يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"不確定間隔系統"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1

    المؤلفون: 高春暉, Gao, Chun-hui

    المساهمون: 淡江大學電機工程學系碩士班, 許陳鑑, Hsu, Chen-chien

    وصف الملف: 143 bytes; application/octet-stream

    Relation: [1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, Vol. 4, 1995, pp. 1942-1948. [2] K. Deb and R. C. Eberhart, Swarm Intelligence, Academic Press, London, 2001. [3] Z. L. Gaing, “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, Vo1. 19, No. 2, 2004, pp. 384-391. [4] J. F. Schutte, B. Koh, J. A. Reinbolt, R. T. Haftka, A. D. George, and B. J. Fregly, “Evaluation of a Particle Swarm Algorithm for Biomechanical Optimization,” Journal of Biomechanical Engineering, Vo1. 127, No. 3, 2005, pp. 465-474. [5] J. F. Schutte and A. A. Groenwold, “A Study of Global Optimization Using Particle Swarms,“ Journal of Global Optimization, Vol. 31, No. 1, 2005, pp. 93-108. [6] P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, July, 1999, pp. 1958-1962. [7] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George, “Parallel global optimization with the particle swarm algorithm,” Numerical Methods in Engineering, Vol. 61, No.13, 2004, pp. 2296-2315. [8] K. E. Parsopoulos and M. N. Vrahatis, “Pecent approaches to global optimization problems through Particle Swarm Optimization,” Natural Computing, Vo1. 1, 2002, pp. 235-306. [9] Y. Shi and R. C. Eberhart, “ Parameter selection in particle swarm optimization,” in Evolutionary Programming VII: Proc. EP98, New York, Vol. 1447, 1998, pp. 591-600. [10] Y. Shi, R. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE Conference on Evolutionary Computation, 1998, pp. 69-73. [11] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” Proc. 1999 Congress on Evolutionary Computation, Washington, DC, Vol. 3, 1999, pp. 1951-1957. [12] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage Security Assessment,” IEEE Transactions on Power Systems, Vol. 15, No. 4, 2000, pp. 1232-1239. [13] N. Shigenori, G. Takamu, Y. Toshiku, and F. Yoshikazu, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Transaction on Power Systems, February, Vol. 18, No. 1, 2003, pp. 60-68. [14] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task assignment problem,” Microprocessors and Microsystems, Vol. 26, No. 8, 2002, pp. 363-371. [15] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, Vol. 85, No. 6, 2003, pp. 317-325. [16] N. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, Vol. 7, 1965, pp. 308-313. [17] L. Yu, Q. Zheng, S. Zhewen, and L. Jiang, “Center particle swarm optimization,” Neurocomputing, Vol. 70, No.4-6, 2007, pp. 672-679. [18] J.S.H. Tsai, C.S. Shieh, and Y.Y. Sun, “Digital modeling and robust digital redesign of sampled-data uncertain systems via the interval tuning bilinear approximation method,” Journal of the Franklin Institute, Vol. 338, 2001, pp. 615-630. [19] B. Barmish, New Tools for Robustness of Linear Systems, Macmillan Publihing Company, New York, 1994. [20] C. T. Chen, Analog & digital control system design, Saunders College Publishing, 1993. [21] K. strom, Computer-controlled systems, Prentice-Hall, 1990. [22] G. Frank, J. Powell, and M. Workman, Digital Control of Dynamic Systems, Addition-Wesley, 1990. [23] D. Williamson, Digital control and implementation - Finite wordlength considerations, Prentice Hall, 1991. [24] R. Middleton and G. Goodwin, Digital control and estimation - A unified approach, Prentice-Hall, 1990. [25] Doyle JC, Glover K, Khargonekar PP, Francis BA. “State-space solutions to standard H2 and H1 control problems,” IEEE Trans Automatic Control, Vol. 34, No. 8, 1989, pp. 831–847. [26] Qu Z., Robust control of nonlinear uncertain systems. New York: John Wiley & Sons, 1998. [27] Geir E. Dullerud, Fernando G. Paganini, A course in robust control theory: a convex approach. New York: Springer, 2000. [28] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, pp. 1541-1545, 1993. [29] S. P. Bhattacharyya, H. Chapellat, and L. Keel, Robust Control – The Parametric Approach, Prentice Hall. 1995. [30] C. C. Hsu, S. C. Chang, and C. Y. Yu, “Multiobjective Evolutionary Approach to the Design of Optimal Controllers for Interval Plants Based on Parallel Computation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No.9, Sep, 2006, pp.2363-2373. [31] C. C. Hsu and C. Y. Yu, “Design of optimal controller for interval plant from signal energy point of view via evolutionary approaches,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 34, No. 3, June, 2004, pp. 1609-1617. [32] Y. N. Rosenvasser, K. Yu. Polyakov, and B. P. Lampe, “Application of Laplace Transformation for Digital Redesign of Continuous Control Systems,” IEEE Transactions on automatic control, Vol. 44, No. 4, April, 1999, pp. 883-886. [33] L. S. Shieh, B. B. Decrocq, and J. L. Zhang, “Optimal digital redesign of cascaded analogue controllers,” in Optimal Control Application and Methods, vol. 12, 1991, pp. 