يعرض 1 - 20 نتائج من 215 نتيجة بحث عن '"эпигенетика"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: G. B. Dikke, Г. Б. Дикке

    المصدر: Meditsinskiy sovet = Medical Council; № 17 (2024); 25-33 ; Медицинский Совет; № 17 (2024); 25-33 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8652/7595; Hoffman M. Majority of Top Health Risks Are Within Individual’s Control, Global Study Finds. Health Policy Watch. 2024. Available at: https://healthpolicy-watch.news/majority-of-top-health-risks-are-withinindividual-control-global-study-finds.; Faa G, Fanos V, Manchia M, Van Eyken P, Suri JS, Saba L. The fascinating theory of fetal programming of adult diseases: A review of the fundamentals of the Barker hypothesis. J Public Health Res. 2024;13(1). https://doi.org/10.1177/22799036241226817.; Korsmo HW, Jiang X, Caudill MA. Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients. 2019;11(8):1823. https://doi.org/10.3390/nu11081823.; Wilson С. Choline: The forgotten vital nutrient we’re not getting enough. NewScientist. 2019. Available at: https://www.newscientist.com/article/mg24432534-900-choline-the-forgotten-vital-nutrient-were-not-gettingenough-of/.; Dixit A, Jose GP, Shanbhag C, Tagad N, Kalia J. Metabolic Labeling-Based Chemoproteomics Establishes Choline Metabolites as Protein Function Modulators. ACS Chem Biol. 2022;17(8):2272–2283. https://doi.org/10.1021/acschembio.2c00400.; Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017;9(8):815. https://doi.org/10.3390/nu9080815.; Громова ОА, Торшин ИЮ, Гришина ТР, Демидов ВИ, Богачева ТЕ. Молекулярные и клинические аспекты действия цитидиндифосфохолина на когнитивные функции. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(5):88–97. https://doi.org/10.17116/jnevro202112105188.; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US); 1998. https://doi.org/10.17226/6015.; Vennemann FB, Ioannidou S, Valsta LM, Dumas C, Ocké MC, Mensink GB et al. Dietary intake and food sources of choline in European populations. Br J Nutr. 2015;114(12):2046–2055. https://doi.org/10.1017/S0007114515003700.; Dymek A, Oleksy Ł, Stolarczyk A, Bartosiewicz A. Choline-An Underappreciated Component of a Mother-to-Be’s Diet. Nutrients. 2024;16(11):1767. https://doi.org/10.3390/nu16111767.; Chan KA, Jazwiec PA, Gohir W, Petrik JJ, Sloboda DM. Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biol Reprod. 2018;98(5):664–682. https://doi.org/10.1093/biolre/ioy008.; Zhan X, Fletcher L, Dingle S, Baracuhy E, Wang B, Huber LA, Li J. Choline supplementation influences ovarian follicular development. Front Biosci (Landmark Ed). 2021;26(12):1525–1536. https://doi.org/10.52586/5046.; Kim K, Wactawski-Wende J, Michels KA, Schliep KC, Plowden TC, Chaljub EN, Mumford SL. Dietary minerals, reproductive hormone levels and sporadic anovulation: associations in healthy women with regular menstrual cycles. Br J Nutr. 2018;120(1):81–89. https://doi.org/10.1017/S0007114518000818.; Торшин ИЮ, Громова ОА, Тетруашвили НК, Коденцова ВМ, Галустян АН, Курицына НА и др. Метрический анализ соотношений коморбидности между невынашиванием, эндометриозом, нарушениями менструального цикла и микронутриентной обеспеченностью в скрининге женщин репродуктивного возраста. Акушерство и гинекология. 2019;(5):156–168. https://doi.org/10.18565/aig.2019.5.156-168.; Talevi R, Sudhakaran S, Barbato V, Merolla A, Braun S, Di Nardo M et al. Is oxygen availability a limiting factor for in vitro folliculogenesis? PLoS ONE. 2018;13(2):e0192501. https://doi.org/10.1371/journal.pone.0192501.; Brązert M, Kranc W, Chermuła B, Kowalska K, Jankowski M, Celichowski P et al. Human Ovarian Granulosa Cells Isolated during an IVF Procedure Exhibit Differential Expression of Genes Regulating Cell Division and Mitotic Spindle Formation. J Clin Med. 2019;8(12):2026. https://doi.org/10.3390/jcm8122026.; Du Y, Bagnjuk K, Lawson MS, Xu J, Mayerhofer A. Acetylcholine and necroptosis are players in follicular development in primates. Sci Rep. 2018;8(1):6166. https://doi.org/10.1038/s41598-018-24661-z.; Kosior MA, Esposito R, Cocchia N, Piscopo F, Longobardi V, Cacciola NA et al. Seasonal variations in the metabolomic profile of the ovarian follicle components in Italian Mediterranean Buffaloes. Theriogenology. 2023;202:42–50. https://doi.org/10.1016/j.theriogenology.2023.02.022.; Michels KA, Wactawski-Wende J, Mills JL, Schliep KC, Gaskins AJ, Yeung EH et al. Folate, homocysteine and the ovarian cycle among healthy regularly menstruating women. Hum Reprod. 2017;32(8):1743–1750. https://doi.org/10.1093/humrep/dex233.; Ridlo MR, Kim GA, Taweechaipaisankul A, Kim EH, Lee BC. Zinc supplementation alleviates endoplasmic reticulum stress during porcine oocyte in vitro maturation by upregulating zinc transporters. J Cell Physiol. 2021;236(4):2869–2880. https://doi.org/10.1002/jcp.30052.; Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci. 2022;9(8):439. https://doi.org/10.3390/vetsci9080439.; Toosinia S, Davoodian N, Arabi M, Kadivar A. Ameliorating Effect of Sodium Selenite on Developmental and Molecular Response of Bovine CumulusOocyte Complexes Matured in Vitro Under Heat Stress Condition. Biol Trace Elem Res. 2024;202(1):161–174. https://doi.org/10.1007/s12011-023-03678-0.; Aghayeva S, Sonmezer M, Şükür YE, Jafarzade A. The Role of Thyroid Hormones, Vitamins, and Microelements in Female Infertility. Rev Bras Ginecol Obstet. 2023;45(11):e683–e688. https://doi.org/10.1055/s-0043-1772478.; Zhou X, Wu X, Luo X, Shao J, Guo D, Deng B, Wu Z. Effect of Vitamin D Supplementation on In Vitro Fertilization Outcomes: A Trial Sequential Meta-Analysis of 5 Randomized Controlled Trials. Front Endocrinol (Lausanne). 2022;13:852428. https://doi.org/10.3389/fendo.2022.852428.; Максименко ЛВ. Эпигенетика как доказательная база влияния образа жизни на здоровье и болезни. Профилактическая медицина. 2019;22(2):115–120. https://doi.org/10.17116/profmed201922021115.; Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–5300. https://doi.org/10.1128/MCB.23.15.5293-5300.2003.; Estrada-Cortés E, Ortiz W, Rabaglino MB, Block J, Rae O, Jannaman EA et al. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. FASEB J. 2021;35(10):e21926. https://doi.org/10.1096/fj.202100991R.; Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients. 2018;10(4):417. https://doi.org/10.3390/nu10040417.; King JH, Kwan STC, Yan J, Jiang X, Fomin VG, Levine SP et al. Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency. Nutrients. 2019;11(2):374. https://doi.org/10.3390/nu11020374.; Mehedint MG, Zeisel SH. Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2013;16(3):339–345. https://doi.org/10.1097/MCO.0b013e3283600d46.; Bekdash RA. Choline and the Brain: An Epigenetic Perspective. Adv Neurobiol. 2016;12:381–399. https://doi.org/10.1007/978-3-319-28383-8_21.; Shaw GM, Finnell RH, Blom HJ, Carmichael SL, Vollset SE, Yang W, Ueland PM. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology. 2009;20(5):714–719. https://doi.org/10.1097/EDE.0b013e3181ac9fe7.; Lang P, Hasselwander S, Li H, Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci Rep. 2019;9(1):19556. https://doi.org/10.1038/s41598-019-55987-x.; Carmichael SL, Witte JS, Shaw GM. Nutrient pathways and neural tube defects: a semi-Bayesian hierarchical analysis. Epidemiology. 2009;20(1):67–73. https://doi.org/10.1097/EDE.0b013e31818f6375.; Громова ОА, Торшин ИЮ, Тетруашвили НК. Новые подходы к нутрициальному сопровождению беременности: фокус на холин. Акушерство и гинекология: новости, мнения, обучение. 2023;11(4):60–75. https://doi.org/10.33029/2303-9698-2023-11-4-60-75.; Petersen JM, Smith-Webb RS, Shaw GM, Carmichael SL, Desrosiers TA, Nestoridi E et al. Periconceptional intakes of methyl donors and other micronutrients involved in one-carbon metabolism may further reduce the risk of neural tube defects in offspring: a United States populationbased case-control study of women meeting the folic acid recommendations. Am J Clin Nutr. 2023;118(3):720–728. https://doi.org/10.1016/j.ajcnut.2023.05.034.; Jaiswal A, Dewani D, Reddy LS, Patel A. Choline Supplementation in Pregnancy: Current Evidence and Implications. Cureus. 2023;15(11):e48538. https://doi.org/10.7759/cureus.48538.; Hoffman MC, Hunter SJ, D’Alessandro A, Christians U, Law AJ, Freedman R. Maternal Plasma Choline during Gestation and Small for Gestational Age Infants. Am J Perinatol. 2024;41(S 01):e939–e948. https://doi.org/10.1055/s-0042-1759775.; Kwan STC, King JH, Yan J, Jiang X, Wei E, Fomin VG et al. Maternal choline supplementation during murine pregnancy modulates placental markers of inflammation, apoptosis and vascularization in a fetal sex-dependent manner. Placenta. 2017;53:57–65. https://doi.org/10.1016/j.placenta.2017.03.019.; Cohen JM, Beddaoui M, Kramer MS, Platt RW, Basso O, Kahn SR. Maternal Antioxidant Levels in Pregnancy and Risk of Preeclampsia and Small for Gestational Age Birth: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10(8):e0135192. https://doi.org/10.1371/journal.pone.0135192.; Maugeri A, Barchitta M, Blanco I, Agodi A. Effects of Vitamin D Supplementation During Pregnancy on Birth Size: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2019;11(2):442. https://doi.org/10.3390/nu11020442.; Van Lee L, Crozier SR, Aris IM, Tint MT, Sadananthan SA, Michael N et al. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: the Southampton Women’s Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int J Epidemiol. 2019;48(2):433–444. https://doi.org/10.1093/ije/dyy291.; Hodgetts VA, Morris RK, Francis A, Gardosi J, Ismail KM. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review and meta-analysis. BJOG. 2015;122(4):478–490. https://doi.org/10.1111/1471-0528.13202.; Ren X, Vilhjálmsdóttir BL, Rohde JF, Walker KC, Runstedt SE, Lauritzen L et al. Systematic Literature Review and Meta-Analysis of the Relationship Between Polyunsaturated and Trans Fatty Acids During Pregnancy and Offspring Weight Development. Front Nutr. 2021;8:625596. https://doi.org/10.3389/fnut.2021.625596.; Klatt KC, McDougall MQ, Malysheva OV, Taesuwan S, Loinard-González AAP, Nevins JEH et al. Prenatal choline supplementation improves biomarkers of maternal docosahexaenoic acid (DHA) status among pregnant participants consuming supplemental DHA: a randomized controlled trial. Am J Clin Nutr. 2022;116(3):820–832. https://doi.org/10.1093/ajcn/nqac147.; King JH, Kwan STC, Bae S, Klatt KC, Yan J, Malysheva OV et al. Maternal choline supplementation alters vitamin B-12 status in human and murine pregnancy. J Nutr Biochem. 2019;72:108210. https://doi.org/10.1016/j.jnutbio.2019.07.001.; Ma S, Bo Y, Zhao X, Cao Y, Duan D, Dou W et al. One-carbon metabolism-related nutrients intake is associated with lower risk of preeclampsia in pregnant women: a matched case-control study. Nutr Res. 2022;107:218–227. https://doi.org/10.1016/j.nutres.2022.10.004.; Zhu J, Liu YH, He XL, Kohlmeier M, Zhou LL, Shen LW et al. Dietary Choline Intake during Pregnancy and PEMT rs7946 Polymorphism on Risk of Preterm Birth: A Case-Control Study. Ann Nutr Metab. 2020;76(6):431–440. https://doi.org/10.1159/000507472.; Nanobashvili K, Jack-Roberts C, Bretter R, Jones N, Axen K, Saxena A et al. Maternal Choline and Betaine Supplementation Modifies the Placental Response to Hyperglycemia in Mice and Human Trophoblasts. Nutrients. 2018;10(10):1507. https://doi.org/10.3390/nu10101507.; Nguyen HT, Oktayani PPI, Lee SD, Huang LC. Choline in pregnant women: a systematic review and meta-analysis. Nutr Rev. 2024:nuae026. https://doi.org/10.1093/nutrit/nuae026.; Martin CR, Preedy VR, Rajendram R (eds.). Factors Affecting Neurodevelopment, Genetics, Neurology, Behavior, and Diet. Academic Press; 2021. 684 p. https://doi.org/10.1016/C2018-0-02211-2.; Mudd AT, Getty CM, Dilger RN. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs. Curr Dev Nutr. 2018;2(6):nzy015. https://doi.org/10.1093/cdn/nzy015.; Strain JJ, Bonham MP, Duffy EM, Wallace JMW, Robson PJ, Clarkson TW, Shamlaye C. Nutrition and neurodevelopment: the search for candidate nutrients in the Seychelles Child Development Nutrition Study. Neurotoxicology. 2020;81:300–306. https://doi.org/10.1016/j.neuro.2020.09.021.; Christifano DN, Chollet-Hinton L, Hoyer D, Schmidt A, Gustafson KM. Intake of eggs, choline, lutein, zeaxanthin, and DHA during pregnancy and their relationship to fetal neurodevelopment. Nutr Neurosci. 2023;26(8):749–755. https://doi.org/10.1080/1028415X.2022.2088944.; Trujillo-Gonzalez I, Friday WB, Munson CA, Bachleda A, Weiss ER, Alam NM et al. Low availability of choline in utero disrupts development and function of the retina. FASEB J. 2019;33(8):9194–9209. https://doi.org/10.1096/fj.201900444R.; Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients. 2020;12(6):1731. https://doi.org/10.3390/nu12061731.; Obeid R, Derbyshire E, Schön C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv Nutr. 2022;13(6):2445–2457. https://doi.org/10.1093/advances/nmac082.; Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients. 2022;14(2):364. https://doi.org/10.3390/nu14020364.; McNulty H, Rollins M, Cassidy T, Caffrey A, Marshall B, Dornan J et al. Effect of continued folic acid supplementation beyond the first trimester of preg nancy on cognitive performance in the child: a follow-up study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med. 2019;17(1):196. https://doi.org/10.1186/s12916-019-1432-4.; Kossowski B, Chyl K, Kacprzak A, Bogorodzki P, Jednoróg K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci Rep. 2019;9(1):5096. https://doi.org/10.1038/s41598-019-41473-x.; Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders – A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients. 2023;15(13):2876. https://doi.org/10.3390/nu15132876.; Agam G, Taylor Z, Vainer E, Golan HM. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfrdeficient mice. Transl Psychiatry. 2020;10(1):316. https://doi.org/10.1038/s41398-020-01002-1.; Langley EA, Krykbaeva M, Blusztajn JK, Mellott TJ. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav Brain Res. 2015;278:210–220. https://doi.org/10.1016/j.bbr.2014.09.043.; Vallianou N, Christodoulatos GS, Karampela I, Tsilingiris D, Magkos F, Stratigou T et al. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules. 2021;12(1):56. https://doi.org/10.3390/biom12010056.; Van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006.; Saito RF, Andrade LNS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol. 2022;13:768606. https://doi.org/10.3389/fimmu.2022.768606.; Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI et al. Scientific opinion on Dietary Reference Values for choline. EFSA J. 2016;14(8):4484. https://doi.org/10.2903/j.efsa.2016.4484.; Roeren M, Kordowski A, Sina C, Smollich M. Inadequate Choline Intake in Pregnant Women in Germany. Nutrients. 2022;14(22):4862. https://doi.org/10.3390/nu14224862.; Probst Y, Sulistyoningrum DC, Netting MJ, Gould JF, Wood S, Makrides M et al. Estimated Choline Intakes and Dietary Sources of Choline in Pregnant Australian Women. Nutrients. 2022;14(18):3819. https://doi.org/10.3390/nu14183819.; Spoelstra SK, Eijsink JJH, Hoenders HJR, Knegtering H. Maternal choline supplementation during pregnancy to promote mental health in offspring. Early Interv Psychiatry. 2023;17(7):643–651. https://doi.org/10.1111/eip.13426.; Adams JB, Kirby JK, Sorensen JC, Pollard EL, Audhya T. Evidence based recommendations for an optimal prenatal supplement for women in the US: vitamins and related nutrients. Matern Health Neonatol Perinatol. 2022;8(1):4. https://doi.org/10.1186/s40748-022-00139-9.

