-
1Academic Journal
المصدر: Российские биомедицинские исследования, Vol 8, Iss 4 (2024)
مصطلحات موضوعية: молекулярные шапероны, белки теплового шока, шапером, Medicine (General), R5-920
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: E. T. Nazaralieva, V. S. Fedorov, Yu. M. Zabrodskaya, A. V. Kim, B. R. Djanaliev, M. A. Shevtsov, K. A. Samochernych, Э. Т. Назаралиева, В. С. Федоров, Ю. М. Забродская, А. В. Ким, Б. Р. Джаналиев, М. А. Шевцов, К. А. Самочерных
المساهمون: The study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation and the Russian Academy of Sciences (Agreement No. 075-15-2022-301 от 20.04.2022)., Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации и Российской академии наук (соглашение № 075-15-2022-301 от 20.04.2022).
المصدر: Translational Medicine; Том 9, № 6 (2022); 5-15 ; Трансляционная медицина; Том 9, № 6 (2022); 5-15 ; 2410-5155 ; 2311-4495
مصطلحات موضوعية: терапия, heat shock proteins, molecular chaperones, molecular diagnostics, therapy, tumors of the central nervous system, молекулярные шапероны, опухоли центральной нервной системы, опухоли головного мозга, молекулярная диагностика
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/738/488; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/738/1564; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/738/1565; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/738/1566; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/738/1567; Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTCNCIC trial. Lancet Oncol. 2009; 10(5):459–466. DOI:10.1016/S1470-2045(09)70025-7.; Stupp R, Taillibert S, Kanner AA, et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA. 2015; 314(23):2535–2543. DOI:10.1001/jama.2015.16669.; Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988; 22:631–677. DOI:10.1146/annurev.ge.22.120188.003215.; Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009; 14(1):105–111. DOI:10.1007/s12192-008-0068-7.; Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. Adv Protein Chem Struct Biol. 2019; 114:1–60. DOI:10.1016/bs.apcsb.2018.10.001.; Shevtsov M, Huile G, Multhoff G. Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc Lond B Biol Sci. 2018; 373(1738):20160526. DOI:10.1098/rstb.2016.0526.; Wu J, Liu T, Rios Z, et al. Heat Shock Proteins and Cancer. Trends Pharmacol Sci. 2017; 38(3):226–256. DOI:10.1016/j.tips.2016.11.009.; Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011; 475(7356):324–332. DOI:10.1038/nature10317.; Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci. 2018; 373(1738):20160524. DOI:10.1098/rstb.2016.0524.; Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002; 2(3):185– 194. DOI:10.1038/nri749.; Workman P, Burrows F, Neckers L, et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007; 1113:202–216. DOI:10.1196/annals.1391.012.; Brown IR. Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci. 2007; 1113:147– 158. DOI:10.1196/annals.1391.032.; Waza M, Adachi H, Katsuno M, et al. Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med (Berl). 2006; 84(8):635–646. DOI:10.1007/s00109-006-0066-0.; Sharma SK, De los Rios P, Christen P, et al. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol. 2010; 6(12):914– 920. DOI:10.1038/nchembio.455.; Lang BJ, Prince TL, Okusha Y, et al. Heat shock proteins in cell signaling and cancer. Biochim Biophys Acta Mol Cell Res. 2022; 1869(3):119187. DOI:10.1016/j.bbamcr.2021.119187.; Allen SP, Polazzi JO, Gierse JK, et al. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol. 1992; 174(21):6938–6947. DOI:10.1128/jb.174.21.6938-6947.1992.; Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the structure and function of small heatshock proteins. Nat Struct Mol Biol. 2005; 12(10):842–846. DOI:10.1038/nsmb993.; Komarova EY, Afanasyeva EA, Bulatova MM, et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones. 2004; 9(3):265–275. DOI:10.1379/csc-27r1.1.; Walter S, Buchner J. Molecular chaperones — cellular machines for protein folding. Angew Chem Int Ed Engl. 2002; 41(7):1098–1113. DOI:10.1002/1521-3773(20020402)41:73.0.co;2-9.; Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995; 11:441–469. DOI:10.1146/annurev.cb.11.110195.002301.; De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock. 1999; 11(1):1–12. DOI:10.1097/00024382199901000-00001.; Kobyakov GL, Absalyamova OV, Poddubskiy AA, et al. The 2016 WHO classification of primary central nervous system tumors: a clinician’s view. Problems of Neurosurgery named after N.N. Burdenko. 