يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"“свободное железо”"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 2 (2021); 259-267 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 2 (2021); 259-267 ; 2541-8017 ; 2223-9022

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1153/944; Henry BM, Santos de Oliveira MH, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021– 1028. PMID: 32286245 http://doi.org/10.1515/cclm-2020-0369; Bolondi G, Russo E, Gamberini E, Circelli A, Meca MCC, Brogi E, et al. Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg. 2020;15(1):41. PMID: 32605582 http://doi.org/10.1186/s13017-020-00323-2; Shah A, Frost JN, Aaron L, Donovan K, Drakesmith H. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID19. Crit Care. 2020;24(1):320. PMID: 32517773 http://doi.org/10.1186/s13054-020-03051-w; Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis. 2020;7(7):ofaa250. PMID: 32661499 http://doi.org/10.1093/ofid/ofaa250 eCollection 2020 Jul.; Zhou C, Chen Y, Ji Y, He X, Xue D. Increased Serum Levels of Hepcidin and Ferritin Are Associated with Severity of COVID-19. Med Sci Monit. 2020;26:e926178. PMID: 32978363 http://doi.org/10.12659/MSM.926178; Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–7819. PMID: 11113132 http://doi.org/10.1074/jbc.M008923200; Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152. PMID: 25076907 http://doi.org/10.3389/fphar.2014.00152 eCollection 2014.; Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv 2020. Preprint. http://doi.org/10.26434/chemrxiv.11938173.v4 Corpus ID: 214621531; Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biol Direct. 2020;15(1):19. PMID: 33066821 http://doi.org/10.1186/s13062-020-00275-2; McLaughlin K, Bechtel M, Bojkova D, Münch C, Ciesek S, Wass M, et al. COVID-19-Related Coagulopathy-Is Transferrin a Missing Link? Diagnostics (Basel). 2020;10(8):539. PMID: 32751741 http://doi.org/10.3390/diagnostics10080539; Luck A, Mason A. Transferrin-mediated cellular iron delivery. Curr Top Membr. 2012;69:3–35. PMID: 23046645 http://doi.org/10.1016/B978-0-12-394390-3.00001-X; Tang X, Zhang Z, Fang M, Han Y, Wang G, Wang S, et al. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 2020;30(2):119–132. PMID: 31811276 http://doi.org/10.1038/s41422-019-0260-6; Gordon D, Jang G, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468. PMID: 32353859 http://doi.org/10.1038/s41586-020-2286-9; Vlahakos D, Arkadopoulos N, Kostopanagiotou G, Siasiakou S, Kaklamanis L, Degiannis D, et al. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif Organs. 2012;36(4):400–408. PMID: 22187937 http://doi.org/10.1111/j.1525-1594.2011.01385.x; Конькова Т.В., Каталевич А.М., Гуриков П.А., Рысев А.П., Меньшутина Н.В. Гетерогенные катализаторы Фентона на основе мезопористых силикагелей, полученные сушкой в среде сверхкритического диоксида углерода. Сверхкритические флюиды: теория и практика. 2012;8(4):29–35.; Kim J, Wessling-Resnick M. The Role of Iron Metabolism in Lung Inflammation and Injury. J Allergy Ther. 2012;3(Suppl 4):004. PMID: 29226014 http://doi.org/10.4172/2155-6121.S4-004; Koo S, Casper K, Otto K, Gira A, Swerlick R. Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells. J Invest Dermatol. 2003;120(5):871–879. PMID: 12713595 http://doi.org/10.1046/j.1523-1747.2003.12144.x; Lipinski B, Pretorius E. Iron-induced fibrin in cardiovascular disease. Curr Neurovasc Res. 2013;10(3):269-274. PMID: 23721262 http://doi.org/10.2174/15672026113109990016; Gill D, Brewer C, Monori G, Trégouët D, Franceschini N, Giambartolomei C. Effects of Genetically Determined Iron Status on Risk of Venous Thromboembolism and Carotid Atherosclerotic Disease: A Mendelian Randomization Study. J Am Heart Assoc. 2019;8(15):e012994 PMID: 31310728 http://doi.org/10.1161/JAHA.119.012994; Praticó D, Pasin M, Barry O, Ghiselli A, Sabatino G, Iuliano L, et. al. Irondependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C. Circulation. 1999;99(24):3118–3124. PMID: 10377074 http://doi.org/10.1161/01.cir.99.24.3118; Gordan R, Fefelova N, Gwathmey J, Xie L. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel). 2020;9(8):758. PMID: 32824344 http://doi.org/10.3390/antiox9080758; Gordan R, Wongjaikam S, Gwathmey J, Chattipakorn N, Chattipakorn S, Xie L. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev. 2018;23(5):801–816. PMID: 29675595 http://doi.org/10.1007/s10741-018-9700-5; Сависько А.А., Лагутеева Н.Е., Теплякова Е.Д., Шестопалов А.В. Роль нарушения метаболизма железа в развитии нарушений ритма и проводимости у детей с острым лейкозом. Медицинский вестник Юга России. 2015;(3):94–100.; Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. Москва: ГЭОТАР-Медиа; 2008.; Bannerman R, Callender S, Williams D. Effect of Desferrioxamine and D.T.P.A. in Iron Overload. Br Med J. 1962;2(5319):1573–1577. PMID: 20789564 http://doi.org/10.1136/bmj.2.5319.1573; Balcerzak S, Westerman M, Heinle E, Taylor F. Measurement of iron stores using deferoxamine. Ann Intern Med. 1968;68(3):518–525. PMID: 5643675 http://doi.org/10.7326/0003-4819-68-3-518; Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS. Goldfrank’s Toxicologic Emergencies. 10th ed. New York: McGrawHill; 2015. p. 1503-1513.; Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303–305. PMID: 32497811 http://doi.org/10.1016/j.ijid.2020.05.110; Vlahakos V, Marathias K, Arkadopoulos N, Vlahakos D. Hyperferritinemia in patients with COVID-19: An opportunity for iron chelation? Artif Organs. 2021;45(2):163–167. PMID: 32882061 https://doi.org/10.1111/aor.13812; Liu W, Zhang Sh, Nekhai S, Liu S. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival. Curr Clin Microbiol Rep. 2020 Apr 20:1–7. PMID: 32318324 http://doi.org/10.1007/s40588-020-00140-w Online ahead of print.; Лодягин А.Н., Батоцыренов Б.В., Шикалова И.А., Вознюк И.А. Ацидоз и токсический гемолиз – цели патогенетического лечения полиорганной патологии при COVID-19. Вестник восстановительной медицины. 2020;97(3):25–30. http://doi.org/10.38025/2078-1962-2020-97-3-25-30; https://www.jnmp.ru/jour/article/view/1153

