يعرض 1 - 20 نتائج من 45 نتيجة بحث عن '"церебральная перфузия"', وقت الاستعلام: 0.83s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 2 (2024); 14-20 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 2 (2024); 14-20 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2304/957; De Bakey M.E. Successful resection of aneurysm of distal aortic arch and replacement by graft. J. Am. Med. Assoc. 1954;155(16):1398–1403. DOI:10.1001/jama.1954.03690340020007.; Borst H.G., Schaudig A., Rudolph W. Arteriovenous fistula of the aortic arch: repair during deep hypothermia and circulatory arrest. J. Thorac. Cardiovasc. Surg. 1964;48:443–447.; Griepp R.B., Stinson E.B., Hollingsworth J.F., Buehler D. Prosthetic replacement of the aortic arch. J. Thorac. Cardiovasc. Surg. 1975;70(6):1051–1063.; Luehr M., Bachet J., Mohra F.-W., Etz C.D. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. Eur. J. Cardiothorac. Surg. 2014;45(1):27–39. DOI:10.1093/ejcts/ezt154.; Tsai T.T., Trimarchi S., Nienaber C.A. Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur. J. Vasc. Endovasc. Surg. 2009;37(2):149–159. DOI:10.1016/j.ejvs.2008.11.032.; Pape L.A., Awais M., Woznicki E.M., Suzuki T., Trimarchi S., Evangelista A. et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J. Am. Coll. Cardiol. 2015;66(4):350–358. DOI:10.1016/j. jacc.2015.05.029.; Hemli J.M., Pupovac S.S., Gleason T.G., Sundt T.M., Desai N.D., Pacini D. et al. Management of acute type A aortic dissection in the elderly: an analysis from IRAD. Eur. J. Cardiothorac. Surg. 2022;61(4):838–846. DOI:10.1093/ejcts/ezab546.; Di Eusanio M., Schepens M.A.A.M., Morshuis W.J., Di Bartolomeo R., Pierangeli A., Dossche K.M. Antegrade selective cerebral perfusion during operations on the thoracic aorta: factors influencing survival and neurologic outcome in 413 patients. J. Thorac. Cardiovasc. Surg. 2002;124(6):1080–1086. DOI:10.1067/mtc.2002.124994.; Milewski R.K., Pacini D., Moser G.W., Moeller P., Cowie D., Szeto W.Y. et al. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times. Ann. Thorac. Surg. 2010;89(5):1448– 1457. DOI:10.1016/j.athoracsur.2010.01.056.; Yan T.D., Tian D.H., LeMaire S.A., Hughes G.C., Chen E.P., Misfeld M. et al. Standardizing clinical end points in aortic arch surgery A consensus statement from the International Aortic Arch Surgery Study Group. Circulation. 2014;129(15):1610–1616. DOI:10.1161/CIRCULATIONAHA.113.006421.; Hagl C., Khaladj N., Karck M., Kallenbach K., Leyh R., Winterhalter M. et al. Hypothermic circulatory arrest during ascending and aortic arch surgery: the theoretical impact of different cerebral perfusion techniques and other methods of cerebral protection. Eur. J. Cardiothorac. Surg. 2003;24(3):371–378. DOI:10.1016/s1010-7940(03)00337-3.; Halstead J.C., Etz C., Meier D.M., Zhang N., Spielvogel D., Weisz D. et al. Perfusing the cold brain: optimal neuroprotection for aortic surgery. Ann. Thorac. Surg. 2007;84(3):768–774. DOI:10.1016/j.athoracsur.2007.04.051.; Ergin M.A., Uysal S., Reich D.L., Apaydin A., Lansman S.L., McCullough J.N. et al. Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann. Thorac. Surg. 1999;67(6):1887–1894. DOI:10.1016/s0003-4975(99)00432-4.; Fischer G.W., Lin H.