2018; 82(3):88–96. In Russian [Кобяков Г.Л., Абсалямова О.В., Поддубский А.А. и др. Классификация ВОЗ первичных опухолей центральной нервной системы 2016 г.: взгляд клинициста. Журнал «Вопросы нейрохирургии» имени Н. Н. Бурденко. 2018; 82(3):88–96.] DOI:10.17116/neiro201882388.; Kato S, Hirano A, Umahara T, et al. Comparative immunohistochemical study on the expression of alpha B crystallin, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders. Neuropathol Appl Neurobiol. 1992; 18(4):335–340. DOI:10.1111/j.13652990.1992.tb00795.x.; Aoyama A, Steiger RH, Fröhli E, et al. Expression of alpha B-crystallin in human brain tumors. Int J Cancer. 1993; 55(5):760–764. DOI:10.1002/ijc.2910550511.; Hitotsumatsu T, Iwaki T, Fukui M, et al. Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer. 1996; 77(2):352–361. DOI:10.1002/(SICI)1097-0142(19960115)77:23.0.CO;2-0.; Pozsgai E, Gomori E, Szigeti A, et al. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors. BMC Cancer. 2007; 7:233. DOI:10.1186/1471-24077-233.; Alexiou GA, Vartholomatos G, Stefanaki K, et al. Expression of heat shock proteins in medulloblastoma. J Neurosurg Pediatr. 2013; 12(5):452–457. DOI:10.3171/2013.7.PEDS1376.; Hauser P, Hanzély Z, Jakab Z, et al. Expression and prognostic examination of heat shock proteins (HSP 27, HSP 70, and HSP 90) in medulloblastoma. J Pediatr Hematol Oncol. 2006; 28(7):461–466. DOI:10.1097/01.mph.0000212954.35727.ad.; Rappa F, Unti E, Baiamonte P, et al. Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem. 2013; 57(2):e20. DOI:10.4081/ejh.2013.e20.; Lobinger D, Gempt J, Sievert W, et al. Potential Role of Hsp70 and Activated NK Cells for Prediction of Prognosis in Glioblastoma Patients. Front Mol Biosci. 2021; 8:669366. DOI:10.3389/fmolb.2021.669366.; Multhoff G, Mizzen L, Winchester CC, et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol. 1999; 27(11):1627–1636. DOI:10.1016/s0301-472x(99)00104-6.; Kato S, Kato M, Hirano A, et al. The immunohistochemical expression of stress-response protein (srp) 60 in human brain tumours: relationship of srp 60 to the other five srps, proliferating cell nuclear antigen and p53 protein. Histol Histopathol. 2001; 16(3):809–820. DOI:10.14670/HH-16.809.; Takano S, Wadhwa R, Yoshii Y, et al. Elevated levels of mortalin expression in human brain tumors. Exp Cell Res. 1997; 237(1):38–45. DOI:10.1006/excr.1997.3754.; Babi A, Menlibayeva K, Bex T, et al. Targeting Heat Shock Proteins in Malignant Brain Tumors: From Basic Research to Clinical Trials. Cancers (Basel). 2022; 14(21):5435. DOI:10.3390/cancers14215435.; Fan W, Fan SS, Feng J, et al. Elevated expression of HSP10 protein inhibits apoptosis and associates with poor prognosis of astrocytoma. PLoS One. 2017; 12(10):e0185563. DOI:10.1371/journal.pone.0185563.; Alexiou GA, Karamoutsios A, Lallas G, et al. Expression of heat shock proteins in brain tumors. Turk Neurosurg. 2014; 24(5):745–749. DOI:10.5137/1019-5149.JTN.9852-13.0.; Thorsteinsdottir J, Stangl S, Fu P, et al. Overexpression of cytosolic, plasma membrane bound and extracellular heat shock protein 70 (Hsp70) in primary glioblastomas. J Neurooncol. 2017; 135(3):443–452. DOI:10.1007/s11060-017-2600-z.; https://transmed.almazovcentre.ru/jour/article/view/738
-
3Academic Journal
المصدر: Интегративная физиология, Vol 3, Iss 2 (2022)
مصطلحات موضوعية: насекомые, белки теплового шока, шапероны, развитие, старение, нервная система, Physiology, QP1-981
وصف الملف: electronic resource
-
4Academic Journal
المصدر: Интегративная физиология, Vol 3, Iss 2 (2022)
مصطلحات موضوعية: насекомые, белки теплового шока, шапероны, развитие, старение, нервная система, Physiology, QP1-981
-
5Academic Journal
المؤلفون: V. V. Neroev, T. N. Kiseleva, Ì. S. Zaitsev
المصدر: Российский офтальмологический журнал, Vol 11, Iss 3, Pp 101-106 (2018)
مصطلحات موضوعية: стресс эндоплазматического ретикулума, окислительный стресс, молекулярные шапероны, ганглиозные клетки сетчатки, зрительный нерв, антоцианозиды, endoplasmic reticulum stress, oxidative stress, molecular chaperones, retinal ganglion cells, optic nerve, anthocyanoisides, Ophthalmology, RE1-994
وصف الملف: electronic resource
-
6
-
7Academic Journal
المؤلفون: M. Valieva E., A. Feofanov V., V. Studitsky M., М. Валиева Е., А. Феофанов В., В. Студитский М.