  2. 2
    Academic Journal

    المصدر: Сборник статей

    وصف الملف: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; Латыпова, Я. А. Генетическая и эпигенетическая регуляция старения / Я. А. Латыпова, Д. С. Гаврилов. - Текст: электронный // Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1. - Екатеринбург, 2024. – С. 387-390.; http://elib.usma.ru/handle/usma/21220

  3. 3
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2077/1210; Кузнецов К.О., Шарипова Э.Ф., Низаева А.С. и др. Роль микроРНК в норме и при патологии эндометрия. Российский вестник акушера-гинеколога. 2023;23(4):27–34. https://doi.org/10.17116/rosakush20232304127.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154.; Дубровина С.О., Берлим Ю.Д., Александрина А.Д. и др. Современные представления о диагностике и лечении эндометриоза. Акушерство и гинекология. 2023;(2):146–53. https://doi.org/10.18565/aig.2023.43.; Ye L., Whitaker L.H.R., Mawson R.L., Hickey M. Endometriosis. BMJ. 2022;379:e068950. https://doi.org/10.1136/bmj-2021-068950.; Адамян Л.В., Шаров М.Н., Мурватов К.Д. и др. Возможности повышения эффективности комплексной терапии эндометриоза и хронической тазовой боли у пациенток репродуктивного возраста. Проблемы репродукции. 2023;29(3):91–7. https://doi.org/10.17116/repro20232903191.; Хамадьянова А.У., Загидулина А.Р., Загретдинова Д.Р. и др. Перспективы исследования микробиома организма человека для лучшего понимания патогенеза рака яичников. Российский вестник акушера-гинеколога. 2023;23(1):39–46. https://doi.org/10.17116/rosakush20232301139.; Самойлова А.В., Гунин А.Г., Сидоров А.Е. и др. Современные направления изучения этиологии и патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2020;26(5):118–32. https://doi.org/10.17116/repro202026051118.; Houshdaran S., Oke A.B., Fung J.C. et al. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 2020;16(6):e1008601. https://doi.org/10.1371/journal.pgen.1008601.; Wilson M.R., Reske J.J., Chandler R.L. AP-1 subunit JUNB promotes invasive phenotypes in endometriosis. Reprod Sci. 2022;29(11):3266–77. https://doi.org/10.1007/s43032-022-00974-3.; Lu J., Xu J., Li J. et al. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res. 2018;46(19):10019–33. https://doi.org/10.1093/nar/gky679.; Егорова Д.А., Дерезина В.В., Чебанян М.В. и др. Роль эпигенетики в мужском и женском бесплодии. Акушерство, Гинекология и Репродукция. 2024;18(1):68–82. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.474.; Fyodorov D.V., Zhou B.-R., Skoultchi A.I., Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 2018;19(3):192–206. https://doi.org/10.1038/nrm.2017.94.; Ding L., Yang L., Ren C. et al. A review of aberrant DNA methylation and epigenetic agents targeting DNA methyltransferases in endometriosis. Curr Drug Targets. 2020;21(11):1047–55. https://doi.org/10.2174/1389450121666200228112344.; Пономаренко И.В., Полоников А.В., Верзилина И.Н., Чурносов М.И. Молекулярно-генетические детерминанты развития эндометриоза. Вопросы гинекологии, акушерства и перинатологии. 2019;18(1):82–6. https://doi.org/10.20953/1726-1678-2019-1-82-86.; Mulholland C.B., Traube F.R., Ugur E. et al. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Sci Rep. 2020;10(1):12066. https://doi.org/10.1038/s41598-020-68600-3.; Тихончук Е.Ю., Непша О.С., Адамян Л.В., Кузнецова М.В. Омиксные технологии в исследовании патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2016;22(5):110–22. https://doi.org/10.17116/repro2016225110-122.; Stirzaker C., Song J.Z., Ng W. et al. Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene. 2017;36:1328–38. https://doi.org/10.1038/onc.2016.297.; Wang L., Zhao J., Li Y. et al. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev. 2019;86(5):491–501. https://doi.org/10.1002/mrd.23127.; Baumann C., Olson M., Wang K. et al. Arginine methyltransferases mediate an epigenetic ovarian response to endometriosis. Reproduction. 2015;150(4):297–310. https://doi.org/10.1530/REP-15-0212.; Wu X., Miao J., Jiang J., Liu F. Analysis of methylation profiling data of hyperplasia and primary and metastatic endometrial cancers. Eur J Obstet Gynecol Reprod Biol. 2017;217:161–6. https://doi.org/10.1016/j.ejogrb.2017.08.036.; Zhao J., Wang L., Li Y. et al. Hypomethylation of the GSTM1 promoter is associated with ovarian endometriosis. Hum Reprod. 2019;34(5):804–12. https://doi.org/10.1093/humrep/dez039.; Cухих Г.Т., Осипьянц А.И., Мальцева Л.И. и др. Аномальное гиперметилирование генов HOXА10 и HOXА11 при бесплодии, ассоциированном с хроническим эндометритом. Акушерство и гинекология. 2015;(12):69–74.; Barjaste N., Shahhoseini M., Afsharian P. et al. Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. J Assist Reprod Genet. 2019;36(8):1743–52. https://doi.org/10.1007/s10815-019-01508-8.; Greville G., Llop E., Howard J. et al. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics. 2021;13(1):34. https://doi.org/10.1186/s13148-021-01015-7.; Gibson D.A., Simitsidellis I., Collins F., Saunders P.T.K. Androgens, oestrogens and endometrium: a fine balance between perfection and pathology. J Endocrinol. 2020;246(3):R75–R93. https://doi.org/10.1530/JOE-20-0106.; Zelenko Z., Aghajanova L., Irwin J.C., Giudice L.C. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci. 2012;19(2):152–62. https://doi.org/10.1177/1933719111415546.; Clemenza S., Capezzuoli T., Eren E. et al. Progesterone receptor ligands for the treatment of endometriosis. Minerva Obstet Gynecol. 2023;75(3):288–97. https://doi.org/10.23736/S2724-606X.22.05157-0.; Bulun S.E., Yildiz S., Adli M., Wei J.J. Adenomyosis pathogenesis: insights from next-generation sequencing. Hum Reprod Update. 2021;27(6):1086–97. https://doi.org/10.1093/humupd/dmab017.; Rocha C.V., Da Broi M.G., Miranda-Furtado C.L. et al. Progesterone receptor B (PGR-B) is partially methylated in eutopic endometrium from infertile women with endometriosis. Reprod Sci. 2019;26(12):1568–74. https://doi.org/10.1177/1933719119828078.; MacLean J.A., Hayashi K. Progesterone actions and resistance in gynecological disorders. Cells. 2022;11(4):647. https://doi.org/10.3390/cells11040647.; Nguyen T.V., Lister R. Genomic targeting of TET activity for targeted demethylation using CRISPR/Cas9. Methods Mol Biol. 2021;2272:181–94. https://doi.org/10.1007/978-1-0716-10.1007/s10815-024-03026-81294-1_10.; Roca F.J., Loomans H.A., Wittman A.T. et al. Ten-eleven translocation genes are downregulated in endometriosis. Curr Mol Med. 2016;16(3):288–98. https://doi.org/10.2174/1566524016666160225153844.; Adamczyk M., Rawłuszko-Wieczorek A.A., Wirstlein P. et al. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother. 2022;150:112989. https://doi.org/10.1016/j.biopha.2022.112989.; Szczepańska M., Wirstlein P., Zawadzka M. et al. Alternation of ten-eleven translocation 1, 2, and 3 expression in eutopic endometrium of women with endometriosis-associated infertility. Gynecol Endocrinol. 2018;34(12):1084–90. https://doi.org/10.1080/09513590.2018.1490403.; Hada A., Hota S.K., Luo J. et al. Histone octamer structure is altered early in ISW2 ATP-dependent nucleosome remodeling. Cell Rep. 2019;28(1):282–94. https://doi.org/10.1016/j.celrep.2019.05.106.; Kaleem A., Hoessli D.C., Ahmad I. et al. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem. 2008;103(3):835–51. https://doi.org/10.1002/jcb.21454.; Taing L., Dandawate A., L'Yi S. et al. Cistrome Data Browser: integrated search, analysis and visualization of chromatin data. Nucleic Acids Res. 2024;52(D1):D61–D66. https://doi.org/10.1093/nar/gkad1069.; Singh W., Quinn D., Moody T.S., Huang M. Reaction mechanism of histone demethylation in αKG-dependent non-heme iron enzymes. J Phys Chem B. 2019;123(37):7801–11. https://doi.org/10.1021/acs.jpcb.9b06064.; Colón-Caraballo M., Monteiro J.B., Flores I. H3K27me3 is an epigenetic mark of relevance in endometriosis. Reprod Sci. 2015;22(9):1134–42. https://doi.org/10.1177/1933719115578924.; Colón-Caraballo M., Torres-Reverón A., Soto-Vargas J.L. et al. Effects of histone methyltransferase inhibition in endometriosis†. Biol Reprod. 2018;99(2):293–307. https://doi.org/10.1093/biolre/ioy030.; Zhao S., Zhong Y., Fu X. et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock. 2019;51(3):401–6. https://doi.org/10.1097/SHK.0000000000001141.; Gujral P., Mahajan V., Lissaman A.C., Ponnampalam A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 2020;18(1):84. https://doi.org/10.1186/s12958-020-00637-5.; Adamczyk M., Wender-Ozegowska E., Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility. Int J Mol Sci. 2022;23(7):3804. https://doi.org/10.3390/ijms23073804.; Mai H., Liao Y., Luo S. et al. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J Cell Mol Med. 2021;25:9972–82. https://doi.org/10.1111/jcmm.16835.; Samartzis E.P., Noske A., Samartzis N. et al. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod Sci. 2013;20(12):1416–22. https://doi.org/10.1177/1933719113488450.; Kim T.H., Yoo J.-Y., Choi K.-C. et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019;11(474):eaaf7533. https://doi.org/10.1126/scitranslmed.aaf7533.; Bedrick B.S., Courtright L., Zhang J. et al. Systematic review of epigenetics of endometriosis. F S Rev. 2024;5(1):100070. https://doi.org/10.1016/j.xfnr.2024.01.003.; Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. https://doi.org/10.1101/cshperspect.a018713.; Kim H.I., Seo S.K., Chon S.J. et al. Changes in the expression of TBP-2 in response to histone deacetylase inhibitor treatment in human endometrial cells. Int J Mol Sci. 2021;22(3):1427. https://doi.org/10.3390/ijms22031427.; Malvezzi H., Dobo C., Filippi R.Z. et al. Altered p16Ink4a, IL-1β, and Lamin b1 protein expression suggest cellular senescence in deep endometriotic lesions. Int J Mol Sci. 2022;23(5):2476. https://doi.org/10.3390/ijms23052476.; Kapoor R., Stratopoulou C.A., Dolmans M.-M. Pathogenesis of endometriosis: new insights into prospective therapies. Int J Mol Sci. 2021;22(21):11700. https://doi.org/10.3390/ijms222111700.; Arvindekar S., Jackman M.J., Low J.K.K. et al. Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci. 2022;31(9):e4387. https://doi.org/10.1002/pro.4387.; Sahu R.K., Singh S., Tomar R.S. The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol. 2020;180:114200. https://doi.org/10.1016/j.bcp.2020.114200.; Wiegand K.C., Lee A.F., Al-Agha O.M. et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33. https://doi.org/10.1002/path.2911.; Ярмолинская М.И., Самошкин Н.Г., Полякова В.О., Нетреба Е.А. Экспрессия ARID1A, синтазы простагландина Е2 и рецептора простагландина Е2 у больных с наружным генитальным эндометриозом. Проблемы репродукции. 2019;25(3):34–9. https://doi.org/10.17116/repro20192503134.; Kawahara N., Yamada Y., Kobayashi H. CCNE1 is a putative therapeutic target for ARID1A-mutated ovarian clear cell carcinoma. Int J Mol Sci. 2021;22(11):5869. https://doi.org/10.3390/ijms22115869.; Murawski M., Jagodziński A., Bielawska-Pohl A., Klimczak A. Complexity of the genetic background of oncogenesis in ovarian cancer-genetic instability and clinical implications. Cells. 2024;13(4):345. https://doi.org/10.3390/cells13040345.; Marquardt R.M., Kim T.H., Yoo J. et al. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J. 2021;35(2):e21209. https://doi.org/10.1096/fj.202002178R.; Wilson M.R., Reske J.J., Holladay J. et al. ARID1A mutations promote P300-dependent endometrial invasion through super-enhancer hyperacetylation. Cell Rep. 2020;33(6):108366. https://doi.org/10.1016/j.celrep.2020.108366.; Kim H.I., Kim T.H., Yoo J.-Y. et al. ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem Biophys Res Commun. 2021;550:151–7. https://doi.org/10.1016/j.bbrc.2021.02.144.; Бейлерли О.А., Гареев И.Ф. Длинные некодирующие РНК: какие перспективы? Профилактическая медицина. 2020;23(2):124–8. https://doi.org/10.17116/profmed202023021124.; Ghafouri-Fard S., Shoorei H., Taheri M. Role of non-coding RNAs in the pathogenesis of endometriosis. Front Oncol. 2020;10:1370. https://doi.org/10.3389/fonc.2020.01370.; Zhang L., Yu Z., Qu Q. et al. Exosomal lncRNA HOTAIR promotes the progression and angiogenesis of endometriosis via the miR-761/HDAC1 axis and activation of STAT3-mediated inflammation. Int J Nanomed. 2022;17:1155–70. https://doi.org/10.2147/IJN.S354314.; Bao Q., Zheng Q., Wang S. et al. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front Oncol. 2022;12:953055. https://doi.org/10.3389/fonc.2022.953055.; Liu Z., Liu L., Zhong Y. et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9:84. https://doi.org/10.1186/s13578-019-0346-3.; Huan Q., Cheng S.-C., Du Z.-H. et al. LncRnA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-β/Smad signaling via miR-424-5p. J Obstet Gynaecol Res. 2021;47(7):2394–405. https://doi.org/10.1111/jog.14801.; Li Y., Liu Y.-D., Chen S.-L. et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod. 2019;25(1):17–29. https://doi.org/10.1093/molehr/gay045.; Cai H., Zhu X., Li Z. et al. lncRNA/mRNA profiling of endometriosis rat uterine tissues during the implantation window. Int J Mol Med. 2019;44(6):2145–60. https://doi.org/10.3892/ijmm.2019.4370.; Tatone C., Di Emidio G., Barbonetti A. et al. Sirtuins in gamete biology and reproductive phys- iology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update. 2018;24(3):267–89. https://doi.org/10.1093/humupd/dmy003.; Taguchi A., Wada-Hiraike O., Kawana K. et al. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res. 2014;40(3):770–8. https://doi.org/10.1111/jog.12252.; Rezk N.A., Lashin M.B., Sabbah N.A. MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis. Noncoding RNA Res. 2021;6(1):35–41. https://doi.org/10.1016/j.ncrna.2021.02.002.; Takebayashi K., Nasu K., Okamoto M. et al. hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol. 2020;18(1):31. https://doi.org/10.1186/s12958-020-00590-3.; Li X., Xiong W., Long X. et al. Inhibition of METTL3/m6A/ miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis. Biol Reprod. 2021;105(5):1221–33. https://doi.org/10.1093/biolre/ioab152.; Sahin C., Mamillapalli R., Yi K.W., Taylor H.S. microRNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med. 2018;22(11):5346–53. https://doi.org/10.1111/jcmm.13807.; Liu A., Jin M., Xie L. et al. Loss of miR-29a impairs decidualization of endometrial stromal cells by TET3 mediated demethylation of Col1A1 promoter. iScience. 2021;24(9):103065. https://doi.org/10.1016/j.isci.2021.103065.; https://www.gynecology.su/jour/article/view/2077