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Medical and Clinical Chemistry; No. 4 (2015) ; Медицинская и клиническая химия; № 4 (2015) ; Медична та клінічна хімія; № 4 (2015) ; 2414-9934 ; 2410-681X ; 10.11603/mcch.2410-681X.2015.v17.i4

    وصف الملف: application/pdf

  4. 4
    Electronic Resource

    Additional Titles: Маркеры редокс-состояния опухолей больных раком прямой кишки
    Маркери редокс-стану пухлин хворих на рак прямої кишки

    المصدر: Medical and Clinical Chemistry; No. 4 (2016); 39-44; Медицинская и клиническая химия; № 4 (2016); 39-44; Медична та клінічна хімія; № 4 (2016); 39-44; 2414-9934; 2410-681X; 10.11603/mcch.2410-681X.2016.v0.i4

  5. 5
    Electronic Resource

    Additional Titles: РРедокс-состояние крови и выживаемость больных раком прямой кишки
    РРедокс-стан крові та виживаність хворих на рак прямої кишки

    المصدر: Medical and Clinical Chemistry; No. 4 (2015); Медицинская и клиническая химия; № 4 (2015); Медична та клінічна хімія; № 4 (2015); 2414-9934; 2410-681X; 10.11603/mcch.2410-681X.2015.v17.i4