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 3 (2016); 60-64 ; Вестник Московского университета. Серия 16. Биология; № 3 (2016); 60-64 ; 0137-0952
مصطلحات موضوعية: chromatin, nucleosome, histone, histone chaperone, replication, transcription, review, хроматин, нуклеосома, гистоны, шапероны гистонов, репликация, транскрипция, обзор
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/345/324; Luger K, Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.; Laskey R.A., Honda B.M., Mills A.D., Finch J.T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA // Nature. 1978. Vol. 275. N 5679. P. 416–420.; Venkatesh S., Workman J.L. Histone exchange, chromatin structure and the regulation of transcription // Nat. Rev. Mol. Cell. Biol. 2015. Vol. 16. N 3. P. 178–189.; Gerasimova N.S., Pestov N.A., Kulaeva O.I., Nikitin D.V., Kirpichnikov M.P., Studitsky V.M. Repair of chromatinized DNA // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 3. P. 122–126.; Formosa T. The role of FACT in making and breaking nucleosomes // Biochim. Biophys. Acta. 2012. Vol. 1819. N 3–4. P. 247–255.; Tyler J.K. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines // Eur. J. Biochem. 2002. Vol. 269. N 9. P. 2268–2274.; Fazly A., Li Q., Hu Q., Mer G., Horazdovsky B., Zhang Z. Histone chaperone Rtt106 promotes nucleosome formation using (H3-H4)2 tetramers // J. Biol. Chem. 2012. Vol. 287. N 14. P. 10753–10760.; Mattiroli F., D’Arcy S., Luger K. The right place at the right time: chaperoning core histone variants // EMBO Rep. 2015. Vol. 16. N 11. P. 1454–1466.; Smith S., Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro // Cell. 1989. Vol. 58. N 1. P. 15–25.; Smith D.J., Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly // Nature. 2012. Vol. 483. N 7390. P. 434–438.; Tyler J.K., Adams C.R., Chen S.R., Kobayashi R., Kamakaka R.T., Kadonaga J.T. The RCAF complex mediates chromatin assembly during DNA replication and repair //Nature. 1999. Vol. 402. N 6761. P. 555–560.; Huang S., Zhou H., Katzmann D., Hochstrasser M., Atanasova E., Zhang Z. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102. N 38. P. 13410–13415.; Groth A., Corpet A., Cook A.J.L., Roche D., Bartek J., Lukas J., Almouzni G. Regulation of replication fork progression through histone supply and demand // Science. 2007. Vol. 318. N 5858. P. 1928–1931.; Han J., Zhou H., Li Z., Xu R-M., Zhang Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity // J. Biol. Chem. 2007. Vol. 282 N 39. P. 28587–28596.; Masumoto H., Hawke D., Kobayashi R., Verreault A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response // Nature. 2005. Vol. 436. N 7048. P. 294–298.; Han J., Zhang H., Zhang H., Wang Z., Zhou H., Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone handoff during nucleosome assembly // Cell. 2013. Vol. 155. N 4. P. 817–829.; Tan B.C.-M., Chien C.-T., Hirose S., Lee S.-C. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication // EMBO J. 2006. Vol. 25. N 17. P. 3975–3985.; Yang J., Zhang X., Feng J., Leng H., Li S., Xiao J., Liu S., Xu Z., Xu J., Li D., Wang Z., Wang J., Li Q. The histone chaperone FACT hontributes to DNA replication-coupled nucleosome assembly // Cell Rep. 2016. Vol. 14. N 5. P. 1128–1141.; Wittmeyer J., Joss L., Formosa T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha // Biochemistry. 1999. Vol. 38. N 28. P. 8961–8971.; Nakano S., Stillman B., Horvitz H.R. Replicationcoupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans // Cell. 2011 Vol. 147. N 7. P. 1525–1536.; Ishimi Y., Hirosumi J., Sato W., Sugasawa K., Yokota S., Hanaoka F., Yamada M. Nurification and initial characterization of a protein which facilitates assembly of nucleosomelike structure from mammalian cells // Eur. J. Biochem. 1984. Vol. 142. N 3. P. 431–439.; Ito T., Bulger M., Kobayashi R., Kadonaga J.T. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays // Mol. Cell. Biol. 1996. Vol. 16. N 6. P. 3112–3124.; Mosammaparast N., Ewart C.S., Pemberton L.F. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B // EMBO J. 2002. Vol. 21. N 23. P. 6527–6538.; Torigoe S.E., Urwin D.L., Ishii H., Smith D.E., Kadonaga J.T. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF // Mol. Cell. 2011. Vol. 43. N 4. P. 638–648.; Andrews A.J., Chen X., Zevin A., Stargell L.A., Luger K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions //Mol. Cell. 2010. Vol. 37. N 6. P. 834–842.; Gaillard P.H., Martini E.M., Kaufman P.D., Stillman B., Moustacchi E., Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I // Cell. 1996. Vol. 86. N 6. P. 887–896.; Emili A., Schieltz D.M., Yates J.R., Hartwell L.H. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1 // Mol. Cell. 2001. Vol. 7. N1. P. 13–20.; Hu F., Alcasabas A.A., Elledge S.J. Asf1 links Rad53 to control of chromatin assembly // Genes Dev. 2001. Vol. 5. N 9. P. 1061–1066.; Dinant C., Ampatziadis-Michailidis G., Lans H., Tresini M., Lagarou A., Grosbart M., Theil A.F., van Cappellen W.A., Kimura H., Bartek J., Fousteri M., Houtsmuller A.B., Vermeulen W., Marteijn J.A. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage // Mol. Cell. 2013. Vol. 51. N 4. P. 469–479.; Gaykalova D.A., Kulaeva O.I., Volokh O., Shaytan A.K., Hsieh F.-K., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M. Structural analysis of nucleosomal barrier to transcription //; Proc. Natl. Acad. Sci. USA. 2015. Vol. 112. N 43. P. E5787– E5795.; Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes // Cell. 1998. Vol. 92. N 1. P. 105–116.; Hsieh F.-K., Kulaeva O.I., Patel S.S., Dyer P.N., Luger K., Reinberg D., Studitsky V.M. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. N 19. P. 7654–7659.; Jamai A., Puglisi A., Strubin M. Histone chaperone spt16 promotes redeposition of the original H3-H4 histones evicted by elongating RNA polymerase // Mol. Cell. 2009. Vol. 35. N 3. P. 377–383.; Saunders A., Werner J., Andrulis E.D., Nakayama T., Hirose S., Reinberg D., Lis J. T. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo //; Science. 2003. Vol. 301. N 5636. P. 1094–1096.; Mason P.B., Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo // Mol. Cell. 2005. Vol. 17. N 6. P. 831–840.; Cheung V., Chua G., Batada N.N., Landry C.R., Michnick S.W., Hughes T.R., Winston F. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome // PLoS Biol. 2008. Vol. 6. N 11. e277.; Youdell M.L., Kizer K.O., Kisseleva-Romanova E., Fuchs S.M., Duro E., Strahl B.D., Mellor J. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36 // Mol. Cell. Biol. 2008. Vol. 28. N 16. P. 4915–4926.; Luk E., Vu N.-D., Patteson K., Mizuguchi G., Wu W.-H., Ranjan A., Backus J., Sen S., Lewis M., Bai Y., Wu C. Chz1, a nuclear chaperone for histone H2AZ // Mol. Cell. 2007. Vol. 25. N 3. P. 357–368.; Kuryan B.G., Kim J., Tran N.N.H., Lombardo S.R., Venkatesh S., Workman J.L., Carey M. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. N 6. P. 1931–1936.; Conerly M.L., Teves S.S., Diolaiti D., Ulrich M., Eisenman R.N., Henikoff S. Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis // Genome Res. 2010. Vol. 20. N 10. P. 1383–1390.; Zilberman D., Coleman-Derr D., Ballinger T., Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks // Nature. 2008. Vol. 456. N 7218. P. 125–129.; Chen P., Zhao J., Wang Y., et al. H3.3 actively marks enhancers and primes gene transcription via opening higherordered chromatin // Genes Dev. 2013. Vol. 27. N 19. P. 2109–2124.; Burgess R.J., Zhang Z. Histone chaperones in nucleosome assembly and human disease // Nat. Struct. Mol. Biol. 2013. Vol. 20. N 1. P. 14–22.; https://vestnik-bio-msu.elpub.ru/jour/article/view/345
-
8Academic Journal
المؤلفون: V. M. Merkulov, N. V. Klimova, T. I. Merkulova, В. М. Меркулов, Н. В. Климова, Т. И. Меркулова
المصدر: Vavilov Journal of Genetics and Breeding; Том 19, № 3 (2015); 255-263 ; Вавиловский журнал генетики и селекции; Том 19, № 3 (2015); 255-263 ; 2500-3259 ; 2500-0462
مصطلحات موضوعية: циклы, molecular chaperones, nuclei, chromatin, cycles, молекулярные шапероны, клеточные ядра, хроматин
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/405/438; А.Н. Ядерные рецепторы: номенклатура, лиганды, механизмы влияния на экспрессию генов. Биохимия. 2002;67:1157-1181.; Archer T.K., Cordingley M.G., Wolford R.G., Hager G.L. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 1991;11(2):688-698. DOI:10.1128/MCB.11.2.688; Baxter J.D., Tomkins G.M. Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells. Proc. Natl Acad. Sci. USA. 1971;68(5):932-937.; Beato M., Chalepakis G., Schauer M., Slater E.P. DNA regulatory elements for steroid hormones. J. Steroid. Biochem. 1989;32(5):737-748. DOI:10.1016/0022-4731(89)90521-9; Beato M., Kalimi M., Feigelson P. Correlation between glucocorticoid binding to specific liver cytosol receptors and enzyme induction in vivo. Biochem. Biophys. Res. Commun. 1972;47(6):1464-1472. DOI:10.1016/0006-291X(72)90237-9; Beato M., Klug J. Steroid hormone receptors: an update. Hum. Reprod. Update. 2000;6(3):225-236. DOI:10.1093/humupd/6.3.225; Black B.E., Holaska J.M., Rastinejad F., Paschal B.M. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol. 2001;11(22):1749-1758. DOI:10.1016/S0960-9822(01)00537-1; Bosisio D., Marazzi I., Agresti A., Shimizu N., Bianchi M.E., Natoli G. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-kB-dependent gene activity. EMBO J. 2006;25(4):798-810. DOI 10.1038/sj.emboj.7600977; Boumpas D.T., Chrousos G.P., Wilder R.L., Cupps T.R., Balow J.E. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann. Intern. Med. 1993;119(12):1198-1208. DOI:10.7326/0003-4819-119-12-199312150-00007; Bresnick E.H., Dalman F.C., Sanchez E.R., Pratt W.B. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J. Biol. Chem. 1989;264(9):4992-4997.; Carey K.L., Richards S.A., Lounsbury K.M., Macara I.G. Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import. J. Cell. Biol. 1996;133(5):985-996. DOI:10.1083/jcb.133.5.985; Cheung J., Smith D.F. Molecular shaperone interactions with steroid receptors: an update. Mol. Endocrinol. 2000;14(7):939-946. DOI:10.1210/me.14.7.939; Conway-Campbell B.L., McKenna M.A., Wiles C.C., Atkinson H.C., de Kloet E.R., Lightman S.L. Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamicresponses to corticosterone. Endocrinology. 2007;148(11):5470-5547. DOI:10.1210/en.2007-0585; Conway-Campbell B.L., Pooley J.R., Hager G.L., Lightman S.L. Molecular dynamics of ultradian glucocorticoid receptor action. Mol. Cell Endocrinol. 2012;348(2):383-393. DOI:10.1016/j.mce.2011.08.014; Conway-Campbell B.L., Sarabdjitsingh R.A., McKenna M.A., Pooley J.R., Kershaw Y.M., Meijer O.C., De Kloet E.R., Lightman S.L. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. J. Neuroendocrinol. 2010;22(10):1093-100. DOI:10.1111/j.1365-2826.2010.02051.x; Danielsen M., Northrop J.P., Ringold G.M. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J. 1986;5(10):2513-2522.; Daugaard M., Rohde M., Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007;581(19):3702-3710. DOI:10.1016/j.febslet. 2007.05.039; Davies T.H., Ning Y.M., Sánchez E.R. A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. J. Biol. Chem. 2002;277(7):4597-4600. DOI:10.1074/jbc.C100531200; Drouin J., Sun Y.L., Tremblay S., Lavender P., Schmidt T.J., de Léan A., Nemer M. Homodimer formation is rate-limiting for high affinity DNA binding by glucocorticoid receptor. Mol. Endocrinol. 1992;6(8):1299-1309. DOI:10.1210/me.6.8.1299; Echeverria P.C., Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta. 2010;1803(6):641-649. DOI:10.1016/j.bbamcr.2009.11.012; Erlejman A.G., Lagadari M., Toneatto J., Piwien-Pilipuk G., Galigniana M.D. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim. Biophys. Acta. 2014;1839(2):71-87. DOI:10.1016/j.bbagrm.2013.12.006; Fletcher T.M., Ryu B.W., Baumann C.T., Warren B.S., Fragoso G., John S., Hager G.L. Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol. Cell. Biol. 2000;20(17):6466-6475. DOI:10.1128/MCB.20.17.6466-6475.2000; Fletcher T.M., Xiao N., Mautino G., Baumann C.T., Wolford R., Warren B.S., Hager G.L. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. Biol. 2002; 22(10):3255-3263. DOI:10.1128/MCB.22.10.3255-3263.2002; Freeman B.C., Yamamoto K.R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science. 2002;296(5576): 2232-2235. DOI:10.1126/science.1073051; Freedman N.D., Yamamoto K.R. Importin 7 and Importin {alpha}/Importin {beta}Are Nuclear Import Receptors for the Glucocorticoid Receptor. Mol. Biol. Cell. 2004;15(5):2276-3386. DOI:10.1091/mbc.E03-11-0839; Gametchu B., Harrison R.W. Characterization of a monoclonal antibody to the rat liver glucocorticoid receptor. Endocrinology. 1984; 114(1):274-279. DOI: http://dx.doi.org/10.1210/endo-114-1-274; George A.A., Schiltz R.L., Hager G.L. Dynamic access of the glucocorticoid receptor to response elements in chromatin. Int. J. Biochem. Cell. Biol. 2009;41(1):214-224. DOI:10.1016/j.biocel.2008.09.019; Grad I., Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol. Cell. Endocrinol. 2007;275(1/2):2-12. DOI:10.1016/j.mce.2007.05.018; Grenert J.P., Johnson B.D., Toft D.O. The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 1999;274(25):17525-17533. DOI:10.1074/jbc.274.25.17525; Haché R.J., Tse R., Reich T., Savory J.G., Lefebvre Y.A. Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J. Biol. Chem. 1999;274(3):1432-1439. DOI:10.1074/jbc.274.3.1432; Hager G.L., Fletcher T.M., Xiao N., Baumann C.T., Müller W.G., McNally J.G. Dynamics of gene targeting and chromatin remodelling by nuclear receptors. Biochem. Soc. Trans. 2000;28(4):405-410. DOI:10.1042/0300-5127:0280405; Harrell J.M., Murphy P.J., Morishima Y., Chen H., Mansfield J.F., Galigniana M.D., Pratt W.B. Evidence for glucocorticoid receptor transport on microtubules by dynein. J. Biol. Chem. 2004;279(52):54647-54654. DOI:10.1074/jbc.M406863200; Hierholzer K., Buhler H. Metabolism of cortical steroid hormones and their general mode of action. Comprehensive human physiology. Ed. R. Greger, U. Windhorst. Berlin; Heidelberg: Springer-Verlag, 1996. DOI:10.1007/978-3-642-60946-6_21; Higgins S.J., Rousseau G.G., Baxter J.D., Tomkins G.M. Early events in glucocorticoid action. Activation of the steroid receptor and its subsequent specific nuclear binding studied in a cell-free system. J. Biol. Chem. 1973;248(16):5866-5872.; Holaska J.M., Black B.E., Love D.C., Hanover J.A., Leszyk J., Paschal