  4. 4
    Academic Journal

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 68-82 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 68-82 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1889/1174; Лебедев Г.С., Голубев Н.А., Шадеркин И.А. и др. Мужское бесплодие в Российской Федерации: статистические данные за 2000-2018 годы. Экспериментальная и клиническая урология. 2019;(4):4–12. https://doi.org/10.29188/2222-8543-2019-11-4-4-12.; Wagner A.O., Turk A., Kunej T. Towards a multi-omics of male infertility. World J Mens Health. 2023;41(2):272–88. https://doi.org/10.5534/wjmh.220186.; Bunkar N., Pathak N., Lohiya N.K., Mishra P.K. Epigenetics: a key paradigm in reproductive health. Clin Exp Reprod Med. 2016;43(2):59–81. https://doi.org/10.5653/cerm.2016.43.2.59.; Infertility Workup for the Women's Health Specialist: ACOG Committee Opinion, Number 781. Obstet Gynecol. 2019;133(6):377–84. https://doi.org/10.1097/AOG.0000000000003271.; Савина А.А., Землянова Е.В., Фейгинова С.И. Потери потенциальных рождений в г. Москве за счет женского и мужского бесплодия. Здоровье мегаполиса. 2022;3(3):39–45. https://doi.org/10.47619/2713-2617.zm.2022.v.3i3;39–45.; Никитин А.И. Экстракорпоральное оплодотворение как зеркало эволюции. Проблемы репродукции. 2022;28(2):81–5.https://doi.org/10.17116/repro20222802181.; Сафарян Г.Х., Джемлиханова Л.Х., Коган И.Ю. и др. Аутоиммунные маркеры, прогнозирующие эффективность программ вспомогательных репродуктивных технологий. Вестник Санкт-Петербургского университета. Медицина. 2022;17(4):238–53. https://doi.org/10.21638/spbu11.2022.401.; Кузнецов К.О., Ишбаев Ч.Р., Хисматов М.А. и др. Влияние диизононилфталата на репродуктивную функцию человека и в эксперименте. Проблемы репродукции. 2022;28(5):55–64. https://doi.org/10.17116/repro20222805155.; Максименко Л.В. Эпигенетика как доказательная база влияния образа жизни на здоровье и болезни. Профилактическая медицина. 2019;22(2):115–20. https://doi.org/10.17116/profmed201922021115.; Gunes S., Esteves S.C. Role of genetics and epigenetics in male infertility. Andrologia. 2021;53(1):e13586. https://doi.org/10.1111/and.13586.; Bruni V., Capozzi A., Lello S. The role of genetics, epigenetics and lifestyle in polycystic ovary syndrome development: the state of the art. Reprod Sci. 2022;29(3):668–79. https://doi.org/10.1007/s43032-021-00515-4.; McSwiggin H.M., O'Doherty A.M. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction. 2018;156(2):9–21. https://doi.org/10.1530/REP-18-0009.; Marzouni E.T., Ilkhani H., Harchegani A.B. et al. Epigenetic modifications, a new approach to male infertility etiology: a review. Int J Fertil Steril. 2022;16(1):1–9. https://doi.org/10.22074/IJFS.2021.138499.1032.; Baranizadeh K., Bahmanzadeh M., Tavilani H. et al. Evaluation of methylenetetrahydrofolate reductase and S-adenosyl-methionine level in male infertility: a case-control study. Int J Reprod Biomed. 2022;20(4):299–306. https://doi.org/10.18502/ijrm.v20i4.10902.; Rotondo J.C., Bosi S., Bazzan E. et al. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod. 2012;27(12):3632–8. https://doi.org/10.1093/humrep/des319.; Song B., Wang C., Chen Y. et al. Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes. J Assist Reprod Genet. 2021;38(8):2041–8. https://doi.org/10.1007/s10815-021-02157-6.; Ордиянц И.М., Зюкина З.В., Новгинов Д.С., Асатрян Д.Р. Современные представления о рецептивности эндометрия при эндометриоз-ассоциированном бесплодии (аналитический обзор). Фундаментальная и клиническая медицина. 2023;8(2):110–9. https://doi.org/10.23946/2500-0764-2023-8-2-110-119.; Кузнецов К.О., Шарипова Э.Ф., Низаева А.С. и др. Роль микроРНК в норме и при патологии эндометрия. Российский вестник акушера-гинеколога. 2023;23(4):27–34. https://doi.org/10.17116/rosakush20232304127.; Радзинский В.Е., Оразов М.Р., Михалева Л.М. и др. Предикторы неудач ЭКО при имплантационной несостоятельности эндометрия. Трудный пациент. 2021;19(1):23–6. https://doi.org/10.24412/20741995-2021-1-23-26.; Godbole G., Suman P., Malik A. et al. Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology. 2017;158(8):2618–33. https://doi.org/10.1210/en.2017-00032.; Pisarska M.D., Chan J.L., Lawrenson K. et al. Genetics and epigenetics of infertility and treatments on outcomes. J Clin Endocrinol Metab. 2019;104(6):1871–86. https://doi.org/10.1210/jc.2018-01869.; Ефимова О.А., Пендина А.А., Тихонов А.В. и др. Гидроксильная форма 5-метилцитозина – 5-гидроксиметилцитозин: новый взгляд на биологическую роль в геноме млекопитающих. Экологическая генетика. 2014;12(1):3–13. https://doi.org/10.17816/ecogen1213-13.; Giacone F., Cannarella R., Mongioì L.M. et al. Epigenetics of male fertility: effects on assisted reproductive techniques. World J Mens Health. 2019;37(2):148–56. https://doi.org/10.5534/wjmh.180071.; Каплун Д.С., Калюжный Д.Н., Прохорчук Е.Б., Женило С.В. Метилирование ДНК: распределение в геноме, механизм регуляции и мишень для терапии. Acta Naturae. 2023;14(4):4–19. https://doi.org/10.32607/actanaturae.11822.; Азова М.М., Ахмед А.А., Аит Аисса А., Благонравов М.Л. Ассоциация полиморфизмов генов DNMT3B и DNMN3L с потерей беременности на раннем сроке. Бюллетень экспериментальной биологии и медицины. 2019;167(4):459–62.; Rotondo J.C., Lanzillotti C., Mazziotta C. et al. Epigenetics of male infertility: the role of DNA methylation. Front Cell Dev Biol. 2021;9:689624. https://doi.org/10.3389/fcell.2021.689624.; Esteves S.C., Santi D., Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology. 2020;8(1):53–81. https://doi.org/10.1111/andr.12724.; Епанчинцева Е.А., Селятицкая В.Г., Божедомов В.А. Индекс фрагментации ДНК сперматозоидов – необходимость для современной клинической практики. Андрология и генитальная хирургия. 2020;21(1):14–21. https://doi.org/10.17650/2070-9781-2020-21-1-14-21.; Yuen B.T., Bush K.M., Barrilleaux B.L. et al. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development. 2014;141(18):3483–94. https://doi.org/10.1242/dev.106450.; Fournier C., Labrune E., Lornage J. et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6(3):436–45. https://doi.org/10.1111/andr.12478.; Ding G.L., Liu Y., Liu M.E. et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948–53. https://doi.org/10.4103/1008-682X.150844.; Sadler-Riggleman I., Klukovich R., Nilsson E. et al. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environ Epigenet. 2019;5(3):dvz013. https://doi.org/10.1093/eep/dvz013.; Denomme M.M., Haywood M.E., McCallie B.R. et al. The prolonged disease state of infertility is associated with embryonic epigenetic dysregulation. Fertil Steril. 2021;116(2):309–18.; Матвеева Л.В., Фоминова Г.В., Громова Е.В. и др. Иммунологическое прогнозирование эффективности вспомогательных репродуктивных технологий. Вестник Российского университета дружбы народов. Серия: Медицина. 2023;27(3):342–53. https://doi.org/10.22363/2313-0245-2023-27-2-342-353.; Темирбулатов Р.Р., Исакова Э.В., Корсак В.С. Влияние уровня прогестерона в сыворотке крови на исходы программ вспомогательных репродуктивных технологий (обзор литературы). Проблемы репродукции. 2022;28(2):102–9. https://doi.org/10.17116/repro202228021102.; Гришин И.И, Чирвон Т.Г., Огеде О.Р. Современные тенденции хирургического лечения бесплодия, ассоциированного с синдромом поликистозных яичников. РМЖ. Мать и дитя. 2022;5(3):209–14. https://doi.org/10.32364/2618-8430-2022-5-3-209-214.; Schulte M.M., Tsai J.H., Moley K.H. Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod Sci. 2015;22(1):6–14. https://doi.org/10.1177/1933719114561552.; Давыдов А.И., Хабарова М.Б., Чилова P.A. и др. Эндометриоз и окислительный стресс. Обоснование стратегии лечения при эндометриоз-ассоциированном бесплодии. Вопросы гинекологии, акушерства и перинатологии. 2023;22(1):69–75. https://doi.org/10.20953/1726-1678-2023-1-69-75.; Joshi N., Chan J.L. Female genomics: infertility and overall health. Semin Reprod Med. 2017;35(3):217–24. https://doi.org/10.1055/s-0037-1603095.; Telenti A., Pierce L.C., Biggs W.H. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A. 2016;113(42):11901–6. https://doi.org/10.1073/pnas.1613365113.; Grimstad F.W., Decherney A. A review of the epigenetic contributions to endometriosis. Clin Obstet Gynecol. 2017;60(3):467–76. https://doi.org/10.1097/GRF.0000000000000298.; Халиков А.А., Кильдюшов Е.М., Кузнецов К.О. и др. Использование микроРНК с целью определения давности наступления смерти: обзор. Судебная медицина. 2021;7(3):132–8. https://doi.org/10.17816/fm412.; Hammond S.M. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001.; Rimoldi S.F., Sartori C., Rexhaj E. et al. Antioxidants improve vascular function in children conceived by assisted reproductive technologies: A randomized double-blind placebo-controlled trial. Eur J Prev Cardiol. 2015;22(11):1399–407. https://doi.org/10.1177/2047487314535117.; Драпкина О.М., Ким О.Т., Дадаева В.А. Диета западного образца как расплата за цивилизацию: патофизиологические механизмы и дискуссионные вопросы. Профилактическая медицина. 2021;24(5):94–102. https://doi.org/10.17116/profmed20212405194.; Salas-Huetos A., Bulló M., Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89. https://doi.org/10.1093/humupd/dmx006.; Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74(2):118–30. https://doi.org/10.1093/nutrit/nuv059.; Lambrot R., Xu C., Saint-Phar S. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 2013;4:2889. https://doi.org/10.1038/ncomms3889.; Hoek J., Steegers-Theunissen R.P.M., Willemsen S.P., Schoenmakers S. Paternal folate status and sperm quality, pregnancy outcomes, and epigenetics: a systematic review and meta-analysis. Mol Nutr Food Res. 2020;64(9):e1900696. https://doi.org/10.1002/mnfr.201900696.; Цуканов А.Ю., Турчанинов Д.В., Сатыбалдин Д.А. и др. Микронутриентный дефицит у мужчин с бесплодием. Андрология и генитальная хирургия. 2020;21(2):58–63. https://doi.org/10.17650/2070-9781-2020-21-2-58-63.; Халимова Ф.Т., Кароматов И.Д., Исоева Б.И. Фитоэстрогены в гинекологии (обзор литературы). Биология и интегративная медицина. 2023;1(60):82–143.; Sirotkin A.V., Harrath A.H. Phytoestrogens and their effects. Eur J Pharmacol. 2014;741:230–6. https://doi.org/10.1016/j.ejphar.2014.07.057.; Yanagihara N., Zhang H., Toyohira Y. et al. New insights into the pharmacological potential of plant flavonoids in the catecholamine system. J Pharmacol Sci.2014;124(2):123–8. https://doi.org/10.1254/jphs.13r17cp.; Messina M., Messina V. The role of soy in vegetarian diets. Nutrients. 2010;2(8):855–88. https://doi.org/10.3390/nu2080855.; Cooper A.R. To eat soy or to not eat soy: the ongoing look at phytoestrogens and fertility. Fertil Steril. 2019;112(5):825–6. https://doi.org/10.1016/j.fertnstert.2019.07.016.; Morin K.H. Nutrition and infertility: the case of soy. MCN Am J Matern Child Nurs. 2010;35(3):172. https://doi.org/10.1097/NMC.0b013e3181d77f0a.; Rossi B.V., Abusief M., Missmer S.A. Modifiable risk factors and infertility: what are the connections? Am J Lifestyle Med. 2014;10(4):220–31. https://doi.org/10.1177/1559827614558020.; Gaskins A.J., Chavarro J.E. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218(4):379–89. https://doi.org/10.1016/j.ajog.2017.08.010.; Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019;3(3):CD007411. https://doi.org/10.1002/14651858.CD007411.pub4.; Arjmand K., Daneshi E., Pourmasumi S. et al. Evaluation of the effect of vitamin E on reproductive parameters in morphine-treated male mice. Addict Health. 2023;15(3):177–84. https://doi.org/10.34172/ahj.2023.1415.; Kaltsas A. Oxidative stress and male infertility: the protective role of antioxidants. Medicina (Kaunas). 2023;59(10):1769. https://doi.org/10.3390/medicina59101769.; Charkamyani F., Khedmat L., Hosseinkhani A. Decreasing the main maternal and fetal complications in women undergoing in vitro fertilization (IVF) trained by nutrition and healthy eating practices during pregnancy. J Matern Fetal Neonatal Med. 2021;34(12):1855–67. https://doi.org/10.1080/14767058.2019.1651267.; Yao D.F., Mills J.N. Male infertility: lifestyle factors and holistic, complementary, and alternative therapies. Asian J Androl. 2016;18(3):410–8. https://doi.org/10.4103/1008-682X.175779.; US Preventive Services Task Force; Bibbins-Domingo K., Grossman D.C., Curry S.J. et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;317(2):183–9. https://doi.org/10.1001/jama.2016.19438.; Chiu Y.H., Chavarro J.E., Souter I. Diet and female fertility: doctor, what should I eat? Fertil Steril. 2018;110(4):560–9. https://doi.org/10.1016/j.fertnstert.2018.05.027.; Subapriya S. Nutrition and fertility and human reproductive function. The Indian Journal of Nutrition and Dietetics. 2016;53:248. https://doi.org/10.21048/ijnd.2016.53.2.4305.; Razi Y., Eftekhar M., Fesahat F. et al. Concentrations of homocysteine in follicular fluid and embryo quality and oocyte maturity in infertile women: a prospective cohort. J Obstet Gynaecol. 2021;41(4):588–93. https://doi.org/10.1080/01443615.2020.1785409.; Aghayeva S., Sonmezer M., Şükür Y.E., Jafarzade A. The role of thyroid hormones, vitamins, and microelements in female infertility. Rev Bras Ginecol Obstet. 2023;45(11):683–8. https://doi.org/10.1055/s-0043-1772478.; Taşkıran M. Is there an association between dietary antioxidant levels and sperm parameters in male infertility? Cureus. 2023;15(8):e44339. https://doi.org/10.7759/cureus.44339.; Polzikov M., Blinov D., Barakhoeva Z. et al. Association of the serum folate and total calcium and magnesium levels before ovarian stimulation with outcomes of fresh in vitro fertilization cycles in normogonadotropic women. Front Endocrinol (Lausanne). 2022;13:732731. https://doi.org/10.3389/fendo.2022.732731.; Ползиков М.А., Блинов Д.В., Ушакова Т.И. и др. Влияет ли высокий уровень фолиевой кислоты в крови женщин на эффективность программ ЭКО? Акушерство, Гинекология и Репродукция. 2019;13(4):313–25. https://doi.org/10.17749/2313-7347.2019.13.4.313-325.; Cecchino G.N., Seli E., Alves da Motta E.L., García-Velasco J.A. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reprod Biomed Online. 2018;36(6):686–97. https://doi.org/10.1016/j.rbmo.2018.02.007.; Chen W., Jiao X., Zhang J. et al. Vitamin D deficiency and high serum IL-6 concentration as risk factors for tubal factor infertility in Chinese women. Nutrition. 2018;49:24–31. https://doi.org/10.1016/j.nut.2017.11.016.; Wang X.M., Ma Z.Y., Song N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur Rev Med Pharmacol Sci. 2018;22(9):2513–8. https://doi.org/10.26355/eurrev_201805_14899.; Heyden E.L, Wimalawansa S.J. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. J Steroid Biochem Mol Biol. 2018;180:41–50. https://doi.org/10.1016/j.jsbmb.2017.12.011.; Omar M.I., Pal R.P., Kelly B.D. et al. Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: a systematic review and meta-analysis. Eur Urol. 2019;75(4):615–25. https://doi.org/10.1016/j.eururo.2018.12.022.; Shapiro A.J., Darmon S.K., Barad D.H. et al. Vitamin D levels are not associated with ovarian reserve in a group of infertile women with a high prevalance of diminished ovarian reserve. Fertil Steril. 2018;110(4):761–6. https://doi.org/10.1016/j.fertnstert.2018.05.005.; Skalnaya M.G., Tinkov A.A., Lobanova Y.N. et al. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J Trace Elem Med Biol. 2019;56:124–30. https://doi.org/10.1016/j.jtemb.2019.08.009.; https://www.gynecology.su/jour/article/view/1889

  5. 5
    Academic Journal

    المصدر: Сборник статей

    وصف الملف: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Эвалюация уровня экспрессии гена филаггрина как ключевого биомаркера в патогенезе атопического дерматита / М. А. Десятова, А. В. Коротков, С. Б. Антонова [и др.]. - Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 1597-1603.; http://elib.usma.ru/handle/usma/14161

  6. 6
    Academic Journal

    المساهمون: The work was carried out with financial support from the project of the Ministry of Science and Higher Education of the Russian Federation, under grant number 075­10­2020­116 (grant ID 13.1902.21.0023).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 820­-828 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 820­-828 ; 2500-3259 ; 10.18699/VJGB-23-83