205–219. [34] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new approach to the digital redesign of continuous-time controllers,” in Control Theory and Advanced Technology, vol. 8, 1992, pp. 37–57. [35] J. P. Keller and B. D. O. Anderson, “A New Approach to the Discretization of Continuous-Time Controllers,” IEEE Trans. on AC, Vol.37, No.2, 1992, pp. 214-223. [36] Chen-Chien Hsu, Kai-Ming Tse, and Chi-Hsu Wang, “Digital redesign ofmcontinuous systems with improved suitability using genetic algorithms,” Electronics Letters, Vol. 33, No. 15, 1997, pp. 1345-1347. [37] Yuichi Chida and Tomoaki Nishimura, “A New Method of Discretization of the Continuous-Time Controllers Based on the Matching of Frequency Response,” SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, Oct, 2006, pp. 18-21. [38] Nadra Rafee, Tongwen Chen, and Om P. Malik, “A Technique for Optimal Digital Redesign of Analog Controllers,” IEEE Transactions on control systems technolgy, Vol. 5, No. 1, January, 1997, pp. 89-99. [39] M. Clerc and J. Kennedy, “The particle swarm explosion, stability, and convergence in a multidimensional complex space,” IEEE Transaction on Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 58-73. [40] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” Proceedings IEEE Int’l. Conf. on Systems, Man, and Cybernetics, Vol. 5, 1997, pp. 4104-4108. [41] R.C. Eberhart, Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” Proceedings of Congress on Evolutionary Computation, Seoul, Korea, Vol. 1, 2001, pp. 94-100. [42] S. K. S. Fan and E. Zahara., “A hybrid simplex search and particle swarm optimization for unconstrained optimization,” European Journal of Operational Research, Vol. 181, No.2, 2007, pp. 527-548. [43] X. Hu, R.C. Eberhart, “Tracking dynamic systems with PSO: Where’s the cheese?” Proceedings of The Workshop on Particle Swarm Optimization, Indianapolis, USA, 2001. [44] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transaction on System, Man and Cybernetics, Vol. 8, No. 3, 2004, pp. 240-255. [45] S. K. S. Fan, Y. C. Liang, and E. Zahara, “A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search,” Computers and Industrial Engineering, Vol. 50, No.4, 2006, pp. 401- 425. [46] C. W. Reynolds, “Flocks, herds, and schools: a distributed behavioral model,” Computer Graphics, Vol. 21, No.4, 1987, pp. 25-34. [47] F. van den Bergh, An analysis of particle swarm optimizers, Ph. D. dissertation, University of Pretoria, Pretoria, 2001. [48] J.J. More’, B.S. Garbow, K.E. Hillstrom, “Testing unconstrained optimization software,” ACM Transactions on Mathematical Software, Vol. 7, No. 1, 1981, pp. 17- 41. [49] S. K. S. Fan, Y. C. Liang, and E. Zahara , “Hybrid simolex search and particle swarm optimization for the global optimization of multimodal functions,“ Engineering Optimization , Vol. 36, No. 4, 2004, pp. 401- 418. [50] R. Chelouah and P. Siarry, “Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions,” European Journal of Operational Research, Vol. 148, No.2, 2003, pp. 335-348. [51] R. Chelouah and P. Siarry, “Tabu search applied to global optimization,” European Journal of Operational Research, Vol. 123, No. 2, 2000, pp. 256-270. [52] R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for the global optimization of multimodal functions,” Journal of Heuristics, Vol. 6, No.2, 2000, pp. 191-213. [53] P. Siarry, G. Berthiau, F. Durbin, and J. Haussy, “Enhanced simulated annealing for globally minimizing functions of many continuous variables,” ACM Transactions on Mathematical Software, Vol. 23, No. 2, 1997, pp. 209-228. [54] G. L. Bilbro and W. E. Snyder, “Optimization of functions with many minima,” IEEE Transaction on System, Man and Cybernetics, Vol. 21, No.4, 1991, pp. 840-849. [55] H. Chapellat and S.P. Bhattacharyya, “A generalization of Kharitonov’s theorem; Robust stability of interval plants,” IEEE Transactions on Automatic Control, Vol.34, No. 3, March, 1989, pp. 306-311. [56] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, 1993, pp. 1541-1545. [57] S. Filali and V. Wertz, “Using genetic algorithms to optimize the design parameters of generalized predictive controllers,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 503-512. [58] M. Jamshidi, R. Krohling, L. Coelho and P. Flemming, Robust Control Systems with GeneticAlgorithms, CRC Press, 2003. [59] W. D. Chang, “Nonlinear system identification and control using a real-coded genetic algorithm,” Applied Mathematical Modeling, Vol. 31, No. 3, 2007, pp. 541-550. [60] N. Tan and D.P. Atherton, “Frequency response of uncertain systems: a 2q-convex parpolygonal approach,” IEE Proc. Control Theory and Appl., Vol. 147, No. 5, 2000, pp.547-555. [61] Ching-Hung Lee, Yi-Hsiung Lee, “A novel robust PID controllers design by fuzzy neural network,” Proceedings of the American Control Conference, Vol. 2, 2002, pp. 1561-1566.; U0002-1107200814521800; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35888; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/35888/1/