يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"以樣本為基礎法"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1

    المؤلفون: 施定, Shih, Ting-Wei

    المساهمون: 淡江大學資訊工程學系碩士班, 林慧珍, Lin, Hwei-Jen

    وصف الملف: 144 bytes; text/html

    Relation: [1] H. Chang, D. Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, Vol. 1, pp. I-I. [2] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, 290(5500), 2323-2326, 2000. [3] H. Demirel, S. Izadpanahi, and G. Anbarjafari, “Improved motion-based localized super resolution technique using discrete wavelet transform for low resolution video enhancement,” 17th European Signal Processing Conference, pp. 1097-1101, August, 2009. [4] B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes, and R. M. Mersereau, “Eigenface-domain super-resolution for face recognition,” IEEE Transactions on Image Processing, 12(5), 597-606, 2003. [5] K. Jia and S. Gong, “Multi-modal tensor face for simultaneous super-resolution and recognition,” Tenth IEEE International Conference on Computer Vision (ICCV 2005), Vol. 2, pp. 1683-1690, October, 2005. [6] P. H. Hennings-Yeomans, S. Baker, and B. V. K. V. Kumar, “Simultaneous super-resolution and feature extraction for recognition of low-resolution faces,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1-8, June, 2008. [7] J. Cui, Y. Wang, J. Huang, T. Tan, and Z. Sun, “An iris image synthesis method based on PCA and super-resolution,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), Vol. 4, pp. 471-474, August, 2004. [8] M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nature Reviews Molecular Cell Biology, 9(12), 929-943, 2008. [9] H. Greenspan, “Super-resolution in medical imaging,” The Computer Journal, 52(1), 43-63, 2009. [10] B. Huang, M. Bates, and X. Zhuang, “Super resolution fluorescence microscopy,” Annual review of biochemistry, 78, 993-1016, 2009. [11] J. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and H. Azhari, “Super-resolution in PET imaging,” IEEE Transactions on Medical Imaging, 25(2), 137-147, 2006. [12] M. T. Merino and J. Nunez, “Super-resolution of remotely sensed images with variable-pixel linear reconstruction,” IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1446-1457, 2007. [13] M. Choi, R. Y. Kim, M. R. Nam, and H. O. Kim, “Fusion of multispectral and panchromatic satellite images using the curvelet transform,” IEEE Geoscience and remote sensing letters, 2(2), 136-140, 2005. [14] D. Geman and B. Jedynak, “An active testing model for tracking roads in satellite images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1), 1-14, 1996. [15] H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” Geoscience and Remote Sensing, 49(6), 2011. [16] R.G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transaction on Acoustics, Speech, Signal Processing, 29:1153–1160, 1981. [17] W. F. Schreiber, “Fundamentals of electronic imaging systems,” Springer-Verlag, 1986. [18] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient profile prior,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1-8, 2008. [19] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,” 2009 IEEE 12th International Conference on Computer Vision, pp. 349-356, 2009. [20] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,” Computer Graphics and Applications, 2002, 22(2), 56-65. [21] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, 19(11), 2861-2873, 2010. [22] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in Curves and Surfaces, pp. 711-730, 2012. [23] D. Capel and A. Zisserman, “Super-resolution from multiple views using learnt image models,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Vol. 2, pp. II-627, 2001. [24] C. Y. Yang, and M. H. Yang, “Fast direct super-resolution by simple functions,” 2013 IEEE 14th International Conference on Computer Vision, pp. 561-568, December, 2013. [25] R. Timofte, V. De, and L. Van Gool, “Anchored neighborhood regression for fast example-based super-resolution,” 2013 IEEE International Conference on Computer Vision, pp. 1920-1927, December, 2013. [26] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027-1035, January, 2007.; U0002-0709201511051400; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/105692; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/105692/1/index.html