection/Diffusion Phase Change Problems-a Review, Int. J. Heat Mass Transfer 36, 1993, 4095-4106. [38] N. Shamsundar, and E. M. Sparrow, Analysis of Multidimensional Conduction Phase Change via the Enthalpy Model, Journal of Heat Transfer, Vol. 97, 1975, 333-340 [39] V. R. Voller, N. C. Markatos, and M. Cross, Numeriacl Simulatons of Fluid Flow and Heat/Mass Transfer Processes, Springer-Verlag, Berlin, 1986. [40] V. R. Voller, M. Cross, and N. C. Markatos, An Enthalpy Method for Convection/Diffusion Phase Change, International Journal for Numerical Method in Engineering, Vol. 24, 1987, 271-284 [41] V. R. Voller, and C. Prakash, A Fixed Grid Numerical Modelling Methodology for Convection/Diffusion Mushy Region Phase Change Problems, International Journal of Heat and Mass Transfer, Vol. 30, 1987, 1709-1719. [42] A. D. Brent, V. R. Voller, and K. J. Reid, Enthalpy- Porosity Technique for Modelling Convection-Diffusion Phase-Change: Application to theMelting of a Pure Metal, Numerical Heat Transfer, Vol. 13, 1988, 297- 318. [43] W. D. Murray and F. Landis, Numerical and Machine Solution of Transient Heat-Conduction Problem Involving Melting or Freezing, Trans. ASME, J. Heat Transfer 81, 1959, 106-112 [44] P. R. Rao, and V. M. K. Sastri, Efficient Numerical Method for Two-Dimension Phase Change Problem, Int. J. Heat and Mass Transfer, Vol. 27, No. 11, 1984, 2077-2084. [45] S. V. Patanka, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/61567; http://ntur.lib.ntu.edu.tw/bitstream/246246/61567/1/ntu-96-R93522106-1.pdf