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3982/1769; Angermueller C., Lee H.J., Reik W., Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017;18(1):67. DOI 10.1186/s13059-017-1189-z; Bock C., Reither S., Mikeska T., Paulsen M., Walter J., Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005;21(21): 4067-4068. DOI 10.1093/bioinformatics/bti652; Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. DOI 10.1093/bioinformatics/btu170; Briggs A.W., Stenzel U., Johnson P.L.F., Green R.E., Kelso J., Prüfer K., Meyer M., Krause J., Ronan M.T., Lachmann M., Pääbo S. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. USA. 2007;104(37):14616-14621. DOI 10.1073/pnas.0704665104; Briggs A.W., Good J.M., Green R.E., Krause J., Maricic T., Stenzel U., Lalueza-Fox C., Rudan P., Brajković D., Kućan Ž., Gušić I., Schmitz R., Doronichev V.B., Golovanova L.V., de la Rasilla M.; Fortea J., Rosas A., Pääbo S. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science. 2009a;325(5938):318-321. DOI 10.1126/science.1174462; Briggs A.W., Good J.M., Green R.E., Krause J., Maricic T., Stenzel U., Pääbo S. Primer extension capture: targeted sequence retrieval from heavily degraded DNA sources. J. Vis. Exp. 2009b;31:1573. DOI 10.3791/1573; Briggs A.W., Stenzel U., Meyer M., Krause J., Kircher M., Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 2010;38(6):e87. DOI 10.1093/nar/gkp1163; Clark S.J., Harrison J., Paul C.L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994;22(15):2990-2997. DOI 10.1093/nar/22.15.2990; Feinberg A.P., Irizarry R.A. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA. 2010;107(Suppl.1):1757-1764. DOI 10.1073/pnas.0906183107; Fu Q., Li H., Moorjani P., Jay F., Slepchenko S.M., Bondarev A.A., Johnson P.L.F., Aximu-Petri A., Prüfer K., de Filippo C., Meyer M., Zwyns N., Salazar-García D.C., Kuzmin Y.V., Keates S.G., Kosintsev P.A., Razhev D.I., Richards M.P., Peristov N.V., Lachmann M., Douka K., Higham T.F.G., Slatkin M., Hublin J.J., Reich D., Kelso J., Viola T.B., Pääbo S. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514(7523):445-449. DOI 10.1038/nature13810; Gansauge M.-T., Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 2013; 8(4):737-748. DOI 10.1038/nprot.2013.038; Gokhman D., Lavi E., Prüfer K., Fraga M.F., Riancho J.A., Kelso J., Pääbo S., Meshorer E., Carmel L. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science. 2014; 344(6183):523-527. DOI 10.1126/science.1250368; Gokhman D., Nissim-Rafinia M., Agranat-Tamir L., Housman G., García-Pérez R., Lizano E., Cheronet O., Mallick S., Nieves-Colón M.A., Li H., Alpaslan-Roodenberg S., Novak M., Gu H., Osinski J.M., Ferrando-Bernal M., Gelabert P., Lipende I., Mjungu D., Kondova I., Bontrop R., Kullmer O., Weber G., Shahar T., Dvir-Ginzberg M., Faerman M., Quillen E.E., Meissner A., Lahav Y., Kandel L., Liebergall M., Prada M.E., Vidal J.M., Gronostajski R.M., Stone A.C., Yakir B., Lalueza-Fox C., Pinhasi R., Reich D., Marques-Bonet T., Meshorer E., Carmel L. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat. Commun. 2020; 11(1):1189. DOI 10.1038/s41467-020-15020-6; Gu H., Smith Z.D., Bock C., Boyle P., Gnirke A., Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 2011;6(4): 468-481. DOI 10.1038/nprot.2010.190; Günther T., Malmström H., Svensson E.M., Omrak A., Sánchez-Quin to F., Kılınç G.M., Krzewińska M., Eriksson G., Fraser M., Edlund H., Munters A.R., Coutinho A., Simões L.G., Vicente M., Sjölander A., Sellevold B.J., Jørgensen R., Claes P., Shriver M.D., Valdiosera C., Netea M.G., Apel J., Lidén K., Skar B., Storå J., Götherström A., Jakobsson M. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 2018;16(1):e2003703. DOI 10.1371/journal.pbio.2003703; Hanghøj K., Seguin-Orlando A., Schubert M., Madsen T., Pedersen J.S., Willerslev E., Orlando L. Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX. Mol. Biol. Evol. 2016;33(12):3284-3298. DOI 10.1093/molbev/msw184; Hanghøj K., Renaud G., Albrechtsen A., Orlando L. DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage. GigaScience. 2019;8(4):giz025. DOI 10.1093/gigascience/giz025; Jablonka E., Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 2009;84(2):131-176. DOI 10.1086/598822; Jun G., Wing M.K., Abecasis G.R., Kang H.M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25(6): 918-925. DOI 10.1101/gr.176552.114; Krueger F., Andrews S. RBismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11): 1571-1572. DOI 10.1093/bioinformatics/btr167; Loyfer N., Magenheim J., Peretz A., Cann G., Bredno J., Klochendler A., Fox-Fisher I., Shabi-Porat S., Hecht M., Pelet T., Moss J., Drawshy Z., Amini H., Moradi P., Nagaraju S., Bauman D., Shveiky D., Porat S., Dior U., Rivkin G., Or O., Hirshoren N., Carmon E., Pikarsky A., Khalaileh A., Zamir G., Grinbaum R., Gazala M.A., Mizrahi I., Shussman N., Korach A., Wald O., Izhar U., Erez E., Yutkin V., Samet Y., Golinkin D.R., Spalding K.L., Druid H., Arner P., Shapiro A.M.J., Grompe M., Aravanis A., Venn O., Jamshidi A., Shemer R., Dor Y., Glaser B., Kaplan T. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355-364. DOI 10.1038/s41586-022-05580-6; Meyer M., Kircher M., Gansauge M.-T., Li H., Racimo F., Mallick S., Schraiber J.G., Jay F., Prüfer K., de Filippo C., Sudmant P.H., Alkan C., Fu Q., Do R., Rohland N., Tandon A., Siebauer M., Green R.E., Bryc K., Briggs A.W., Stenzel U., Dabney J., Shendure J., Kitzman J., Hammer M.F., Shunkov M.V., Derevianko A.P., Patterson N., Andrés A.M., Eichler E.E., Slatkin M., Reich D., Kelso J., Pääbo S. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222-226. DOI 10.1126/science.1224344; Moreno-Mayar J., Potter B., Vinner L., Steinrücken M., Rasmussen S., Terhorst J., Kamm J., Albrechtsen A., Malaspinas A., Sikora M., Reuther J., Irish J., Malhi R., Orlando L., Song Y., Nielsen R., Meltzer D., Willerslev E. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature. 2018a; 553(7687):203-207. DOI 10.1038/nature25173; Moreno-Mayar J.V., Vinner L., Damgaard P.B., de la Fuente C., Chan J., Spence J.P., Allentoft M.E., Vimala T., Racimo F., Pinotti T., Rasmussen S., Margaryan A., Orbegozo M.I., Mylopotamitaki D., Wooller M., Bataille C., Becerra-Valdivia L., Chivall D., Comeskey D., Devièse T., Grayson D.K., George L., Harry H., Alexan dersen V., Primeau C., Erlandson J., Rodrigues-Carvalho C., Reis S., Bastos M.Q.R., Cybulski J., Vullo C., Morello F., Vilar M., Wells S., Gregersen K., Hansen K.L., Lynnerup N., Mirazón Lahr M., Kjær K., Strauss A., Alfonso-Durruty M., Salas A., Schroeder H., Higham T., Malhi R.S., Rasic J.T., Souza L., Santos F.R., Malaspinas A.-S., Sikora M., Nielsen R., Song Y.S., Meltzer D.J., Willerslev E. Early human dispersals within the Americas. Science. 2018b;362(6419). DOI 10.1126/science.aav2621; Niiranen L., Leciej D., Edlund H., Bernhardsson C., Fraser M., Sánchez Quinto F., Herzig K.H., Jakobsson M., Walkowiak J., Thalmann O. Epigenomic modifications in modern and ancient genomes. Genes. 2022;13(2):178. DOI 10.3390/genes13020178; Ohm J.E., Mali P., Van Neste L., Berman D.M., Liang L., Pandiyan K., Briggs K.J., Zhang W., Argani P., Simons B., Yu W., Matsui W., Van Criekinge W., Rassool F.V., Zambidis E., Schuebel K.E., Cope L., Yen J., Mohammad H.P., Cheng L., Baylin S.B. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res. 2010;70(19):7662-7673. DOI 10.1158/0008-5472.CAN-10-1361; Olova N., Krueger F., Andrews S., Oxley D., Berrens R.V., Branco M.R., Reik W. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 2018;19(1):33. DOI 10.1186/s13059-018-1408-2; Orlando L., Gilbert M.T.P., Willerslev E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 2015;16(7):395-408. DOI 10.1038/nrg3935; Pedersen B.S., Schwartz D.A., Yang I.V., Kechris K.J. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012;28(22):2986-2988. DOI 10.1093/bioinformatics/bts545; Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., Shakir K., Thibault J., Chandran S., Whelan C., Lek M., Gabriel S., Daly M.J., Neale B., MacArthur D.G., Banks E. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017. DOI 10.1101/201178; Prüfer K., Racimo F., Patterson N., Jay F., Sankararaman S., Sawyer S., Heinze A., Renaud G., Sudmant P.H., de Filippo C., Li H., Mallick S., Dannemann M., Fu Q., Kircher M., Kuhlwilm M., Lachmann M., Meyer M., Ongyerth M., Siebauer M., Theunert C., Tandon A., Moorjani P., Pickrell J., Mullikin J.C., Vohr S.H., Green R.E., Hellmann I., Blanche H., Cann H., Kitzman J.O., Shendure J., Eichler E.E., Lein E.S., Bakken T.E., Golovanova L.V., Doronichev V.B., Shunkov M.V., Derevianko A.P., Viola B., Slatkin M., Reich D., Kelso J., Pääbo S. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505(7481): 43-49. DOI 10.1038/nature12886; Prüfer K., de Filippo C., Grote S., Mafessoni F., Korlević P., Hajdinjak M., Vernot B., Skov L., Hsieh P., Peyrégne S., Reher D., Hopfe C., Nagel S., Maricic T., Fu Q., Theunert C., Rogers R., Skoglund P., Chintalapati M., Dannemann B., Nelson B.J., Key F.M., Rudan P., Kućan Ž., Gušić I., Golovanova L.V., Doronichev V.B., Patterson N., Reich D., Eichler E.E., Slatkin M., Schierup M.H., Andrés A.M., Kelso J., Meyer M., Pääbo S. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017;358(6363):655-658. DOI 10.1126/science.aao1887; Saag L., Vasilyev S.V., Varul L., Kosorukova N.V., Gerasimov D.V., Oshibkina S.V., Griffith S.J., Solnik A., Saag L., D’Atanasio E., Metspalu E., Reidla M., Rootsi S., Kivisild T., Scheib C.L., Tambets K., Kriiska A., Metspalu M. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 2021;7:eabd6535. DOI 10.1126/sciadv.abd6535; Sawyer S., Krause J., Guschanski K., Savolainen V., Pääbo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One. 2012;7(3):e34131. DOI 10.1371/journal.pone.0034131; Seguin-Orlando A., Donat R., Der Sarkissian C., Southon J., Thèves C.; Manen C., Tchérémissinoff Y., Crubézy E., Shapiro B., Deleuze J., Dalén L., Guilaine J., Orlando L. Heterogeneous hunter-gatherer and steppe-related ancestries in Late Neolithic and Bell Beaker genomes from present-day France. Curr. Biol. 2021;31(5):1072-1083. DOI 10.1016/j.cub.2020.12.015; Sikora M., Seguin-Orlando A., Sousa V.C., Albrechtsen A., Korneliussen T., Ko A., Rasmussen S., Dupanloup I., Nigst P.R., Bosch M.D., Renaud G., Allentoft M.E., Margaryan A., Vasilyev S.V., Veselovskaya E.V., Borutskaya S.B., Deviese T., Comeskey D., Higham T., Manica A., Foley R., Meltzer D.J., Nielsen R., Excoffier L., Lahr M.M., Orlando L., Willerslev E. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science. 2017;358(6363):659-662. DOI 10.1126/science.aao1807; Suzuki M., Liao W., Wos F., Johnston A.D., DeGrazia J., Ishii J., Bloom T., Zody M.C., Germer S., Greally J.M. Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Res. 2018;28(9):1364-1371. DOI 10.1101/gr.232587.117; Zhur K.V., Trifonov V.A., Prokhortchouk E.B. Progress and prospects in epigenetic studies of ancient DNA. Biochemistry (Mosc.). 2021; 86(12-13):1563-1571. DOI 10.1134/S0006297921120051; Zou L.S., Erdos M.R., Taylor D.L., Chines P.S., Varshney A., Parker S.C.J., Collins F.S., Didion J.P. BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics. 2018;19(1):390. DOI 10.1186/s12864-018-4766-y; https://vavilov.elpub.ru/jour/article/view/3982

  7. 7
    Academic Journal

    المساهمون: The work was performed with the financial support of the grant Ministry of Education and Science of Republic of Kazakhstan of AP05131940 “Possibilities to determine T-lymphocyte markers in early diagnostics and prognosis of lung and breast cancer”, and the work was carried out within the framework of the budget topic of Ministry of Health of Republic of Kazakhstan OR12165486 “National program for the implementation of personalized and preventive medicine in the Republic of Kazakhstan”. The authors express their gratitude to David Cheishvili, Farida Vaisheva and Moshe Szyf for their help in organizing and performing epigenetic studies., Работа выполнена при финансовой поддержке гранта Министерства образования и науки Республики Казахстан АР05131940 «Возможности определения маркеров Т-лимфоцитов в ранней диагностике и прогнозировании рака легких и молочной железы», а также в рамках бюджетной темы Министерства здравоохранения Республики Казахстан OR12165486 «Национальная программа внедрения персонализированной и превентивной медицины в Республике Казахстан». Авторы выражают благодарность David Cheishvili, Farida Vaisheva и Moshe Szyf за помощь в организации и выполнении эпигенетических исследований.

    المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 90-99 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 90-99 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/544/303; Кайдарова Д.Р., Шатковская О.В., Абдрахманова А.Ж. и др. Эпидемиология рака молочной железы в Казахстане (2014–2018 годы). Онкология и радиология Казахстана 2019;54(4):4–8.; Шатковская О.В., Кайдарова Д.Р., Душимова З.Д. и др. Тенденции заболеваемости, молекулярной диагностики и лечения больных раком молочной железы в Казахстане, 2014–2019 гг. Онкология и радиология Казахстана 2021;62(4):16–23. DOI:10.52532/2521-6414-2021-4-62-16-23; Szyf M. DNA methylation signatures for breast cancer classification and prognosis. Genome Med 2012;30(4):26. DOI:10.1186/gm325; Bjaanæs M.M., Fleischer T., Halvorsen A.R. et al. Genome-wide DNA methylation analyses in lung adenocarcinomas: association with EGFR, KRAS and TP53 mutation status, gene expression, and prognosis. Mol Oncol 2016;10:330–43. DOI:10.1016/j.molonc.2015.10.021; Swann J.B., Smyth M.J. Immune surveillance of tumors. J Clin Invest 2007;117(5):1137–46. DOI:10.1172/JCI31405; Гончарова Т.Г., Кайдарова Д.Р., Кадырбаева Р.Е. и др. Разработка метода ранней диагностики рака легких на основе метилирования клеток мононуклеарной фракции крови. Онкология и радиология Казахстана 2020;3(57):13–20. DOI:10.52532/2521-6414-2020-3-57-13-20; Guerrero-Preston R., Hadar T., Ostrow K.L. et al. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep 2014;32(2):505–12.; Kanwal R., Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81(4):303–11. DOI:10.1111/j.1399-0004.2011.01809.x; Cheishvili D., Christiansen S., Stochinsky R. et al. DNA methylation controls unmethylated transcription start sites in the genome in trans. Epigenomics 2017;9(5):611–33. DOI:10.2217/epi-2016-0141; Cheishvili D., Stefanska B., Yi C. et al. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness. Oncotarget 2015;6(32):33253–68. DOI:10.18632/oncotarget.5291; Midthun D.E. Early detection of lung cancer. F1000Res 2016;25(5): F1000 Faculty Rev-739. DOI:10.12688/f1000research.7313.1; Drake R.R., Cazares L.H., Jones E.E. et al. Challenges to developing proteomic-based breast cancer diagnostics. OMICS 2011;15(5):251–9. DOI:10.1089/omi.2010.0120; Birse C.E., Lagier R.J., FitzHugh W. et al. Blood-based lung cancer biomarkers identified through proteomic discovery in cancer tissues, cell lines and conditioned medium. Clin Proteomics 2015;12(1):18. DOI:10.1186/s12014-015-9090-9; Yang R., Pfütze K., Zucknick M. et al. DNA methylation array analyses identified breast cancer associated HYAL2 methylation in peripheral blood. Int J Cancer 2015;136(8):1845–55. DOI:10.1002/ijc.29205; Kuchiba A., Iwasaki M., Ono H. et al. Global methylation levels in peripheral blood leukocyte DNA by LUMA and breast cancer: a case–control study in Japanese women. Br J Cancer 2014;110(11):2765–71. DOI:10.1038/bjc.2014.223; Parashar S., Cheishvili D., Mahmood N. et al. DNA methylation signatures of breast cancer in peripheral T-cells. BMC Cancer 2018;18(1):574. DOI:10.1186/s12885-018-4482-7; Гончарова Т.Г., Кайдарова Д.Р., Омарбаева Н.А. и др. Разработка метода ранней диагностики рака молочной железы на основе эпигенетических маркеров. Онкология и радиология Казахстана 2020;58(4):29–35. DOI:10.52532/2521-6414-2020-4-58-29-35; Kloten V., Schlensog M., Magnus L. et al. Epigenetic loss of putative tumor suppressor SFRP3 correlates with poor prognosis of lung adenocarcinoma patients. J Epigenetics 2018;13(3):217–27. DOI:10.1080/15592294.2016.1229730; Brennan K., Flanagan J.M. Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res 2012;5(12):1345–57. DOI:10.1158/1940-6207.CAPR-12-0316; Солопова А.Г., Блинов Д.В., Демьянов С.В. и др. Эпигенетические аспекты реабилитации онкогинекологических больных. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология 2022;15(2):294–303. DOI:10.17749/2070-4909/farmakoekonomika.2022.141; LuoY.H., Luo L., Wampfler J.A. et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US Preventive Services Task Force criteria: a prospective, observational cohort study. Lancet Oncol 2019;20(8):1098–108. DOI:10.1016/S1470-2045(19)30329-8; https://umo.abvpress.ru/jour/article/view/544

  8. 8
    Academic Journal

    المساهمون: The study was funded by Russian Science Foundation grant 23-15-00321, Работа выполнена при финансовой поддержке РНФ (проект 23-15-00321)