B.M. Calreticulin is a receptor for nuclear export. J. Cell Biol. 2001;152(1):127-140. DOI:10.1083/jcb.152.1.127; Holaska J.M., Black B.E., Rastinejad F., Paschal B.M. Ca2+-dependent nuclear export mediated by calreticulin. Mol. Cell. Biol. 2002;22(17):6286-6297. DOI:10.1128/MCB.22.17.6286-6297.2002; John S., Sabo P.J., Johnson T.A., Sung M.H., Biddie S.C., Lightman S.L., Voss T.C., Davis S.R., Meltzer P.S., Stamatoyannopoulos J.A., Hager G.L. Interaction of the glucocorticoid receptor with the global chromatin landscape. Mol. Cell. 2008;29(5):611-624. DOI:10.1016/j.molcel.2008.02.010; John S., Sabo P.J., Thurman R.E., Sung M.H., Biddie S.C., Johnson T.A., Hager G.L., Stamatoyannopoulos J.A. Chromatin accessibility predetermines glucocorticoid receptor binding patterns. Nat. Genet. 2011;43(3):264-268. DOI:10.1038/ng.759; Kakar M., Kanwal C., Davis J.R., Li H., Lim C.S. Geldanamycin, an inhibitor of Hsp90, blocks cytoplasmic retention of progesterone receptors and glucocorticoid receptors via their respective ligand binding domains. AAPS J. 2006;8(4):E718-E728. DOI:10.1208/ aapsj080481; King H.A., Trotter K.W., Archer T.K. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim. Biophys. Acta. 2012;1819;7:716-726. DOI:10.1016/j.bbagrm.2012.02.019; Kino T., Nordeen S.K., Chrousos G.P. Conditional modulation of glucocorticoid receptor activities by CREB-binding protein (CBP) and p300. J. Steroid. Biochem. Mol. Biol. 1999;70(1/3):15-25. DOI:10.1016/S0960-0760(99)00100-4; Klokk T.I., Kurys P., Elbi C., Nagaich A.K., Hendarwanto A., Slagsvold T., Chang C.Y., Hager G.L., Saatcioglu F. Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol. 2007;27(5):1823-1843. DOI:10.1128/ MCB.01297-06; Liu J., DeFranco D.B. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol. Endocrinol. 1999;13(3):355-365. DOI:10.1210/me.13.3.355; Liu J., DeFranco D.B. Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol. Endocrinol. 2000;14(1):40-51. DOI:10.1210/me.14.1.40; Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schutz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., Evans R.M. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835-839. DOI:10.1016/0092-8674(95)90199-X; Marfori M., Mynott A., Ellis J.J., Mehdi A.M., Saunders N.F., Curmi P.M., Forwood J.K., Bodén M., Kobe B. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta. 2011;1813(9):1562-1577. DOI:10.1016/ j.bbamcr.2010.10.013; Merkulov V.M., Merkulova T.I. Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: Analysis of GR-TRRD database. J. Steroid Biochem. Mol. Biol. 2009;115:1-8. DOI:10.1016/j.jsbmb.2009.02.003; McNally J.G., Müller W.G., Walker D., Wolford R., Hager G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science. 2000;287(5456):1262-1265. DOI:10.1126/science. 287.5456.1262; Miranda T.B., Morris S.A., Hager G.L. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor. Mol. Cell. Endocrinol. 2013;380(1/2):16-24. DOI:10.1016/j.mce.2013.03.002; Muchardt C., Yaniv M. A human homologue of Sacharomyces cerevizia SNF2/SWI2 and Drosophila bhm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 1993;12(11):4279-4290.; Nagaich A.K., Walker D.A., Wolford R., Hager G.L. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. 2004;14:163-174.; Nakielny S., Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell. 1999;99(7):677-690. DOI:10.1016/S0092-8674(00)81666-9; Nemoto T., Ohara-Nemoto Y., Denis M., Gustafsson J.A. The transformed glucocorticoid receptor has a lower steroid-binding affinity than the nontransformed receptor. Biochemistry. 1990;29(7):1880-1886.; Nicolaides N.C., Galata Z., Kino T., Chrousos G.P., Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75(1):1-12. DOI:10.1016/j.steroids.2009.09.002; Odunuga O.O., Longshaw V.M., Blatch G.L. Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays. 2004;26(10):1058-1068. DOI:10.1002/bies.20107; Okret S., Wikstrom A.C., Gustafsson J.A. Molybdate-stabilized glucocorticoid receptor: evidence for a receptor heteromer. Biochemistry. 1985;24(23):6581-6586.; Olkku A., Mahonen A. Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signaling inhibition in human osteoblastic cells. Bone. 2009;44(4):555-565. DOI:10.1016/j.bone.2008.11.013; Payvar F., Wrange O., Carlstedt-Duke J., Okret S., Gustafsson J.A., Yamamoto K.R. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc. Natl. Acad. Sci. USA. 1981;78(11):6628-6632.; Perlmann T., Eriksson P., Wrange O. Quantitative analysis of glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element. J. Biol. Chem. 1990;265(8):17222-17229.; Perrot-Applanat M., Cibert C., Geraud G., Renoir J.M., Baulieu E.E. The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus. J. Cell. Sci. 1995;108 (Pt 5):2037-2051.; Picard D., Yamamoto K.R. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 1987; 6(11):3333-3340.; Pratt W.B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 1993;268(29):21455-21458.; Pratt W.B., Toft D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 1997;18(3):306-360. DOI:10.1210/edrv.18.3.0303; Pratt W.B., Galigniana M.D., Morishima Y., Murphy P.J. Role of molecular chaperones in steroid receptor action. Essays Biochem. 2004;40:41-58.; Rayasam G.V., Elbi C., Walker D.A., Wolford R.G., Fletcher T.M., Edwards D.P., Hager G.L. Ligand specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol. Cell. Biol. 2005;25(6):2406-2418. DOI:10.1128/ MCB.25.6.2406-2418.2005; Richard-Foy H., Hager G.L. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 1987; 6(8):2321-2328.; Rousseau G.G., Higgins S.J., Baxter J.D., Gelfand D., Tomkins G.M. Binding of glucocorticoid receptors to DNA. J. Biol. Chem. 1975; 250(15):6015-6021.; Sackey F.N., Haché R.J., Reich T., Kwast-Welfeld J., Lefebvre Y.A. Determinants of subcellular distribution of the glucocorticoid receptor. Mol. Endocrinol. 1996;10(10):1191-1205. DOI:10.1210/mend.10.10.9121487; Sanchez E.R., Hirst M., Scherrer L.C., Tang H.-Y., Welsh M.J., Harmon J.M., Simons S.S. Jr., Ringold G.M., Pratt W.B. Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. J. Biol. Chem. 1990;265(33):20123-20130.; Savory J.G., Hsu B., Laquian I.R., Giffin W., Reich T., Haché R.J., Lefebvre Y.A. Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol. Cell. Biol. 1999;19(2):1025-1037.; Schmid W., Cole T.J., Blendy J.A., Schutz G. Molecular genetic analysis of glucocorticoid signalling in development. J. Steroid. Biochem. Mol. Biol. 1995;53(1/6):33-35. DOI:10.1016/0960-0760(95)00038-2; Schoneveld O.J., Gaemers I.C., Lamers W.H. Mechanisms of glucocorticoid signaling. Biochem. Biophys. Acta. 2004;1680(2):114-128. DOI:10.1016/j.bbaexp.2004.09.004; Sharp Z.D., Mancini M.G., Hinojos C.A., Dai F., Berno V., Szafran A.T., Smith K.P., Lele T.T., Ingber D.E., Mancini M.A. Estrogen-receptor-alpha exchange and chromatin dynamics are ligandand domain-dependent. J. Cell. Sci. 2006;119(19):4101-4116. DOI:10.1242/ jcs.03161; Simons S.S. Jr., Martinez H.M., Garcea R.L., Baxter J.D., Tomkins G.M. Interaction of glucocorticoid receptor-steroid complexes with acceptor sites. J. Biol. Chem. 1976;251(2):334-343.; Stavreva D.A., Müller W.G., Hager G.L., Smith C.L., McNally J.G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 2004;24(7):2682-2697. DOI:10.1128/MCB.24.7.2682- 2697.2004; Stavreva D.A., Varticovski L., Hager G.L. Complex dynamics of transcription regulation. Biochim. Biophys. Acta. 2012;1819(7):657-666. DOI:10.1016/j.bbagrm.2012.03.004; Stavreva D.A., Wiench M., John S., Conway-Campbell B.L., McKenna M.A., Pooley J.R., Johnson T.A., Voss T.C., Lightman S.L., Hager G.L. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 2009; 11(9):1093-1102. DOI:10.1038/ncb1922; Tago K., Tsukahara F., Naruse M., Yoshioka T., Takano K. Regulation of nuclear retention of glucocorticoid receptor by nuclear Hsp90. Mol. Cell. Endocrinol. 2004;213(2):131-138. DOI:10.1016/j.mce.2003.10.057; Truss M., Bartsch J., Schelbert A., Hache R.J., Beato M. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J.1995;14(8):1737-1751.; Vandevyver S., Dejager L., Libert C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic. 2012;13(3):364-374.DOI:10.1111/j.1600-0854.2011.01288.x; Wallberg A.E., Flinn E.M., Gustafsson J.A., Wright A.P. Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain. Biochem. Soc. Trans. 2000;28(4):410-414. DOI:10.1042/bst0280410; Walker D., Htun H., Hager G.L. Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells. Methods. 1999;19(3):386-393. DOI:10.1006/meth.1999.0874; Walther R.F., Lamprecht C., Ridsdale A., Groulx I., Lee S., Lefebvre Y.A., Hache R.J. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin. J. Biol. Chem. 2003;278(39):37858-37864. DOI:10.1074/jbc.M306356200; Wrange O., Carlstedt-Duke J., Gustaffson J.A. Purification on the glucocorticoid reseptor from rat liver citosol. J. Biol. Chem. 1979;254(18):9284-9290.; Yang J., DeFranco D.B. Differential roles of heat shock protein 70 in the in vitro nuclear import of glucocorticoid receptor and simian virus 40 large tumor antigen. Mol. Cell. Biol. 1994;14(8):5088-5098. DOI:10.1128/MCB.14.8.5088; https://vavilov.elpub.ru/jour/article/view/405
-
9Academic Journal
المؤلفون: Тапбергенов, С., Бекбосынова, Р., Советов, Б., Болысбекова, С.
مصطلحات موضوعية: ШАПЕРОНЫ, ГЛУТАТИОНРЕДУКТАЗА, ГЛУТАТИОНОВАЯ РЕДОКС-СИСТЕМА, ПЕРЕГРЕВАНИЕ, ОХЛАЖДЕНИЕ
وصف الملف: text/html
-
10Academic Journal
المؤلفون: Верьовка, С.
مصطلحات موضوعية: ТРАНСГЕННі БіЛКИ, ФАКТОРИ РИЗИКУ, ШАПЕРОНИ, МіСФОЛДИНГ, ПРіОНИ, ТРАНСГЕННЫЕ БЕЛКИ, ФАКТОРЫ РИСКА, ШАПЕРОНЫ, МИСФОЛДИНГ, ПРИОНЫ
وصف الملف: text/html
-
11Academic Journal
المؤلفون: Тиходеев, О., Журина, Т.
