يعرض 1 - 20 نتائج من 39 نتيجة بحث عن '"分解式"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference

    المؤلفون: 王敏中

    المساهمون: 北京大学力学与工程科学系

    المصدر: 知网

    Relation: 北京力学会第二十三届学术年会. 2017, 2.; 1959735; http://hdl.handle.net/20.500.11897/490568

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Report
  6. 6
    Academic Journal

    المؤلفون: 汪仁官, 高惠璇

    المساهمون: 北京大学概率统计系

    المصدر: 知网

    Relation: 数理统计与管理.1991,(06),43-46.; 1031103; http://hdl.handle.net/20.500.11897/13228

  7. 7
  8. 8
    Dissertation/ Thesis
  9. 9
    Dissertation/ Thesis
  10. 10
    Dissertation/ Thesis
  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
  14. 14
    Dissertation/ Thesis
  15. 15
    Dissertation/ Thesis
  16. 16
  17. 17
  18. 18
    Dissertation/ Thesis
  19. 19
    Dissertation/ Thesis

    المؤلفون: 于濂波, Yu, Lien-Po

    المساهمون: 顏嗣鈞, 臺灣大學:電機工程學研究所

    وصف الملف: 748184 bytes; application/pdf

    Relation: [1] R. Alur and D. Dill, "A theory of timed automata", Theoret. Comput. Sci., 126, pp.183-235, 1994. [2] P. Abdulla and B. Jonsson, "Undecidable verification problems for programs with unreliable channels", Inform. and Comput., 130, pp.71-90, 1996. [3] A. Bouajjani and R. Mayr, "Model checking lossy vector addition systems", Proc. of STACS'99, LNCS 1563, pp.323-333, 1999. [4] G. Cece, A. Finkel and S. Iyer, "Unreliable channels are easier to verify than perfect channels", Inform. and Comput., 124(1), pp.20-31, 1996. [5] L. Cherkasova, R. Howell and L. Rosier, "Bounded self-stabilizing Petri nets", Acta Informatica, 32, pp.189-207, 1995. [6] E. Clarke, O. Grumberg and D. Long, "Veri‾cation Tools for Finite-State Concurrent Systems", Lecture Notes in Computer Science, 803, Springer-Verlag, pp.124-175, 1994. [7] L. Dickson, "Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors", Amer. J. Math., 35, pp.413-422, 1913. [8] E. Dijkstra, "Self-stabilizing systems in spite of distributed control", C. ACM, 17, pp.643-644, 1974. [9] S. Ginsburg, "The mathematical theory of context-free languages", McGraw-Hill, 1966. [10] M. Gouda, R. Howell and L. Rosier, "The instability of self-stabilization", Acta Informatica, 27, pp.697-724, 1990. [11] T. Herman, "A comprehensive bibliography on self-stabilization", http://www.cs.uiowa.edu/ftp/selfstab/bibliography), Chicago Journal of Theoretical Computer Science, 1998. [12] L. Holloway and B. Krogh, "Controlled Petri nets: a tutorial survey", Discrete Event Systems, Lecture Notes in Control and Information Sciences, 199, G. Cohen and J.-P. Quadrat (eds.), pp.158-168, Springer-Verlag, 1994. [13] J. Hopcroft and J. Pansiot, "On the reachability problem for 5-dimensional vector addition systems", Theoret. Comput. Sci., 8(2), pp.135-159, 1979. [14] R. Howell and L. Rosier, "On questions of fairness and temporal logic for conflictfree Petri nets", in G. Rozenberg, editor, Advances in Petri Nets, LNCS 340, pp.200-226, Springer-Verlag, Berlin, 1988. [15] R. Howell, L. Rosier and H. Yen, "Normal and sinkless Petri nets", Journal of Computer and System Sciences, 46, pp.1-26, 1993. [16] A. Ichikawa and K. Hiraishi, "Analysis and control of discrete event systems represented by Petri nets", LNCIS 103, pp.115-134, 1987. [17] R. Kosaraju, "Decidability of reachability in vector addition systems", Proc. the 14th Annual ACM Symposium on Theory of Computing, pp.267-280, 1982. [18] R. Kumar and V. K. Garg, "Control of stochastic discrete event systems