    المصدر: Siberian journal of oncology; Том 22, № 5 (2023); 145-160 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 145-160 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2768/1165; Herbst A.L., Ulfelder H., Poskanzer D.C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971; 284(15): 878–81. doi:10.1056/NEJM197104222841604.; Attina T.M., Hauser R., Sathyanarayana S., Hunt P.A., Bourguignon J.P., Myers J.P., DiGangi J., Zoeller R.T., Trasande L. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016; 4(12): 996–1003. doi:10.1016/S2213-8587(16)30275-3.; Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33. doi:10.3322/caac.21708.; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi:10.3322/caac.21660.; Bellanger M., Demeneix B., Grandjean P., Zoeller R.T., Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1256–66. doi:10.1210/jc.2014-4323.; Hauser R., Skakkebaek N.E., Hass U., Toppari J., Juul A., Andersson A.M., Kortenkamp A., Heindel J.J., Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1267–77. doi:10.1210/jc.2014-4325.; Lichtenstein P., Holm N.V., Verkasalo P.K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78–85. doi:10.1056/NEJM200007133430201.; Koual M., Tomkiewicz C., Cano-Sancho G., Antignac J.P., Bats A.S., Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health. 2020; 19(1): 117. doi:10.1186/s12940020-00670-2.; Balaguer P., Delfosse V., Grimaldi M., Bourguet W. Structural and Functional Evidences for the Interactions between Nuclear Hormone Receptors and Endocrine Disruptors at Low Doses. C. R. Biol. 2017; 340(9–10): 414–20, doi:10.1016/j.crvi.2017.08.002.; Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015; 36(6): 1–150. doi:10.1210/er.2015-1010.; Arbo M.D., Franco M.T., Larentis E.R., Garcia S.C., Sebben V.C., Leal M.B., Dallegrave E., Limberger R.P. Screening for in vivo (anti)estrogenic activity of ephedrine and p-synephrine and their natural sources Ephedra sinica Stapf. (Ephedraceae) and Citrus aurantium L. (Rutaceae) in rats. Arch Toxicol. 2009; 83(1): 95–9. doi:10.1007/s00204-008-0324-8.; Korn S.H., Wouters E.F., Wesseling G., Arends J.W., Thunnissen F.B. Interaction between glucocorticoids and beta2-agonists: alpha and beta glucocorticoid-receptor mRNA expression in human bronchial epithelial cells. Biochem Pharmacol. 1998; 56(12): 1561–9. doi:10.1016/s0006-2952(98)00179-8.; Conolly R.B., Lutz W.K. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci. 2004; 77(1): 151–7. doi:10.1093/toxsci/kfh007. Erratum in: Toxicol Sci. 2004; 77(2): following table of contents.; Graceli J.B., Sena G.C., Lopes P.F., Zamprogno G.C., da Costa M.B., Godoi A.F., Dos Santos D.M., de Marchi M.R., Dos Santos Fernandez M.A. Organotins: a review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol. 2013; 36: 40–52. doi:10.1016/j.reprotox.2012.11.008.; Oyola M.G., Handa R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017; 20(5): 476–94. doi:10.1080/10253890.2017.1369523.; Iaglov V.V. Aktualnye problemy biologII diffuznoĭ éndokrinnoĭ sistemy [Current problems of the biology of the diffuse endocrine system]. Arkh Anat Gistol Embriol. 1989; 96(1): 14–29.; Simpson E., Rubin G., Clyne C., Robertson K., O’Donnell L., Jones M., Davis S. The role of local estrogen biosynthesis in males and females. Trends Endocrinol Metab. 2000; 11(5): 184–8. doi:10.1016/s1043-2760(00)00254-x.; McNamara K.M., Sasano H. The intracrinology of breast cancer. J Steroid Biochem Mol Biol. 2015; 145: 172–8. doi:10.1016/j.jsbmb.2014.04.004.; Penning T.M., Detlefsen A.J. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol. 2020; 196. doi:10.1016/j.jsbmb.2019.105499.; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. doi:10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020; 70(4): 313.; Cohn B.A., Wolff M.S., Cirillo P.M., Sholtz R.I. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007; 115(10): 1406–14. doi:10.1289/ehp.10260.; Cohn B.A., Cirillo P.M., Terry M.B. DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows. J Natl Cancer Inst. 2019; 111(8): 803–10. doi:10.1093/jnci/djy198.; Cheong A., Johnson S.A., Howald E.C., Ellersieck M.R., Camacho L., Lewis S.M., Vanlandingham M.M., Ying J., Ho S.M., Rosenfeld C.S. Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics. 2018; 13(7): 704–20. doi:10.1080/15592294.2018.1497388.; Cao J., Mickens J.A., McCaffrey K.A., Leyrer S.M., Patisaul H.B. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology. 2012; 33(1): 23–36. doi:10.1016/j.neuro.2011.11.002.; Eckstrum K.S., Edwards W., Banerjee A., Wang W., Flaws J.A., Katzenellenbogen J.A., Kim S.H., Raetzman L.T. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology. 2018; 159(1): 119–31. doi:10.1210/en.2017-00565.; Nair V.A., Valo S., Peltomäki P., Bajbouj K., Abdel-Rahman W.M. Oncogenic Potential of Bisphenol A and Common Environmental Contaminants in Human Mammary Epithelial Cells. Int J Mol Sci. 2020; 21(10): 3735. doi:10.3390/ijms21103735.; Acevedo N., Davis B., Schaeberle C.M., Sonnenschein C., Soto A.M. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013; 121(9): 1040–6. doi:10.1289/ehp.1306734.; Cockburn M., Mills P., Zhang X., Zadnick J., Goldberg D., Ritz B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol. 2011; 173(11): 1280–8. doi:10.1093/aje/kwr003.; Bleak T.C., Calaf G.M. Breast and prostate glands affected by environmental substances (Review). Oncol Rep. 2021; 45(4): 20. doi:10.3892/or.2021.7971.; Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou F., Koutsilieris M., Palimeri S., Panidis D., Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab. 2011; 96(3): 480–4. doi:10.1210/jc.2010-1658.; Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013; 8(1). doi:10.1371/journal.pone.0055387.; Ho S.M., Tang W.Y., Belmonte de Frausto J., Prins G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006; 66(11): 5624–32. doi:10.1158/00085472.CAN-06-0516.; Khan N.G., Correia J., Adiga D., Rai P.S., Dsouza H.S., Chakrabarty S., Kabekkodu S.P. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. Environ Sci Pollut Res Int. 2021; 28(16): 19643–63. doi:10.1007/s11356-021-13071-w.; Prins G.S., Ye S.H., Birch L., Zhang X., Cheong A., Lin H., Calderon-Gierszal E., Groen J., Hu W.Y., Ho S.M., van Breemen R.B. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis. Environ Health Perspect. 2017; 125(7). doi:10.1289/EHP1050.; Stapelfeld C., Dammann C., Maser E. Sex-specificity in lung cancer risk. Int J Cancer. 2020; 146(9): 2376–82. doi:10.1002/ijc.32716.; The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. The coronary Drug Project Research Group. JAMA. 1973; 226(6): 652–7.; Słowikowski B.K., Jankowski M., Jagodziński P.P. The smoking estrogens – a potential synergy between estradiol and benzo(a)pyrene. Biomed Pharmacother. 2021; 139. doi:10.1016/j.biopha.2021.111658.; La Merrill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., Rieswijk L., Sone H., Korach K.S., Gore A.C., Zeise L., Zoeller R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020; 16(1): 45–57. doi:10.1038/s41574-019-0273-8.; Zama A.M., Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150(10): 4681–91. doi:10.1210/en.2009-0499.; Fimia G.M., Sassone-Corsi P. Cyclic AMP signalling. J Cell Sci. 2001; 114(Pt 11): 1971–2. doi:10.1242/jcs.114.11.1971.; Ye L., Guo J., Ge R.S. Environmental Pollutants and Hydroxysteroid Dehydrogenases. In Vitamins & Hormones. Elsevier. 2014; 94: 349–90. https://doi.org/10.1016/B978-0-12-800095-3.00013-4.; Amir S., Shah S.T.A., Mamoulakis C., Docea A.O., Kalantzi O.I., Zachariou A., Calina D., Carvalho F., Sofikitis N., Makrigiannakis A., Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. Int J Environ Res Public Health. 2021; 18(4): 1464. doi:10.3390/ijerph18041464.; Xin F., Jiang L., Liu X., Geng C., Wang W., Zhong L., Yang G., Chen M. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 769: 29–33. doi:10.1016/j.mrgentox.2014.04.019.; Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019; 15(3): 219–29. doi:10.1080/17425255.2019.1569627.; Drobná Z., Henriksen A.D., Wolstenholme J.T., Montiel C., Lambeth P.S., Shang S., Harris E.P., Zhou C., Flaws J.A., Adli M., Rissman E.F. Transgenerational Effects of Bisphenol A on Gene Expression and DNA Methylation of Imprinted Genes in Brain. Endocrinology. 2018; 159(1): 132–44. doi:10.1210/en.2017-00730.; Lucaccioni L., Trevisani V., Marrozzini L., Bertoncelli N., Predieri B., Lugli L., Berardi A., Iughetti L. Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J Mol Sci. 2020; 21(6): 2078. doi:10.3390/ijms21062078.; Lampis A., Hahne J.C., Gasparini P., Cascione L., Hedayat S., Vlachogiannis G., Murgia C., Fontana E., Edwards J., Horgan P.G., Terracciano L., Sansom O.J., Martins C.D., Kramer-Marek G., Croce C.M., Braconi C., Fassan M., Valeri N. MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death Differ. 2021; 28(10): 2970–82. doi:10.1038/s41418-021-00820-0.; Knoll M., Lodish H.F., Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015; 11(3): 151–60. doi:10.1038/nrendo.2014.229.; Pardini B., Calin G.A. MicroRNAs and Long Non-Coding RNAs and Their Hormone-Like Activities in Cancer. Cancers (Basel). 2019; 11(3): 378. doi:10.3390/cancers11030378.; Derghal A., Djelloul M., Trouslard J., Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci. 2016; 10: 318. doi:10.3389/fnins.2016.00318.; Schveigert D., Krasauskas A., Didziapetriene J., Kalibatiene D., Cicenas S. Smoking, hormonal factors and molecular markers in female lung cancer. Neoplasma. 2016; 63(4): 504–9. doi:10.4149/neo_2016_402.; Meireles S.I., Esteves G.H., Hirata R. Jr., Peri S., Devarajan K., Slifker M., Mosier S.L., Peng J., Vadhanam M.V., Hurst H.E., Neves E.J., Reis L.F., Gairola C.G., Gupta R.C., Clapper M.L. Early changes in gene expression induced by tobacco smoke: Evidence for the importance of estrogen within lung tissue. Cancer Prev Res (Phila). 2010; 3(6): 707–17. doi:10.1158/1940-6207.CAPR-09-0162.; Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PLoS One. 2015; 10(3). doi:10.1371/journal.pone.0121323.; Lortet-Tieulent J., Soerjomataram I., Ferlay J., Rutherford M., Weiderpass E., Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014; 84(1): 13–22. doi:10.1016/j.lungcan.2014.01.009.; Smida T., Bruno T.C., Stabile L.P. Influence of Estrogen on the NSCLC Microenvironment: A Comprehensive Picture and Clinical Implications. Front Oncol. 2020; 10: 137. doi:10.3389/fonc.2020.00137.; Hirao-Suzuki M. Estrogen Receptor β as a Possible Double-Edged Sword Molecule in Breast Cancer: A Mechanism of Alteration of Its Role by Exposure to Endocrine-Disrupting Chemicals. Biol Pharm Bull. 2021; 44(11): 1594–7. doi:10.1248/bpb.b21-00468.; Zhang C., Schilirò T., Gea M., Bianchi S., Spinello A., Magistrato A., Gilardi G., Di Nardo G. Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. Int J Environ Res Public Health. 2020; 17(16): 5664. doi:10.3390/ijerph17165664.; Küblbeck J., Vuorio T., Niskanen J., Fortino V., Braeuning A., Abass K., Rautio A., Hakkola J., Honkakoski P., Levonen A.L. The EDCMET Project: Metabolic Effects of Endocrine Disruptors. Int J Mol Sci. 2020; 21(8): 3021. doi:10.3390/ijms21083021.; Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., Cavaillès V., Daujat-Chavanieu M., Vivat V., Pascussi J.M., Balaguer P., Bourguet W. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun. 2015; 6: 8089. doi:10.1038/ncomms9089.; Kassotis C.D., Stapleton H.M. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne). 2019; 10: 39. doi:10.3389/fendo.2019.00039.; Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003; 16(7): 807–16. doi:10.1021/tx034036r.; Nomiri S., Hoshyar R., Ambrosino C., Tyler C.R., Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. Environ Sci Pollut Res Int. 2019; 26(9): 8459–67. doi:10.1007/s11356-019-04228-9.; Leng Y., Ren L., Niu S., Zhang T., Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol. 2021; 155. doi:10.1016/j.fct.2021.112413.; Atlas E., Pope L., Wade M.G., Kawata A., Boudreau A., Boucher J.G. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte. 2014; 3(3): 170–9. doi:10.4161/adip.28436.; de la Rosa R., Vazquez S., Tachachartvanich P., Daniels S.I., Sillé F., Smith M.T. Cell-Based Bioassay to Screen Environmental Chemicals and Human Serum for Total Glucocorticogenic Activity. Environ Toxicol Chem. 2021; 40(1): 177–86. doi:10.1002/etc.4903.; Meakin C.J., Szilagyi J.T., Avula V., Fry R.C. Inorganic arsenic and its methylated metabolites as endocrine disruptors in the placenta: Mechanisms underpinning glucocorticoid receptor (GR) pathway perturbations. Toxicol Appl Pharmacol. 2020. doi:10.1016/j.taap.2020.115305.; Leng Y., Sun Y., Huang W., Lv C., Cui J., Li T., Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep. 2021; 48(4): 3145–54. doi:10.1007/s11033-021-06303-2.; European Parliament. Directorate General for Internal Policies of the Union. Endocrine Disruptors: From Scientific Evidence to Human Health Protection Policy. Publications Office: LU, 2019.; Kassotis C.D., Vandenberg L.N., Demeneix B.A., Porta M., Slama R., Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020; 8(8): 719–30. doi:10.1016/S2213-8587(20)30128-5.; Hormonally Active Agents in the Environment. Committee on Hormonally Active Agents in the Environment. National Research Council, 1999.; European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson N., Arena M., Auteri D., Barmaz S., Grignard E., Kienzler A., Lepper P., Lostia A.M., Munn S., Parra Morte J.M., Pellizzato F., Tarazona J., Terron A., Van der Linden S. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018; 16(6). doi:10.2903/j.efsa.2018.5311.; Максимова В.П., Бугаева П.Е., Жидкова Е.М., Усалка О.Г., Лесовая Е.А., Белицкий Г.А., Якубовская М.Г., Кирсанов К.И. Современные подходы к выявлению и изучению эпигенетически активных ксенобиотиков. Успехи молекулярной онкологии. 2019; 6(3): 8–27. doi:10.17650/2313-805X-2019-6-3-8-27.; https://www.siboncoj.ru/jour/article/view/2768

  9. 9
    Academic Journal

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 2 (2023); 5-12 ; Российский вестник перинатологии и педиатрии; Том 68, № 2 (2023); 5-12 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1795/1355; Неудахин Е.В., Морено И.Г. К вопросу о патогенезе атеросклероза и коррекции атерогенных нарушений у детей. РМЖ. Мать и дитя 2018; 9: 62–68.; Неудахин Е.В. Хронический стресс в общей патологии у детей. Вопросы детской диетологии 2014; 12(5): 44–49.; Peterlin A., Petrovič D., Peterlin B. Screening for Rare Genetic Variants Associated with Atherosclerosis: Opportunity for Personalized Medicine. Curr Vasc Pharmacol 2019; 17(1): 25–28. DOI:10.2174/1570161116666180206111725; Hegele R.A., Ban M.R., Cao H., McIntyre A.D., Robinson J.F., Wang J. Targeted next-generation sequencing in monogenic dyslipidemias. Curr Opin Lipido 2015; 26(2): 103–113. DOI:10.2174/1570161116666180206111725; Fouchier S.W., Dallinga-Thie G.M., Meijers J.C., Zelcer N., Kastelein J.J. et al. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res 2014; 115: 552–555. DOI:10.1161/CIRCRESAHA.115.304660; Ding Q., Strong A., Patel K.M., Ng S.L., Gosis B.S. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Res 2014; 115: 488–492. DOI:10.1161/CIRCRESAHA.115.304660; Aavik E., Babu M., Yla-Herttuala S. DNA methylation processes in atherosclerotic plague. Atherosclerosis 2019; 281: 168–169. DOI:10.1016/j.atherosclerosis.2018.12.006; Jiang W., Agrawal D.K., Boosani C.S. Cellspecific histone modifications in atherosclerosis (review). Mol Med Rep 2018; 18 (2): 1215–1224. DOI:10.3892/mmr.2018.9142; Constantino S., Libby P., Kishore R., Tardif JC., El-Osta., Paneni F. Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J 2018; 39(47): 4150–4158. DOI:10.3892/mmr.2018.9142; Коробкова Е.О., Кожевникова М.В., Ильгисоникс И.С. Метаболомное профилирование больных с метаболическим синдромом. Кардиология 2020; 60(3): 37–62. DOI:10.18087/cardio.2020.3.n903; Young J., Stone W.L. Pediatric proteomics: an introduction. Front Biosci 2012; 4: 1078–1087. DOI:10.2741/s319; Kopec G., Shekhawat P.S., Mhanna M.J. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes 2017; 10: 285–295. DOI:10.2147/DMSO.S115890; Godfrey K.M., Barker D.J.P. Fetal programming and adult health Public. Health Nutrition 2007; 4(2b): 611–624. DOI:10.1079/phn2001145; Barker D.J., Osmond C., Forsen T.J., Kajantie E., Eriksson J.G. Trajectoies of growth among children who have coronary events as adults. N Engl J Med 2005; 353(17): 1802–1809. DOI:10.1056/NEJMoa044160; Lane R.H. Fetal programming epigenetic and adult-onset disease. Clin Perinatol 2014; 41(4): 815–831. DOI:10.1016/j.clp.2014.08.006; Van Otterdijk S.G., Michels K.B. Transgenerational epigenetic inheritance in mammals: how good is the epigenetic? Faseb J 2016; 30(7): 24570–24654. DOI:10.1096/fj.201500083; Morgan H.L., Watkins A.J. Transgenerational impact of environmental change. Adv Exp Med Biol 2019; 1200: 71–89. DOI:10.1007/978–3–030–23633–5 -4; Неудахин Е.В., Морено И.Г. Углубление представлений о некоторых механизмах формирования хронического стресса. Вопросы практической педиатрии 2016; 11(54): 28–37. [Neudakhin E.V., Moreno I.G. Deepening of ideas about some mechanisms of chronic stress formation. Voprosy prakticheskoi pediatrii 2016; 11(54): 28–37. (in Russ.)] DOI:10.20953/1817–7646–2016–5–28–37; Беляева Л.Е., Павлюкевич А.Н. Раннее программирование заболеваний человека и использование нутрицевтиков с профилактической целью: фокус на рыбий жир. Обзор литературы. Часть I. Вестник ВГМУ 2019;18 (4): 7–16. [Belyaeva L.E., Pavlyukevich A.N. Early programming of human diseases and preventive use of nutraceuticals: focus on fish oils. Literature review. Part I. Vestnik VGMU 2019; 18(4): 7–16. (in Russ.)] DOI:10.22263/2312–4156.2019.4.7; Tzschoppe A.I., von Kries R., Struwe E., Rascher W., Dörr H.G. et al. Intrauterine growth Restriction (IUGR) Induces Signs of Subclinical Ateroclerosis in 6-Year-old infants Despite Absence of Excessive Growth. Kein Pediatr 2017; 229(4): 209– 215. DOI:10.1055/s-0043–104528; Van de Maele K., Devliger R., Gies I. In utero programming and early detection of cardiovascular disease in the offspring of mothers with obesity. Atherosclerosis 2018; 275: 182–195. DOI:10.1016/jatherosclerosis2018.06.016; Yao B.C., Meng L.B., Hao M.L., Zhang Y.M., Gong T., Guo Z.G. Chronic stress a critical risk factor for atherosclerosis. J Int Med Res 2019; 47(4): 1429–1440. DOI:10.1177/0300060519826820; https://www.ped-perinatology.ru/jour/article/view/1795

  10. 10
    Academic Journal

    المساهمون: The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075 15 2021 1343) “Development of a bioresource collection of tumors of the human nervous system with molecular genetic certification for personalized treatment of patients with neuro-oncological diseases”., Работа выполнена при поддержке гранта Министерства образования и науки № 075-15-2021-1343 «Развитие биоресурсной коллекции опухолей нервной системы человека с молекулярно-генетической паспортизацией для персонифицированного лечения пациентов с нейроонкологическими заболеваниями».