مصطلحات موضوعية: ФЕНОТИПИЧЕСКАЯ ИЗМЕНЧИВОСТЬ, СТОХАСТИЧЕСКИЕ ПРОЦЕССЫ, ШАПЕРОНЫ, ПЕНЕТРАНТНОСТЬ
وصف الملف: text/html
-
12
مصطلحات موضوعية: фармакологические шапероны, pharmacological chaperones, HexSph, болезнь Паркинсона, peripheral blood macrophages, Parkinson's disease, GCase, GBA, макрофаги периферической крови
-
13Academic Journal
المؤلفون: Гужова Ирина Владимировна, Никотина Алина Дмитриевна, Лазарев Владимир Федорович, Сверчинский Дмитрий Вадимович, Комарова Елена Юрьевна, Михайлова Елена Радиславовна, Маргулис Борис Александрович
المساهمون: Казанский (Приволжский) федеральный университет
مصطلحات موضوعية: молекулярные шапероны, противоопухолевая терапия, ингибиторы, экзогенный БТШ70
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190779/1/nora.pdf; 57.085.23; https://openrepository.ru/article?id=190779
-
14Academic Journal
المؤلفون: Пчелина Софья Николаевна, Николаев Михаил Андреевич, Рычков Георгий Николаевич, Сенкевич Константин Алексеевич, Байдакова Галина Викторовна, Захарова Екатерина Юрьевна, Емельянов Антон Константинович
المساهمون: Казанский (Приволжский) федеральный университет
مصطلحات موضوعية: Болезнь Паркинсона, глюкоцереброзидаза, фармакологические шапероны, макрофаги, молекулярное моделирование
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190683/1/nora.pdf; 61:575; https://openrepository.ru/article?id=190683
-
15
مصطلحات موضوعية: электрофорез капиллярный, здоровье, биотехнологии, металлопротеиназы, шапероны, зимография
وصف الملف: application/pdf
-
16
-
17Dissertation/ Thesis
مصطلحات موضوعية: биотехнологии, здоровье, шапероны, металлопротеиназы, электрофорез капиллярный, зимография
وصف الملف: application/pdf
Relation: Апальков Б. Р. Верификация низкомолекулярных белков с помощью различных методов электрофореза / Б. Р. Апальков, Е. М. Климова, А. Н. Огурцов // Інформаційні технології: наука, техніка, технологія, освіта, здоров'я = Information technologies: science, engineering, technology, education, health : наук. вид. : тези доп. 25-ї міжнар. наук.-практ. конф. MicroCAD–2017, [17-19 травня 2017 р.] : у 4 ч. Ч. 2 / ред. Є. І. Сокол. – Харків : НТУ "ХПІ", 2017. – С. 288.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/41662
-
18
مصطلحات موضوعية: cancer of mammary gland, chaperones, рак молочної залози, рак молочной железы, шаперони, шапероны
وصف الملف: application/pdf
-
19Book
المؤلفون: Солодков, А. П., Чиркин, А. А., Бокуть, С. Б., Квасюк, Е. И., Степуро, И. И., Степуро, В. И., Коваленко, Е. И., Надольник, Л. И., Дремза, И. К., Лапшина, Е. А., Чещевик, В. Т., Заводник, И. Б., Данченко, Е. О., Жданов, Д. Д., Черников, В. А., Петренев, Д. Р., Наумов, А. Д., Попов, Е. Г., Лазуко, С. С., Семак, И. В., Абакумова, О. Ю., Юрин, В. М., Дитченко, Т. И., Молчан, О. В., Ромашко, С. Н., Шапчиц, М. П., Ковтун, Н. Е., Сеид-Гусейнов, А. А., Повшенко, А. Д.
مصطلحات موضوعية: L-аспарагиназы, антиоксидантная активность, апоптоз, белки, биохимия, биохимия мелатонина, дубовый шелкопряд, иммобилизованные растительные клетки, иммунотерапия опухолей, ионизирующие излучения, метаболизм йода, митохондрии, нарушения гормональной регуляции, перламутр, свободные радикалы, сосудистый тонус, старение клеток, тиамин, флуоресцентная спектроскопия, хемилюминесцентный метод, шапероны
وصف الملف: application/pdf
Relation: Современные проблемы биохимии : учеб. пособие для студентов и магистрантов высш. учеб. заведений по биол. спец. / под ред. А. П. Солодкова, А. А. Чиркина; М-во образования Республики Беларусь, УО "ВГУ им. П. М. Машерова". – Витебск : УО "ВГУ им. П. М. Машерова", 2010. – 384 с. : ил. – Библиогр. в конце глав. – Посвящается 100-летию ВГУ им. П. М. Машерова. – ISBN 978-985-517-272-8.; https://rep.vsu.by/handle/123456789/13745
-
20Academic Journal
المؤلفون: Романюк, Анатолій Миколайович, Романюк, Анатолий Николаевич, Romaniuk, Anatolii Mykolaiovych, Линдін, Микола Сергійович, Лындин, Николай Сергеевич, Lyndin, Mykola Serhiiovych, Карпенко, Людмила Іванівна, Карпенко, Людмила Ивановна, Karpenko, Liudmyla Ivanivna, Будко, Ганна Юріївна, Будко, Анна Юрьевна, Budko, Hanna Yuriivna, Линдіна, Юлія Миколаївна, Лындина, Юлия Николаевна, Lyndina, Yuliia Mykolaivna, Logvinova, O.
مصطلحات موضوعية: шаперони, шапероны, chaperones, рак молочної залози, рак молочной железы, breast cancer, запальна інфільтрація, воспалительная инфильтрация, inflammatory infiltration
وصف الملف: application/pdf
Relation: The influence of inflammatory infiltration on hsp90α receptor expression in breast cancer tis-sues / A. Romaniuk, M. Lуndіn, L. Karpenko [et al.] // Journal of Clinical and Experimental Medical Research. - 2015. - Vol. 3. - Issue 1. - P. 38-43.; http://essuir.sumdu.edu.ua/handle/123456789/42046