modeled by Probabilistic languages", IEEE Transaction on Automatic Control, 46(4), pp.593-606, 2001. [19] P. Kungas, "Resource-conscious AI planning with conjunctions and disjunctions", Acta Cybernetica, 15(4), pp.601-620, 2002. [20] L. Landweber and E. Robertson, "Properties of con°ict-free and persistent Petri nets", J. ACM 25(3), pp.352-364, 1978. [21] R. Lipton, "The reachability problem requires exponential space", Technical Report 62, Yale University, Dept. of CS., Jan. 1976. [22] M. Lawford and W. M. Wonham, "Supervisory control of probabilistic discrete event systems", Proc. 36th Midwest Symp. Circuits Systems, pp.327-331, 1993. [23] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis, "Modeling with generalized stochastic petri nets", John Wiley & Sons, 1995. [24] T. Matsumoto and Y. Mayano, "Reachability criterion for Petri nets with known‾ring vectors", IEICE Trans. on Fundamentals in Electronics, Communications and Computer Science, Vol. 81-A, No. 4, pp.628-634. 1998. [25] E. Mayr, "An algorithm for the general Petri net reachability problem", SIAM J. Comput. 13, pp.441-460, 1984. [26] R. Mayr, "Undecidable problems in unreliable computations", Theoret. Comput. Sci., 1-3(297), pp.337-354, 2003. [27] T. Murata, "Petri nets: properties, analysis and applications", Proc. of the IEEE, 77(4), pp.541-580, 1989. [28] H. Olsen, "Automatic veri‾cation of Petri nets in a CLP framework", Ph.D. Thesis, Dept. of Computer and Information Science, IDA, LinkÄoping Univ., 1997. [29] J. Peterson, "Petri Net Theory and the Modeling of Systems", Prentice Hall, Englewood Cli®s, NJ, 1981. [30] M. Presburger, ""Uber die vollstÄandigkeit eines gewissen systems der arithmetik.", Comptes rendues du premier Congres des Math. des Pays Slaves, Warsaw, pp.92-101, 395, 1929. [31] P. Ramachandran and M. Kamath, "A sufficient condition for reachability in a general Petri net", Discrete Event Dynamic Systems, vol. 14, no. 3, pp.251-266, July 2004. [32] W. Reisig, "Petri Nets: An Introduction", Springer-Verlag, New York, 1985. [33] L. Rosier and H. Yen, "Logspace hierarchies, polynomial time and the complexity of fairness problems concerning w-machines", SIAM J. Computing, 16(5), pp.779- 807, 1987. [34] D. Schmidt, "Denotational Semantics", Allyn and Bacon, 1986. [35] R. Valk and M. Jantzen, "The Residue of Vector Sets with Applications to Decidability in Petri Nets", Acta Informatica, 21, pp.643-674, 1985. [36] H. Yamasaki, "Normal Petri nets", Theor. Comput. Sci., 31, pp.307-315, 1984. [37] H. Yen, B.Wang and M. Yang, "Deciding a class of path formulas for conflict-free Petri nets", Theory of Computing Systems, 30(5), pp.475-494, 1997. [38] H. Yen, "A unified approach for deciding the existence of certain Petri net paths", Inform. and Comput., 96(1), pp.119-137, 1992. [39] H. Yen, "On the regularity of Petri net languages", Inform. and Comput., 124(2), pp.168-181, 1996. [40] H. Yen, "On reachability equivalence for BPP-nets", Theoretical Computer Science, 179, pp.301-317, 1997. [41] H. Yen, "A valuation-based analysis of conflict-free Petri nets", Systems and Control Letters, 45(5), pp.387-395, 2002.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/53241; http://ntur.lib.ntu.edu.tw/bitstream/246246/53241/1/ntu-94-D87921019-1.pdf

  20. 20
    Academic Journal

    المؤلفون: 程乾生, 许承德

    المساهمون: 北京大学, 哈尔滨工业大学

    المصدر: 知网

    Relation: 数学学报.1983,(04),424-432.; 754259; http://hdl.handle.net/20.500.11897/300073