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 3 (2023); 15-21 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 3 (2023); 15-21 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/959/843; Ostrom Q.T., Price M., Neff C., Cioffi G., Waite K.A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Suppl 5):v1–v95. doi:10.1093/neuonc/noac202.; Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K. World Health Organization Classification of Tumours of the Central Nervous System. 4th ed., updated ed. Lyon: International Agency for Research on Cancer; 2016.; WHO Classification of Tumours Editorial Board. World Health Organization Classification of Tumours of the Central Nervous System. 5th ed. Lyon: International Agency for Research on Cancer; 2021.; Sturm D., Witt H., Hovestadt V., Khuong-Quang D.A., Jones D.T., Konermann C., Pfaff E., Tönjes M., Sill M., Bender S., Kool M., Zapatka M., Becker N., Zucknick M., Hielscher T., Liu X.Y., Fontebasso A.M., Ryzhova M., Albrecht S., Jacob K., Wolter M., Ebinger M., Schuhmann M.U., van Meter T., Frühwald M.C., Hauch H., Pekrun A., Radlwimmer B., Niehues T., von Komorowski G., Dürken M., Kulozik A.E., Madden J., Donson A., Foreman N.K., Drissi R., Fouladi M., Scheurlen W., von Deimling A., Monoranu C., Roggendorf W., Herold-Mende C., Unterberg A., Kramm C.M., Felsberg J., Hartmann C., Wiestler B., Wick W., Milde T., Witt O., Lindroth A.M., Schwartzentruber J., Faury D., Fleming A., Zakrzewska M., Liberski P.P., Zakrzewski K., Hauser P., Garami M., Klekner A., Bognar L., Morrissy S., Cavalli F., Taylor M.D., van Sluis P., Koster J., Versteeg R., Volckmann R., Mikkelsen T., Aldape K., Reifenberger G., Collins V.P., Majewski J., Korshunov A., Lichter P., Plass C., Jabado N., Pfister S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37. doi:10.1016/j.ccr.2012.08.024.; Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D., Koelsche C., Sahm F., Chavez L., Reuss D.E., Kratz A., Wefers A.K., Huang K., Pajtler K.W., Schweizer L., Stichel D., Olar A., Engel N.W., Lindenberg K., Harter P.N., Braczynski A.K., Plate K.H., Dohmen H., Garvalov B.K., Coras R., Hölsken A., Hewer E., Bewerunge-Hudler M., Schick M., Fischer R., Beschorner R., Schittenhelm J., Staszewski O., Wani K., Varlet P., Pages M., Temming P., Lohmann D., Selt F., Witt H., Milde T., Witt O., Aronica E., Giangaspero F., Rushing E., Scheurlen W., Geisenberger C., Rodriguez F.J., Becker A., Preusser M., Haberler C., Bjerkvig R., Cryan J., Farrell M., Deckert M., Hench J., Frank S., Serrano J., Kannan K., Tsirigos A., Brück W., Hofer S., Brehmer S., Seiz-Rosenhagen M., Hänggi D., Hans V., Rozsnoki S., Hansford J.R., Kohlhof P., Kristensen B.W., Lechner M., Lopes B., Mawrin C., Ketter R., Kulozik A., Khatib Z., Heppner F., Koch A., Jouvet A., Keohane C., Mühleisen H., Mueller W., Pohl U., Prinz M., Benner A., Zapatka M., Gottardo N.G., Driever P.H., Kramm C.M., Müller H.L., Rutkowski S., von Hoff K., Frühwald M.C., Gnekow A., Fleischhack G., Tippelt S., Calaminus G., Monoranu C.M., Perry A., Jones C., Jacques T.S., Radlwimmer B., Gessi M., Pietsch T., Schramm J., Schackert G., Westphal M., Reifenberger G., Wesseling P., Weller M., Collins V.P., Blümcke I., Bendszus M., Debus J., Huang A., Jabado N., Northcott P.A., Paulus W., Gajjar A., Robinson G.W., Taylor M.D., Jaunmuktane Z., Ryzhova M., Platten M., Unterberg A., Wick W., Karajannis M.A., Mittelbronn M., Acker T., Hartmann C., Aldape K., Schüller U., Buslei R., Lichter P., Kool M., Herold-Mende C., Ellison D.W., Hasselblatt M., Snuderl M., Brandner S., Korshunov A., von Deimling A., Pfister S.M. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74. doi:10.1038/nature26000.; Capper D., Stichel D., Sahm F., Jones D.T.W., Schrimpf D., Sill M., Schmid S., Hovestadt V., Reuss D.E., Koelsche C., Reinhardt A., Wefers A.K., Huang K., Sievers P., Ebrahimi A., Schöler A., Teichmann D., Koch A., Hänggi D., Unterberg A., Platten M., Wick W., Witt O., Milde T., Korshunov A., Pfister S.M., von Deimling A. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 2018;136(2):181–210. doi:10.1007/s00401-018-1879-y.; Рыжова М.В., Галстян С.А., Телышева Е.Н. Значение оценки метилирования ДНК в морфологической диагностике опухолей ЦНС. Архив патологии. 2022;84(3):65–75. doi:10.17116/patol20228403165.; Рыжова М.В., Телышева Е.Н., Шайхаев Е.Г., Старовойтов Д.В., Котельникова А.О., Галстян С.А., Оконечников К.В. Современные диагностические возможности молекулярного исследования опухолей мозга в центре нейрохирургии им. акад. Н.Н. Бурденко. Журнал Вопросы нейрохирургии им. Н.Н. Бурденко. 2021;85(6):98–101. doi:10.17116/neiro20218506192.; Петрова Е.И., Галстян С.А., Телышева Е.Н., Рыжова М.В. Визуализация результатов анализа структуры метилирования ДНК как инструмент контроля качества молекулярной классификации опухолей ЦНС. Российский нейрохирургический журнал им. проф. А.Л. Поленова. 2022;14(4):64–70. doi:10.56618/20712693_2022_14_4_64.; Aryee M.J., Jaffe A.E., Corrada-Bravo H., Ladd-Acosta C., Feinberg A.P., Hansen K.D., Irizarry R.A. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. doi:10.1093/bioinformatics/btu049.; Mansell G., Gorrie-Stone T.J., Bao Y., Kumari M., Schalkwyk L.S., Mill J., Hannon E. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics. 2019;20(1):366. doi:10.1186/s12864-019-5761-7.; Bady P., Sciuscio D., Diserens A.C., Bloch J., van den Bent M.J., Marosi C., Dietrich P.Y., Weller M., Mariani L., Heppner F.L., Mcdonald D.R., Lacombe D., Stupp R., Delorenzi M., Hegi M.E. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60. doi:10.1007/s00401-012-1016-2. Erratum in: Acta Neuropathol. 2013;126(1):159.; Teschendorff A.E., Breeze C.E., Zheng S.C., Beck S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies. BMC Bioinformatics. 2017;18(1):105. doi:10.1186/s12859-017-1511-5.; Grabovska Y., Mackay A., O’Hare P., Crosier S., Finetti M., Schwalbe E.C., Pickles J.C., Fairchild A.R., Avery A., Cockle J., Hill R., Lindsey J., Hicks D., Kristiansen M., Chalker J., Anderson J., Hargrave D., Jacques T.S., Straathof K., Bailey S., Jones C., Clifford S.C., Williamson D. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat Commun. 2020;11(1):4324. doi:10.1038/s41467-020-18070-y.; Chen Z., Hambardzumyan D. Immune Microenvironment in Glioblastoma Subtypes. Front Immunol. 2018;9:1004. doi:10.3389/fimmu.2018.01004.; Mo F., Pellerino A., Soffietti R., Rudà R. Blood-Brain Barrier in Brain Tumors: Biology and Clinical Relevance. Int J Mol Sci. 2021;22(23):12654. doi:10.3390/ijms222312654.; Han S., Ma E., Wang X., Yu C., Dong T., Zhan W., Wei X., Liang G., Feng S. Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients. Oncol Lett. 2016;12(4):2924–9. doi:10.3892/ol.2016.4944.; Zhai L., Ladomersky E., Lauing K.L., Wu M., Genet M., Gritsina G., Győrffy B., Brastianos P.K., Binder D.C., Sosman J.A., Giles F.J., James C.D., Horbinski C., Stupp R., Wainwright D.A. Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clin Cancer Res. 2017;23(21):6650–60. doi:10.1158/1078-0432.CCR-17-0120.; https://journal.nodgo.org/jour/article/view/959

  11. 11
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 4 (2023); 28-34 ; Медицинский Совет; № 4 (2023); 28-34 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7436/6631; Wasti B., Liu S.K., Xiang X.D. Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm. 2021:9412929. https://doi.org/10.1155/2021/9412929.; Yang I.V., Lozupone C.A., Schwartz D.A. The environment, epigenome, and asthma. J Allergy Clin Immunol. 2017;140(1):14–23. https://doi.org/10.1016/j.jaci.2017.05.011.; Ebrahimi A., Sadroddiny E. MicroRNAs in lung diseases: Recent findings and their pathophysiological implications. Pulm Pharmacol Ther. 2015;34:55–63. https://doi.org/10.1016/j.pupt.2015.08.007.; Mori M.A., Ludwig R.G., Garcia-Martin R., Brandão B.B., Kahn C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019;30(4):656–673. https://doi.org/10.1016/j.cmet.2019.07.011.; Johar D., Siragam V., Mahood T.H., Keijzer R. New insights into lung development and diseases: the role of microRNAs. Biochem Cell Biol. 2015;93(2):139–148. https://doi.org/10.1139/bcb-2014-0103.; Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006. https://doi.org/10.1038/cr.2008.282.; Rodrigo-Muñoz J.M., Cañas J.A., Sastre B., Rego N., Greif G., Rial M. et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy. 2019;74(3):507–517. https://doi.org/10.1111/all.13570.; Wang Y., Li Y., Zhang P., Baker S.T., Wolfson M.R., Weiser J.N. et al. Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 2019;116(17):8493–8498. https://doi.org/10.1073/pnas.1818522116.; Kabesch M., Adcock I.M. Epigenetics in asthma and COPD. Biochimie. 2012;94(11):2231–2241. https://doi.org/10.1016/j.biochi.2012.07.017.; Дьяченко Н.А., Улитина А.С., Лукина О.В., Пчелина С.Н., Трофимов В.И., Миронова Ж.А. Экспрессия микроРНК miR-21 и miR-146а у пациентов мужского пола с перекрестным фенотипом бронхиальной астмы и хронической обструктивной болезни легких. Пульмонология. 2020;30(3):263–269. https://doi.org/10.18093/0869-0189-2020-30-3-263-269.; Weidner J., Bartel S., Kılıç A., Zissler U.M., Renz H., Schwarze J. et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661–1678. https://doi.org/10.1111/all.14646.; Schembri F., Sridhar S., Perdomo C., Gustafson A.M., Zhang X., Ergun A. et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A. 2009;106(7):2319–2324. https://doi.org/10.1073/pnas.0806383106.; Ong J., van den Berg A., Faiz A., Boudewijn I.M., Timens W., Vermeulen C.J. et al. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci. 2019;20(20):5176. https://doi.org/10.3390/ijms20205176.; Cay P., Singer C.A., Ba M.A. Gene network analysis for identification of microRNA biomarkers for asthma. Respir Res. 2022;23(1):378. https://doi.org/10.1186/s12931-022-02304-2.; Овсянников Н.В., Билевич О.А., Зинченко Л.М., Козлова Е.А. Новые возможности достижения контроля над течением тяжелой бронхиальной астмы. Вестник современной клинической медицины. 2019;12(4):63–68. https://doi.org/10.20969/VSKM.2019.12(4).63-68.; Демко И.В., Собко Е.А., Чубарова С.В., Соловьева И.А., Крапошина А.Ю., Медведева Н.Н. и др. Особенности системного воспаления, функции внешнего дыхания и морфологической структуры слизистой оболочки бронхов при тяжелой бронхиальной астме. Сибирское медицинское обозрение. 2014;(5):47–52. Режим доступа: https://smr.krasgmu.ru/journal/1262_47-52.pdf.; Ненашева Н.М., Курбачева О.М., Авдеев С.Н., Федосенко С.В., Емельянов А.В., Белевский А.С. и др. Практические рекомендации по выбору иммунобиологического препарата для лечения тяжелой бронхиальной астмы Т2-эндотипа. Пульмонология. 2020;30(2):227–244. https://doi.org/10.18093/0869-0189-2020-30-2-227-244.; Kyyaly M.A., Sanchez-Elsner T., He P., Sones C.L., Arshad S.H., Kurukulaaratchy R.J. Circulating miRNAs-A potential tool to identify severe asthma risk? Clin Transl Allergy. 2021;11(4):e12040. https://doi.org/10.1002/clt2.12040.; Atashbasteh M., Mortaz E., Mahdaviani S.A., Jamaati H., Allameh A. Expression levels of plasma exosomal miR-124, miR-125b, miR-133b, miR-130a and miR-125b-1-3p in severe asthma patients and normal individuals with emphasis on inflammatory factors. Allergy Asthma Clin Immunol. 2021;17(1):51. https://doi.org/10.1186/s13223-021-00556-z.; Rodrigo-Muñoz J.M., Gil-Martínez M., Lorente-Sorolla C., García-Latorre R., Valverde-Monge M., Quirce S. et al. miR-144-3p Is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Front Immunol. 2022;13:858722. https://doi.org/10.3389/fimmu.2022.858722.; Cañas J.A., Valverde-Monge M., Rodrigo-Muñoz J.M., Sastre B., Gil-Martínez M., García-Latorre R. et al. Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med. 2021;11(2):76. https://doi.org/10.3390/jpm11020076.; Gil-Martínez M., Lorente-Sorolla C., Rodrigo-Muñoz J.M., Lendínez M.Á., Núñez-Moreno G., de la Fuente L. et al. Analysis of Differentially Expressed MicroRNAs in Serum and Lung Tissues from Individuals with Severe Asthma Treated with Oral Glucocorticoids. Int J Mol Sci. 2023;24(2):1611. https://doi.org/10.3390/ijms24021611.; Kho A.T., McGeachie M.J., Moore K.G., Sylvia J.M., Weiss S.T., Tantisira K.G. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Respir Res. 2018;19(1):128. https://doi.org/10.1186/s12931-018-0828-6.; Hough K.P., Curtiss M.L., Blain T.J., Liu R.M., Trevor J., Deshane J.S., Thannickal V.J. Airway Remodeling in Asthma. Front Med (Lausanne). 2020;7:191. https://doi.org/10.3389/fmed.2020.00191.; Habib N., Pasha M.A., Tang D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells. 2022;11(17):2764. https://doi.org/10.3390/cells11172764.; Sharma R., Tiwari A., McGeachie M.J. Recent miRNA Research in Asthma. Curr Allergy Asthma Rep. 2022;22(12):231–258. https://doi.org/10.1007/s11882-022-01050-1.; Chung S., Lee Y.G., Karpurapu M., Englert J.A., Ballinger M.N., Davis I.C. et al. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2. Am J Physiol Lung Cell Mol Physiol. 2020;318(5):L921–L930. https://doi.org/10.1152/ajplung.00457.2019.; Zhao M., Li Y.P., Geng X.R., Zhao M., Ma S.B., Yang Y.H. et al. Expression Level of MiRNA-126 in Serum Exosomes of Allergic Asthma Patients and Lung Tissues of Asthmatic Mice. Curr Drug Metab. 2019;20(10):799–803. https://doi.org/10.2174/1389200220666191011114452.; ElKashef S.M.M.A.E., Ahmad S.E., Soliman Y.M.A., Mostafa M.S. Role of microRNA-21 and microRNA-155 as biomarkers for bronchial asthma. Innate Immun. 2021;27(1):61–69. https://doi.org/10.1177/1753425920901563.; Aripova A., Akparova A., Bersimbaev R. The Potential Role of miRNA-19b-3p and miRNA-320c in Patients with Moderate Bronchial Asthma. Microrna. 2020;9(5):373–377. https://doi.org/10.2174/2211536609666201221122715.; Siddiqui S., Johansson K., Joo A., Bonser L.R., Koh K.D., Le Tonqueze O. et al. Epithelial miR-141 regulates IL-13-induced airway mucus production. JCI Insight. 2021;6(5):e139019. https://doi.org/10.1172/jci.insight.139019.; Liu J.H., Li C., Zhang C.H., Zhang Z.H. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology. 2020;26(1):18–26. https://doi.org/10.1016/j.pulmoe.2019.07.001.; Laanesoo A., Urgard E., Periyasamy K., Laan M., Bochkov Y.A., Aab A. et al. Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation. Clin Transl Med. 2021;11(6):e427. https://doi.org/10.1002/ctm2.427.; Zhang T., Huang P., Qiu C. Progresses in epigenetic studies of asthma from the perspective of high-throughput analysis technologies: a narrative review. Ann Transl Med. 2022;10(8):493. https://doi.org/10.21037/atm-22-929.; Stolzenburg L.R., Harris A. The role of microRNAs in chronic respiratory disease: recent insights. Biol Chem. 2018;399(3):219–234. https://doi.org/10.1515/hsz-2017-0249.; Ortiz-Quintero B., Martínez-Espinosa I., Pérez-Padilla R. Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: Inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells. 2022;12(1):67. https://doi.org/10.3390/cells12010067.; Angulo M., Lecuona E., Sznajder J.I. Role of MicroRNAs in lung disease. Arch Bronconeumol. 2012;48(9):325–330. https://doi.org/10.1016/j.arbres.2012.04.011.; Van Nijnatten J., Brandsma C.A., Steiling K., Hiemstra P.S., Timens W., van den Berge M., Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep. 2022;12(1):5610. https://doi.org/10.1038/s41598-022-09093-0.; Bersimbaev R., Aripova A., Bulgakova O., Kussainova А., Akparova A,. Izzotti A. The Plasma Levels of hsa-miR-19b-3p, hsa-miR-125b-5p, and hsamiR-320c in Patients with Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Microrna. 2021;10(2):130–138. https://doi.org/10.2174/2211536610666210609142859.; Qian Y., Mao Z.D., Shi Y.J., Liu Z.G., Cao Q., Zhang Q. Comprehensive Analysis of miRNA-mRNA-lncRNA Networks in Non-Smoking and Smoking Patients with Chronic Obstructive Pulmonary Disease. Cell Physiol Biochem. 2018;50(3):1140–1153. https://doi.org/10.1159/000494541.; Hirai K., Shirai T., Shimoshikiryo T., Ueda M., Gon Y., Maruoka S., Itoh K. Circulating microRNA-15b-5p as a biomarker for asthma-COPD overlap. Allergy. 2021;76(3):766–774. https://doi.org/10.1111/all.14520.; https://www.med-sovet.pro/jour/article/view/7436

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: The research was supported by the Russian Ministry of Science and Higher Education grant No. 075-15-2021-1062, Работа выполнена при поддержке гранта Министерства науки и высшего образования № 075-15-2021-1062

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 4 (2023); 235–242 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 4 (2023); 235–242 ; 0137-0952

    وصف الملف: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1283/653; Talbert P.B., Henikoff S. Histone variants at a glance. J. Cell Sci. 2021;134(6):jcs244749.; Draizen E.J., Shaytan A.K., Mariño-Ramírez L., Talbert P.B., Landsman D., Panchenko A.R. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants. Database. 2016;2016:baw014.; Malik H.S., Henikoff S. Phylogenomics of the nucleosome. Nat. Struct. Mol. Biol. 2003;10(11):882–891.; Kustatscher G., Hothorn M., Pugieux C., Scheffzek K., Ladurner A.G. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 2005;12(7):624–625.; Yelagandula R., Stroud H., Holec S., Zhou K., Feng S., Zhong X., Muthurajan M., Nie X., Kawashima T., Groth M., Luger K., Jacobsen S., Berger F. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell. 2014;158(1):98–109.; Tanaka M., Hennebold J.D., Macfarlane J., Adashi E.Y. A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development. 2001;128(5):655–664.; Jiang D., Borg M., Lorković Z.J., Montgomery S.A., Osakabe A., Yelagandula R., Axelsson E., Berger F. The evolution and functional divergence of the histone H2B family in plants. PLOS Genetics. 2020;16(7):e1008964.; Strickland M., Strickland W.N., Brandt W.F., Von Holt C., Wittmann-Liebold B. The complete amino-acid sequence of histone H2B(3) from sperm of the sea urchin Parechinus angulosus. Eur. J. Biochem. 1978;89(2):443–452.; Kawashima T., Lorković Z.J., Nishihama R., Ishizaki K., Axelsson E., Yelagandula R., Yelagandula R., Kohchi T., Berger F. Diversification of histone H2A variants during plant evolution. Trends Plant Sci. 2015;20(7):419–425.; Ueda K., Suzuki M., Ono M., Ide N., Tanaka I., Inoue M. Male gametic cell-specific histone gH2A gene of Lilium longiflorum: genomic structure and promoter activity in the generative cell. Plant Mol. Biol. 2005;59(2):229–238.; Molaro A., Young J.M., Malik H.S. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res. 2018;28(4):460–473.; Churchill M.E., Suzuki M. “SPKK” motifs prefer to bind to DNA at A/T-rich sites. EMBO J. 1989;8(13):4189–4195.; Zambrano-Mila M.S., Aldaz-Villao M.J., Casas-Mollano J.A. Canonical histones and their variants in plants: evolution and functions. Epigenetics in plants of agronomic importance: fundamentals and applications. Eds. R. Alvarez-Venegas, C. De-la-Peña, J. Casas-Mollano. Cham: Springer; 2019:185–222.; Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948.; Wheeler T.J., Kececioglu J.D. Multiple alignment by aligning alignments. Bioinformatics. 2007;23(13):i559– i568.; Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797.; Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59(3):307–321.; Beitz E. TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics. 2000;16(2):135–139.; 1. Jiang X., Soboleva T.A., Tremethick D.J. Short histone H2A variants: small in stature but not in function. Cells. 2020;9(4):867.; Chew G.L., Bleakley M., Bradley R.K., Malik H.S., Henikoff S., Molaro A., Sarthy J. Short H2A histone variants are expressed in cancer. Nat. Commun. 2021;12(1):490.; Dryhurst D., Ishibashi T., Rose K.L., Eirín-López J.M., McDonald D., Silva-Moreno B., Veldhoen N., Helbing C.C., Hendzel M.J., Shabanowitz J., Hunt D.F., Ausió, J. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biology. 2009;7(1):86.; Shaytan A.K., Landsman D., Panchenko A.R. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr. Opin. Struct. Biol. 2015;32:48–57.; Millar C.B. Organizing the genome with H2A histone variants. Biochem. J. 2013;449(3):567–579.; Draker R., Ng M.K., Sarcinella E., Ignatchenko V., Kislinger T., Cheung P. A Combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLOS Genetics. 2012;8(11):e1003047.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1283

  14. 14
    Academic Journal

    المساهمون: 0

    المصدر: Annals of the Russian academy of medical sciences; Vol 78, No 6 (2023); 589-600 ; Вестник Российской академии медицинских наук; Vol 78, No 6 (2023); 589-600 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.786

    وصف الملف: application/pdf

  15. 15
    Academic Journal

    Relation: Низамова, А.Р. Роль метилирования ДНК при раке легкого (обзор) / А.Р. Низамова, Г.Ф. Гималова, Э.К. Хуснутдинова // Научные результаты биомедицинских исследований. - 2023. - Т.9, №3.-С. 293-311. - Doi:10.18413/2658-6533-2023-9-3-0-1. - Библиогр.: с. 303-310.; http://dspace.bsu.edu.ru/handle/123456789/57379

  16. 16
    Conference

    وصف الملف: application/pdf

    Relation: Валеологические проблемы здоровьеформирования подростков, молодежи, населения : XVII всероссийской научно-практической конференции молодых ученых, аспирантов, студентов. — Екатеринбург, 2021; Лушникова, С. Р. Роль образа жизни в профилактике заболеваний / С. Р. Лушникова, С. В. Комлева // Валеологические проблемы здоровьеформирования подростков, молодежи, населения : сборник материалов XVII всероссийской научно-практической конференции молодых ученых, аспирантов, студентов, 25 ноября 2021 года / Рос. гос. проф.-пед. ун-т, Ин-т физ. культуры, спорта и здоровья. - Екатеринбург : РГППУ, 2021. - С. 162-167.; https://elar.rsvpu.ru/handle/123456789/38747

  17. 17
    Academic Journal

    المساهمون: This work was supported by the Russian Science Foundation (grant No. 20-75-10117)., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10117).

    المصدر: Advances in Molecular Oncology; Том 9, № 4 (2022); 50‑60 ; Успехи молекулярной онкологии; Том 9, № 4 (2022); 50‑60 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-4

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/476/280; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J Clin 2021;71(3): 209–49. DOI:10.3322/CAAC.21660; Necula L., Matei L., Dragu D. et al. Recent advances in gastric cancer early diagnosis. World J Gastroenterol 2019;25(17):2029–44. DOI:10.3748/WJG.V25.I17.2029; Fattani S., Nikbakhsh N., Taheri H. et al. Prevalence of multiple infections and the risk of gastric adenocarcinoma development at earlier age. Diagn Microbiol Infect Dis 2018;92(1):62–8. DOI:10.1016/J.DIAGMICROBIO.2018.04.015; Zhou Z., Lin Z., Pang X. et al. Epigenetic regulation of long noncoding rnas in gastric cancer. Oncotarget 2018;9(27):19443. DOI:10.18632/ONCOTARGET.23821; Shi X., Sun M., Liu H. et al. Long non-coding rnas: a new frontier in the study of human diseases. Cancer Lett 2013;339(2):159–66. DOI:10.1016/J.CANLET.2013.06.013; Ling H., Fabbri M., Calin G.A. MicroRNAs and other non-coding rnas as targets for anticancer drug development. Nat Rev Drug Discov 2013;12(11):847–65. DOI:10.1038/NRD4140; Rafiee A., Riazi-Rad F., Havaskary M. et al. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev 2018;34(2):153–80. DOI:10.1080/02648725.2018.1471566; Rawlings-Goss R.A., Campbell M.C., Tishkoff S.A. Global population-specific variation in MiRNA associated with cancer risk and clinical biomarkers. BMC Med Genomics 2014;7(1):53. DOI:10.1186/1755-8794-7-53; Xie S.S., Jin J., Xu X. et al. Emerging roles of non-coding RNAs in gastric cancer: pathogenesis and clinical implications. World J Gastroenterol 2016;22(3):1213–23. DOI:10.3748/WJG.V22.I3.1213; Yang F., Bi J., Xue X. et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 2012;279(17):3159–65. DOI:10.1111/J.1742-4658.2012.08694.X; Sun M., Xia R., Jin F. et al. Downregulated long noncoding RNA MEG3 Is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 2014;35(2):1065–73. DOI:10.1007/S13277-013-1142-Z; Jiang W., Meng K., Yang T. Long non-coding RNA PROX1-AS1 promotes the proliferation and migration in gastric cancer by epigenetically activating FGFR1. Panminerva Med 2019. Available at: https://pubmed.ncbi.nlm.nih.gov/31355614/; Rudzinska M., Czarnecka-Chrebelska K.H., Kuznetsova E.B. et al. Long non-coding PROX1-AS1 expression correlates with renal cell carcinoma metastasis and aggressiveness. Non-Coding RNA 2021;7(2):25. DOI:10.3390/NCRNA7020025; Tu B., Ye L., Cao Q. et al. Identification of a five-MiRNA signature as a novel potential prognostic biomarker in patients with nasopharyngeal carcinoma. Hereditas 2022;159(1):3. DOI:10.1186/S41065-021-00214-9; Ye X., Qiu R., He X. et al. MiR-647 Inhibits hepatocellular carcinoma cell progression by targeting protein tyrosine phosphatase receptor type F. Bioengineered 2022;13(1):1090–102. DOI:10.1080/21655979.2021.2017628; Liu S., Qu D., Li W. et al. MiR-647 and MiR-1914 promote cancer progression equivalently by downregulating nuclear factor IX in colorectal cancer. Mol Med Rep 2017;16(6):8189–99. DOI:10.3892/MMR.2017.7675/HTML; Zhang X., Zhang M., Wang G. et al. Tumor promoter role of MiR-647 in gastric cancer via repression of TP73. Mol Med Rep 2018;18(4):3744–50. DOI:10.3892/MMR.2018.9358; Ma H., Wang P., Li Y. et al. Decreased expression of serum MiR-647 is associated with poor prognosis in gastric cancer. Int J Clin Exp Pathol 2019;12(7):2552–8.; Song X., Bi Y., Guo W. Long noncoding RNA PROX1-AS1 promotes tumor progression and aggressiveness by sponging MiR-647 in gastric cancer. Minerva Med 2021;112(3):421–3. DOI:10.23736/S0026-4806.19.06223-2; Biomedical Informatics Institute. Available at: https://bioinfo.henu.edu.cn/DatabaseList.jsp.; Barrett T., Wilhite S.E., Ledoux P. et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013;41(D1):D991–5. DOI:10.1093/NAR/GKS1193; Qian Z., Zhu G., Tang L. et al. Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets. Genes Chromosom Cancer 2014;53(11):883–94. DOI:10.1002/GCC.22196; GEO Accession viewer. Available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303.; Bure I.V., Nemtsova M.V. Methylation and noncoding RNAs in gastric cancer: everything is connected. Int J Mol Sci 2021;22(11):5683. DOI:10.3390/IJMS22115683; LncACTdb 3.0: Home. Available at: http://bio-bigdata.hrbmu.edu.cn/LncACTdb/.; Shen Y., Xia E., Bhandari A. et al. LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018;38(5):BSR20180862. DOI:10.1042/BSR20180862; Chen Y., Lu B., Liu L. et al. Long non-coding RNA PROX1-AS1 knockdown upregulates microRNA-519d-3p to promote chemosensitivity of retinoblastoma cells via targeting SOX2. Cell Cycle 2021;20(20):2149–59. DOI:10.1080/15384101.2021.1971352; Guo T., Wang W., Ji Y. et al. LncRNA PROX1-AS1 facilitates gastric cancer progression via miR-877-5p/PD-L1 Axis. Cancer Manag Res 2021;13:2669. DOI:10.2147/CMAR.S275352; Qin K., Tian G., Chen G. et al. MiR-647 inhibits glioma cell proliferation, colony formation and invasion by regulating HOXA9. J Gene Med 2020;22(3):e3153. DOI:10.1002/JGM.3153; Zhang Y.S., Chen T., Cai Y.J. et al. MicroRNA-647 promotes the therapeutic effectiveness of argon-helium cryoablation and inhibits cell proliferation through targeting TRAF2 via the NF-ΚB signaling pathway in non-small cell lung cancer. Onco Targets Ther 2018;11:6777–84. DOI:10.2147/OTT.S159337; Du L., Wang X., Yin Y. et al. Identification of a potentially functional circRNA-miRNA-mRNA ceRNA regulatory network in bladder cancer by analysis of microarray data. Transl Androl Urol 2021;10(1):24–36. DOI:10.21037/TAU-20-660; Cao W., Wei W., Zhan Z. et al. Role of miR-647 in human gastric cancer suppression. Oncol Rep 2017;37(3):1401–11. DOI:10.3892/OR.2017.5383; Yang B., Jing C., Wang J. et al. Identification of microRNAs associated with lymphangiogenesis in human gastric cancer. Clin Transl Oncol 2014;16(4):374–9. DOI:10.1007/S12094-013-1081-6; Zhao Q., Zhang B., Li Z. et al. Effects of incRNA PROX1-AS1 on proliferation, migration, invasion and apoptosis of lung cancer cells by regulating miR-1305. J Healthc Eng 2022;2022:9570900. DOI:10.1155/2022/9570900; https://umo.abvpress.ru/jour/article/view/476

  18. 18
    Academic Journal

    المصدر: Medical Herald of the South of Russia; Том 13, № 2 (2022); 179-190 ; Медицинский вестник Юга России; Том 13, № 2 (2022); 179-190 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2022-13-2

    وصف الملف: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1499/900; Sweeney MR, Applebaum KM, Arem H, Braffett BH, Poynter jN, Robien K. Medical Conditions and Modifiable Risk Factors for Myelodysplastic Syndrome: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1502- 1517. DOI:10.1158/1055-9965.EPI-19-0106.; Rydén j, Edgren G, Karimi M, walldin G, Tobiasson M, et al. Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia. 2019;33(2):522-527. DOI:10.1038/s41375-018-0256-0.; van Spronsen MF,westers TM, Lissenberg-witte BI,wondergem M, Ossenkoppele Gj, van de Loosdrecht AA. The non-erythroid myeloblast count rule in myelodysplastic syndromes: fruitful or futile? Haematologica. 2019;104(12):e547-e550. DOI:10.3324/haematol.2018.212563.; Ma x. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S2-5. DOI:10.1016/j.amjmed.2012.04.014.; Ma x, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536-42. DOI:10.1002/cncr.22570.; Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int J Hematol. 2001;73(4):405-410. DOI:10.1007/BF02994001.; Swerdlow S.H., Campo E., Harris N.L. WHO Classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon. 2008; Germing U, Strupp C, Kündgen A, Bowen D, Aul C, Haas R, Gattermann N. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica. 2004;89(8):905- 10. PMID: 15339672.; Strom SS, Vélez-Bravo V, Estey EH. Epidemiology of myelodysplastic syndromes. Semin Hematol. 2008;45(1):8- 13. DOI:10.1053/j.seminhematol.2007.10.003.; Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes. Blood. 2014;124(18):2793-803. DOI:10.1182/blood-2014-04-522136.; Rollison DE, Howlader N, Smith MT, Strom SS, Merritt wD, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45-52. DOI:10.1182/blood-2008-01-134858.; Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664-70. DOI:10.1182/blood-2004-09-3426.; Hayes RB, Yin SN, Dosemeci M, Li GL, wacholder S, et al. Mortality among benzene-exposed workers in China. Environ Health Perspect. 1996;104 Suppl 6(Suppl 6):1349-52. DOI:10.1289/ehp.961041349.; Nisse C, Lorthois C, Dorp V, Eloy E, Haguenoer jM, Fenaux P. Exposure to occupational and environmental factors in myelodysplastic syndromes. Preliminary results of a case-control study. Leukemia. 1995;9(4):693-9. PMID: 7723405.; Strom SS, Gu Y, Gruschkus SK, Pierce SA, Estey EH. Risk factors of myelodysplastic syndromes: a case-control study. Leukemia. 2005;19(11):1912-8. DOI:10.1038/sj.leu.2403945.; Goldberg H, Lusk E, Moore j, Nowell PC, Besa EC. Survey of exposure to genotoxic agents in primary myelodysplastic syndrome: correlation with chromosome patterns and data on patients without hematological disease. Cancer Res. 1990;50(21):6876-81. PMID: 2208156.; Brownson RC, Novotny TE, Perry MC. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Med. 1993;153(4):469-75. PMID: 8435026.; Björk j, Albin M, Mauritzson N, Strömberg U, johansson B, Hagmar L. Smoking and myelodysplastic syndromes. Epidemiology. 2000;11(3):285-91. DOI:10.1097/00001648-200005000-00010.; Nisse C, Haguenoer jM, Grandbastien B, Preudhomme C, Fontaine B, et al. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol. 2001;112(4):927-35. DOI:10.1046/j.1365-2141.2001.02645.x.; Du Y, Fryzek j, Sekeres MA, Taioli E. Smoking and alcohol intake as risk factors for myelodysplastic syndromes (MDS). Leuk Res. 2010;34(1):1-5. DOI:10.1016/j.leukres.2009.08.006.; Gao Q, Horwitz M, Roulston D, Hagos F, Zhao N, et al. Susceptibility gene for familial acute myeloid leukemia associated with loss of 5q and/or 7q is not localized on the commonly deleted portion of 5q. Genes Chromosomes Cancer. 2000;28(2):164-72. PMID: 10825001.; Buijs A, Poddighe P, van wijk R, van Solinge w, Borst E, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood. 2001;98(9):2856-8. DOI:10.1182/blood.v98.9.2856.; Lv L, Lin G, Gao x, wu C, Dai j, et al. Case-control study of risk factors of myelodysplastic syndromes according to world Health Organization classification in a Chinese population. Am J Hematol. 2011;86(2):163-9. DOI:10.1002/ajh.21941.; Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses. 2016;8(11):305. DOI:10.3390/v8110305.; Copley GB, Schnatter AR, Armstrong Tw, Irons RD, Chen M, et al. Hospital-Based Case-Control Study of MDS Subtypes and Benzene Exposure in Shanghai. J Occup Environ Med. 2017;59(4):349-355. DOI:10.1097/jOM.0000000000000952.; Qu S, xu Z, Zhang Y, Qin T, Zhang T, et al. Impacts of cytogenetic categories in the Revised International Prognostic Scoring System on the prognosis of primary myelodysplastic syndromes: results of a single-center study. Leuk Lymphoma. 2012;53(5):940-6. DOI:10.3109/10428194.2011.634049.; Matsuda A, Germing U, jinnai I, Misumi M, Kuendgen A, et al. Difference in clinical features between japanese and German patients with refractory anemia in myelodysplastic syndromes. Blood. 2005;106(8):2633-40. DOI:10.1182/blood-2005-01-0040.; Patnaik MM, Hanson CA, Sulai NH, Hodnefield jM, Knudson RA, et al. Prognostic irrelevance of ring sideroblast percentage in world Health Organizationdefined myelodysplastic syndromes without excess blasts. Blood. 2012;119(24):5674-7. DOI:10.1182/blood-2012-03-415356.; Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016;128(16):2096-2097. DOI:10.1182/blood-2016-07-728766.; Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548-53. DOI:10.1111/j.1365-2362.2009.02151.x.; Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-88. Erratum in: Blood 1998;91(3):1100. PMID: 9058730.; Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-65. DOI:10.1182/blood-2012-03-420489.; Breems DA, Van Putten wL, De Greef GE, Van ZelderenBhola SL, Gerssen-Schoorl KB, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791-7. DOI:10.1200/jCO.2008.16.0259.; Schanz j, Tüchler H, Solé F, Mallo M, Luño E, et al. Monosomal karyotype in MDS: explaining the poor prognosis? Leukemia. 2013;27(10):1988-95. DOI:10.1038/leu.2013.187.; Deeg Hj, Scott BL, Fang M, Shulman HM, Gyurkocza B, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120(7):1398-408. DOI:10.1182/blood-2012-04-423046.; de witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753-1762. DOI:10.1182/blood-2016-06-724500.; Lamarque M, Raynaud S, Itzykson R, Thepot S, Quesnel B, et al. The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood. 2012;120(25):5084-5. DOI:10.1182/blood-2012-09-453555. Erratum in: Blood. 2014;123(26):4152. PMID: 23243156.; Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol. 2016;91(1):76-89. DOI:10.1002/ajh.24253.; Malcovati L, Della Porta MG, Strupp C, Ambaglio I, Kuendgen A, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the wHO classification-based Prognostic Scoring System (wPSS). Haematologica. 2011;96(10):1433- 40. DOI:10.3324/haematol.2011.044602.; Della Porta MG, Tuechler H, Malcovati L, Schanz j, Sanz G, et al. Validation of wHO classification-based Prognostic Scoring System (wPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International working Group for Prognosis in Myelodysplasia (IwG-PM). Leukemia. 2015;29(7):1502-13. DOI:10.1038/leu.2015.55.; Garcia-Manero G, Shan j, Faderl S, Cortes j, Ravandi F, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538-43. DOI:10.1038/sj.leu.2405070.; Kantarjian H, O'Brien S, Ravandi F, Cortes j, Shan j, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351-61. DOI:10.1002/cncr.23697.; Valcárcel D, Ademà V, Solé F, Ortega M, Nomdedeu B, et al. Complex, not monosomal, karyotype is the cytogenetic marker of poorest prognosis in patients with primary myelodysplastic syndrome. J Clin Oncol. 2013;31(7):916-22. DOI:10.1200/jCO.2012.41.6073.; Pfeilstöcker M, Tuechler H, Sanz G, Schanz j, GarciaManero G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902-10. DOI:10.1182/blood-2016-02-700054.; Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, jädersten M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233-41. DOI:10.1182/blood-2015-03-633537.; Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27. DOI:10.1016/j.cell.2012.06.013.; Тигунцев В.В., Иванова С.А., Серебров В.Ю., Бухарева М.Б. Малые некодирующие РНК как перспективные биомаркеры: биогенез и терапевтические стратегии. Бюллетень сибирской медицины. 2016;15(2):112-126. https://doi.org/10.20538/1682-0363-2016-2-112-126; Савченко В.Г., Паровичникова Е.Н., Кохно А.В., Семочкин С.В., Афанасьев Б.В., и др. Национальные клинические рекомендации по диагностике и лечению миелодиспластических синдромов взрослых (2015 г.). Гематология и трансфузиология. 2016:61(1-S4):1-32. DOI:10.18821/0234-5730-2016-61-1(Пpил.4); Audia jE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. DOI:10.1101/cshperspect.a019521.; Pujadas E, Feinberg AP. Regulated noise in the epigenetic landscape of development and disease. Cell. 2012;148(6):1123-31. DOI:10.1016/j.cell.2012.02.045.; jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview. Adv Biol Regul. 2015;58:28-37. DOI:10.1016/j.jbior.2014.11.002.; Berenstein R, Blau Iw, Kar A, Cay R, Sindram A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. DOI:10.1186/1756-9966-33-44.; Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 2011;1(3):e9. DOI:10.1038/bcj.2011.7.; Lin ME, Hou HA, Tsai CH, wu Sj, Kuo YY, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42. DOI:10.1186/s13148-018-0476-1.; Liang S, Zhou x, Pan H, Yang Y, Shi L, wang L. Prognostic value of DNMT3A mutations in myelodysplastic syndromes: a meta-analysis. Hematology. 2019;24(1):613-622. DOI:10.1080/16078454.2019.1657613.; Emperle M, Adam S, Kunert S, Dukatz M, Baude A, et al. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 2019;47(21):11355- 11367. DOI:10.1093/nar/gkz911.; ward PS, Patel j, wise DR, Abdel-wahab O, Bennett BD, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225-34. DOI:10.1016/j.ccr.2010.01.020.; Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz Gj, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722-731. DOI:10.1182/blood-2017-04-779405.; Busque L, Patel jP, Figueroa ME, Vasanthakumar A, Provost S, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179-81. DOI:10.1038/ng.2413.; Bejar R, Lord A, Stevenson K, Bar-Natan M, PérezLadaga A, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-12. DOI:10.1182/blood-2014-06-582809.; Bejar R, Stevenson KE, Caughey BA, Abdel-wahab O, Steensma DP, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376- 82. DOI:10.1200/jCO.2011.40.7379.; Sinclair DA, Milne TA, Hodgson jw, Shellard j, Salinas CA, et al. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development. 1998;125(7):1207-16. DOI:10.1242/dev.125.7.1207.; Fisher CL, Randazzo F, Humphries RK, Brock Hw. Characterization of Asxl1, a murine homolog of Additional sex combs, and analysis of the Asx-like gene family. Gene. 2006;369:109-18. DOI:10.1016/j.gene.2005.10.033.; Asada S, Fujino T, Goyama S, Kitamura T. The role of ASxL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511-2523. DOI:10.1007/s00018-019-03084-7.; Traina F, Visconte V, Elson P, Tabarroki A, jankowska AM, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78-87. DOI:10.1038/leu.2013.269.; Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern w, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASxL1 and CBL mutations. Leukemia. 2013;27(9):1852-60. DOI:10.1038/leu.2013.133.; Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45(8):942-6. DOI:10.1038/ng.2696.; Lee Ej, Podoltsev N, Gore SD, Zeidan AM. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions. Blood Rev. 2016;30(1):1- 10. DOI:10.1016/j.blre.2015.06.004.; Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci Mj, Birnbaum D. Mutations in ASxL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5:12. DOI:10.1186/1756-8722-5-12.; Abdel-wahab O, Pardanani A, Patel j, wadleigh M, Lasho T, et al. Concomitant analysis of EZH2 and ASxL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25(7):1200-2. DOI:10.1038/leu.2011.58.; Thieme S, Gyárfás T, Richter C, Özhan G, Fu j, et al. The histone demethylase UTx regulates stem cell migration and hematopoiesis. Blood. 2013;121(13):2462-73. DOI:10.1182/blood-2012-08-452003.; Steensma DP, Bejar R, jaiswal S, Lindsley RC, Sekeres MA, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16. DOI:10.1182/blood-2015-03-631747.; jaiswal S, Fontanillas P, Flannick j, Manning A, Grauman PV, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-98. DOI:10.1056/NEjMoa1408617.; Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015;373(1):35-47. DOI:10.1056/NEjMoa1414799.; Fuster jj, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842-847. DOI:10.1126/science.aag1381.; Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde j, et al. Mutations of ASxL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183-6. DOI:10.1038/leu.2009.141.; Kwok B, Hall jM, witte jS, xu Y, Reddy P, et al. MDSassociated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355-61. DOI:10.1182/blood-2015-08-667063.; jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTx, EZH2, and DNMT3A. Blood. 2011;118(14):3932-41. DOI:10.1182/blood-2010-10-311019.; https://www.medicalherald.ru/jour/article/view/1499

  19. 19
    Academic Journal

    المصدر: Medical Genetics; Том 21, № 9 (2022); 17-21 ; Медицинская генетика; Том 21, № 9 (2022); 17-21 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2141/1608; Yang T.L., Shen H., Liu A. et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat. Rev. Endocrinol. 2020; 16(2): 91-103. doi:10.1038/s41574-019-0282-7; Trajanoska K., Morris J.A., Oei L. et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018; 362: K3225. doi:10.1136/bmj.k3225; Reppe S., Datta H., Gautvik K. The Influence of DNA Methylation on Bone Cells. Curr. Genomics. 2015; 16(6): 384-392. doi:10.2174/138920291666615081720291; Estrada K., Styrkarsdottir U., Evangelou E. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 2012; 44(5):491-501. doi:10.1038/ng.2249; Хусаинова Р.И., Хуснутдинова Э.К. (ред.). Генетика остеопороза. У.: Гилем; 2015.; https://www.medgen-journal.ru/jour/article/view/2141

  20. 20
    Academic Journal

    المصدر: The Russian Archives of Internal Medicine; Том 12, № 5 (2022); 363-369 ; Архивъ внутренней медицины; Том 12, № 5 (2022); 363-369 ; 2411-6564 ; 2226-6704

    وصف الملف: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1508/1157; https://www.medarhive.ru/jour/article/view/1508/1166; Friedmann T., and Roblin R. Gene therapy for human genetic disease? Science 1972; 175: 949–955. https://doi.org/10.1126/science.175.4025.949.; Williams D.A., Lemischka I.R., Nathan D.G. et al. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984; 310: 476–480. https://doi.org/10.1038/310476a0.; Blaese R.M., Culver K.W., Miller A.D. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–480. https://doi.org/10.1126/science.270.5235.475.; Raper S.E., Chirmule N., Lee F.S. et al. Fatal systemic inflammatory syndrome in a ornithine transcarbarmylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 2003; 80: 148–158. https://doi.org/10.1016/j.ymgme.2003.08.016.; Hacein-Bey-Abina S., Kalle C.V., Schmidt M. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419. https://doi.org/10.1126/science.1088547.; Gao G., Vandenberghe L., aWilson J.M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 2005; 5: 285–297. https://doi.org/10.2174/1566523054065057.; Pasi K.J., Rangarajan S., Mitchell N. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A.N. Engl. J. Med. 2020; 382: 29–40. https://doi.org/10.1056/NEJMoa1908490.; Mendell J.R., Sahenk Z., Lehman K. et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020; 77: 1–10. https://doi.org/10.1001/jamaneurol.2020.1484.; Thompson AA, Walters MC, Kwiatkowski J et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 2018; 378: 1479–1493. https://doi.org/10.1056/NEJMoa1705342; Boutin S., Monteilhet V., Veron P. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 2010; 21: 704–712. https://doi.org/10.1089/hum.2009.182.; Tse L.V., Klinc K.A., Madigan V.J. et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl Acad. Sci. USA. 2017; 114:E4812–E4821. https://doi.org/10.1073/pnas.1704766114.; Maheshri N., Koerber J.T., Kaspar B.K. et al. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 2006; 24: 198–204. https://doi.org/10.1038/nbt1182.; Leborgne C., Barbon E., Alexander J.M. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 2020; 26: 1096–1101. https://doi.org/10.1038/s41591-020-0911-7.; Corti M., Elder M., Falk D. et al. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Mol. Ther. Methods Clin. Dev. 2014; 1: 14033.; Meliani A., Boisgerault F., Hardet R. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 2018; 9: 4098. https://doi.org/10.1038/s41467-018-06621-3.; Lokugamage M.P., Sago C.D., Dahlman J.E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 2018; 7: 1–8. https://doi.org/10.1016/j.cobme.2018.08.001.; Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acidbased drugs. Nat. Nanotechnol. 2019; 14: 1084–1087. https://doi.org/10.1038/s41565-019-0591-y; Tebas P., Stein D., Tang W.W. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.N. Engl. J. Med. 2014; 370: 901–910. https://doi.org/10.1056/NEJMoa1300662.; Mullard A. Gene-editing pipeline takes off. Nat. Rev. Drug Discov. 2020; 19: 367–372. https://doi.org/10.1038/d41573-020-00096-y.; Stadtmauer E.A., Fraietta J.A., Davis M.M. et al. CRISPRengineered T cells in patients with refractory cancer. Science. 2020 Feb 28; 367(6481):eaba7365. doi:10.1126/science.aba7365. Epub 2020 Feb 6.; Xu L., Wang J., Liu Y. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 2019; 381: 1240–1247. https://doi.org/10.1056/NEJMoa1817426.; Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019; 25:229–233. https://doi.org/10.1038/s41591-018-0327-9.; Finn J.D., Smith A.R., Patel M.C. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018; 22: 2227–2235. https://doi.org/10.1016/j.celrep.2018.02.014.; Федеральная научно-техническая программа развития генетических технологий на 2019 — 2027 г. [Электронный ресурс]. URL:https://legalacts.ru/doc/postanovlenie-pravitelstvarf-ot-22042019-n-479-ob-utverzhdenii/ (дата обращения: 20.12.2021).; Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020; 38: 824–844.; Pickar-Oliver A., Gersbach C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019; 20:490–507. https://doi.org/10.1038/s41580-019-0131-5; Thakore P.I., Black J.B., Hilton I.B., et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods. 2016; 13:127–137. https://doi.org/10.1038/nmeth.3733.; Dey G., Jaimovich A., Collins S.R. et al. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 2015; 10:993–1006. https://doi.org/10.1016/j.celrep.2015.01.025.; Shalem O., Sanjana N.E., Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015; 16:299–311. https://doi.org/10.1038/nrg3899.; Hnisz D., Abraham B.J., Lee T.I. et al. Super-enhancers in the control of cell identity and disease. Cell. 2013; 155:934–947. https://doi.org/10.1016/j.cell.2013.09.053.; Wu Y., Zeng J., Roscoe B.P. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 2019; 25:776–783. https://doi.org/10.1038/s41591-019-0401-y.; ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012: 6; 489(7414): 57-74. https://doi.org/10.1038/nature11247.; Lanza R., Russell D.W., Nagy A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 2019; 19:723–733. https://doi.org/10.1038/s41577-019-0200-1.; Kim J., Hu C., Moufawad E.l. Achkar C. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 2019; 381: 1644–1652. https://doi.org/10.1056/NEJMoa1813279.; Федорин В.В. Генетическое редактирование человека: перспективы, неизбежность и вопрос морально-этической оправданности. Философская мысль. 2020; 12: 30-41. https://doi.org/10.25136/2409-8728.2020.12.34403.; https://www.medarhive.ru/jour/article/view/1508