-M., Krol M., Galati M.F., Di Luozzo G., Griepp R.B. et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J. Thorac. Cardiovasc. Surg. 2011;141(3):815–821. DOI:10.1016/j.jtcvs.2010.05.017.; Reich D.L., Uysal S., Sliwinski M., Ergin M.A., Kahn R.A., Konstadt S.N. et al. Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J. Thorac. Cardiovasc. Surg. 1999;117(1):156–163. DOI:10.1016/S0022-5223(99)70481-2.; McCullough J.N., Zhang N., Reich D.L., Juvonen T.S., Klein J.J., Spielvogel D. et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann. Thorac. Surg. 1999;67(6):1895–1899. DOI:10.1016/s0003-4975(99)00441-5.; Mills N.L., Ochsner J.L. Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management. J. Thorac. Cardiovasc. Surg. 1980;80(5):708–717. 18. Ueda Y., Miki S., Kusuhara K., Okita Y., Tahata T., Yamanaka K. Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J. Cardiovasc. Surg. 1990;31(5):553–558.; Панфилов Д.С., Саушкин В.В., Сондуев Э.Л., Сазонова С.И., Козлов Б.Н. Хирургическое лечение аневризм восходящего отдела у мужчин и женщин. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):108–113. DOI:10.29001/2073-8552-2022-37-3-108-113.; Ehrlich M.P., Hagl C., McCullough J.N., Zhang N., Shiang H., Bodian C. et al. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig. J. Thorac. Cardiovasc. Surg. 2001;122(2):331–338. DOI:10.1067/mtc.2001.115244.; Cooley D.A., De Bakey M.E. Resection of entire ascending aorta in fusiform aneurysm using cardiac bypass. J. Am. Med. Assoc. 1956;162(12):1158–1159. DOI:10.1001/jama.1956.72970290003013a.; De Bakey M.E., Crawford E.S., Cooley D.A., Morris G.C. Jr. Successful resection of fusiform aneurysm of aortic arch with replacement by homograft. Surg. Gynecol. Obstet. 1957;105(6):657–664.; Kazui T., Washiyama N., Muhammad B.A.H., Terada H., Yamashita K., Takinami M. et al. Total arch replacement using aortic arch branched grafts with the aid of antegrade selective cerebral perfusion. Ann. Thorac. Surg. 2000;70(1):3–9. DOI:10.1016/S0003-4975(00)01535-6.; Guilmet D., Roux P.M., Bachet J., Goudot B., Tawil N., Diaz F. A new technic of cerebral protection. Surgery of the aortic arch. Presse Méd. 1986;15(23):1096–1098. (In French).; Kazui T. Update in surgical management of aneurysms of the thoracic aorta. Rinshō Kyōbu Geka. 1986;6(1):7–15. (In Japan.).; Frist W.H., Baldwin J.C., Starnes V.A., Stinson E.B., Oyer P.E., Miller D.C. et al. A reconsideration of cerebral perfusion in aortic arch replacement. Ann. Thorac. Surg. 1986;42(3):273–281. DOI:10.1016/S0003-4975(10)62733-6.; Bachet J. Re: selective cerebral perfusion using moderate flow in complex cardiac surgery provides sufficient neuroprotection. Are children young adults? Eur. J. Cardiothorac. Surg. 2012;42(4):710–711. DOI:10.1093/ejcts/ezs134.ezs134.; Halstead J.C., Meier M., Wurm M., Zhang N., Spielvogel D., Weisz D. et al. Optimizing selective cerebral perfusion: deleterious effects of high perfusion pressures. J. Thorac. Cardiovasc. Surg. 2008;135(4):784– 791. DOI:10.1016/j.jtcvs.2007.09.035.; Haldenwang P.L., Strauch J.T., Amann I., Klein T., Sterner-Kock A., Christ H. et al. Impact of pump flow rate during selective cerebral perfusion on cerebral hemodynamics and metabolism. Ann. Thorac. Surg. 2010;90(6):1975–1984. DOI:10.1016/j.athoracsur.2010.06.111.; Jonsson O., Morell A., Zemgulis V., Lundström E., Tovedal T., Einarsson G.M. et al. Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20 degrees centigrade. Ann. Thorac. Surg. 2011;91(4):1198–1205. DOI:10.1016/j.athoracsur.2010.12.066.; Misfeld M., Leontyev S., Borger M.A., Gindensperger O., Lehmann S., Legare J.F. et al. What is the best strategy for brain protection in patients undergoing aortic arch surgery? A single center experience of 636 patients. Ann. Thorac. Surg. 2012;93(5):1502–1508. DOI:10.1016/j.athoracsur.2012.01.106.; Harrington D.K., Fragomeni F., Bonser R.S. Cerebral perfusion. Ann. Thorac. Surg. 2007;83(2):S799–S831. DOI:10.1016/j.athoracsur.2006.11.018.; Ziganshin B.A. Which method of cerebral protection do you prefer to use for aortic arch surgery? Aorta. 2013;1(1):69–70. DOI:10.12945/j.aorta.2013.13.018.; Gutsche J.T., Feinman J., Silvay G., Patel P.P., Ghadimi K., Landoni G. et al. Practice variations in the conduct of hypothermic circulatory arrest for adult aortic arch repair: focus on an emerging European paradigm. Heart Lung Vessel. 2014;6(1):43–51.; Gega A., Rizzo J.A., Johnson M.H., Tranquilli M., Farkas E.A., Elefteriades J.A. Straight deep hypothermic arrest: experience in 394 patients supports its effectiveness as a sole means of brain preservation. Ann. Thorac. Surg. 2007;84(3):759–767. DOI:10.1016/j.athoracsur.2007.04.107.; Dumfarth J., Ziganshin B.A., Tranquilli M., Elefteriades J.A. Cerebral protection in aortic arch surgery: hypothermia alone suffices. Tex. Heart Inst. J. 2013;40(5):564–565.; Bavaria J.E., Brinster D.R., Gorman R.C., Woo Y.J., Gleason T., Pochettino A. Advances in the treatment of acute type A dissection: an integrated approach. Ann. Thorac. Surg. 2002;74(5):1848–1852. DOI:10.1016/s0003-4975(02)04128-0.; Appoo J.J., Augoustides J.G., Pochettino A., Savino J.S., McGarvey M.L., Cowie D.C. et al. Perioperative outcome in adults undergoing elective deep hypothermic circulatory arrest with retrograde cerebral perfusion in proximal aortic arch repair: evaluation of protocol-based care. J. Cardiothorac. Vasc. Anesth. 2006;20(1):3–7. DOI:10.1053/j.jvca.2005.08.005.; Khaladj N., Shrestha M., Meck S., Peterss S., Kamiya H., Kallenbach K. et al. Hypothermic circulatory arrest with selective antegrade cerebral perfusion in ascending aortic and aortic arch surgery: a risk factor analysis for adverse outcome in 501 patients. J. Thorac. Cardiovasc. Surg. 2008;135(4):908–914. DOI:10.1016/j.jtcvs.2007.07.067.; Wiedemann D., Kocher A., Dorfmeister M., Vadehra A., Mahr S., Laufer G. et al. Effect of cerebral protection strategy on outcome of patients with Stanford type A aortic dissection. J. Thorac. Cardiovasc. Surg. 2013;146(3):647.e1–655.e1. DOI:10.1016/j.jtcvs.2012.07.072.; Leshnower B.G., Thourani V.H., Halkos M.E., Sarin E.L., Keeling W.B., Lamias M.J. et al. Moderate versus deep hypothermia with unilateral selective antegrade cerebral perfusion for acute type A dissection. Ann. Thorac. Surg. 2015;100(5):1563–1569. DOI:10.1016/j.athoracsur.2015.05.032.; Okita Y., Takamoto S., Ando M., Morota T., Matsukawa R., Kawashima Y. et al. Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: no relation of early death, stroke, and delirium to the duration of circulatory arrest. J. Thorac. Cardiovasc. Surg. 1998;115(1):129–138. DOI:10.1016/s0022-5223(98)70451-9.; Di Eusanio M., Schepens M.A.A.M., Morshuis W.J., Dossche K.M., Di Bartolomeo R., Pacini D. et al. Brain protection using antegrade selective cerebral perfusion: a multicenter study. Ann. Thorac. Surg. 2003;76(4):1181–1189. DOI:10.1016/s0003-4975(03)00824-5.; Di Bartolomeo R., Di Eusanio M., Pacini D., Pagliaro M., Savini C., Nocchi A. et al. Antegrade selective cerebral perfusion during surgery of the thoracic aorta: risk analysis. Eur. J. Cardiothorac. Surg. 2001;19(6):765– 770. DOI:10.1016/s1010-7940(01)00728-x.; Zierer A., El-Sayed Ahmad A., Papadopoulos N., Moritz A., Diegeler A., Urbanski P.P. Selective antegrade cerebral perfusion and mild (28 °C–30 °C) systemic hypothermic circulatory arrest for aortic arch replacement: results from 1002 patients. J. Thorac. Cardiovasc. Surg. 2012;144(5):1042–1049. DOI:10.1016/j.jtcvs.2012.07.063.; Algarni K.D., Yanagawa B., Rao V., Yau T.M. Profound hypothermia compared with moderate hypothermia in repair of acute type A aortic dissection. J. Thorac. Cardiovasc. Surg. 2014;148(6):2888–2894. DOI:10.1016/j.jtcvs.2014.01.020.; Пономаренко И.В., Панфилов Д.С., Сондуев Э.Л., Козлов Б.Н. Основные аспекты искусственного кровообращения при операциях на дуге аорты. Сибирский журнал клинической и экспериментальной медицины. 2021;36(4):120–124. DOI:10.29001/2073-8552-2021-36-4-120-124.; Leshnower B.G., Myung R.J., Thourani V.H., Halkos M.E., Kilgo P.D., Puskas J.D. et al. Hemiarch replacement at 28 °C: an analysis of mild and moderate hypothermia in 500 patients. Ann. Thorac. Surg. 2012;93(6):1910–1916. DOI:10.1016/j.athoracsur.2012.02.069.; Urbanski P.P., Lenos A., Bougioukakis P., Neophytou I., Zacher M., Diegeler A. Mild-to-moderate hypothermia in aortic arch surgery using circulatory arrest: a change of paradigm? Eur. J. Cardiothorac. Surg. 2012;41(1):185–191. DOI:10.1016/j.ejcts.2011.03.060.; Kamiya H., Hagl C., Kropivnitskaya I., Böthig D., Kallenbach K., Khaladj N. et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: A propensity score analysis. J. Thorac. Cardiovasc. Surg. 2007;133(2):501–509. DOI:10.1016/j. jtcvs.2006.09.045.; Mazzeffi M., Marotta M., Lin H.-M., Fischer G. Duration of deep hypothermia during aortic surgery and the risk of perioperative blood tranfusion. Ann. Card. Anaesth. 2012;15(4):266–273. DOI:10.4103/0971-9784.101855.; Hagl C., Tatton N.A., Khaladj N., Zhang N., Nandor S., Insolia S. et al. Involvement of apoptosis in neurological injury after hypothermic circulatory arrest: a new target for therapeutic intervention? Ann. Thorac. Surg. 2001;72(5):1457–1464. DOI:10.1016/s0003-4975(01)02897-1.; Usui A., Oohara K., Murakami F., Ooshima H., Kawamura M., Murase M. Body temperature influences regional tissue blood flow during retrograde cerebral perfusion. J. Thorac. Cardiovasc. Surg. 1997;114(3):440–447. DOI:10.1016/s0022-5223(97)70192-2.; Minatoya K., Ogino H., Matsuda H., Sasaki H., Tanaka H., Kobayashi J. et al. Evolving selective cerebral perfusion for aortic arch replacement: high flow rate with moderate hypothermic circulatory arrest. Ann. Thorac. Surg. 2008;86:1827–1831. DOI:10.1016/j.athoracsur.2008.07.024.; Etz C.D., Kari F.A., Mueller C.S., Silovitz D., Brenner R.M., Lin H.M. et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J. Thorac. Cardiovasc. Surg. 2011;141:1020–1028. DOI:10.1016/j.jtcvs.2010.06.023.; Griepp R.B., Griepp E.B. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann. Thorac. Surg. 2007;83:865–869. DOI:10.1016/j.athoracsur.2006.10.092.; Czerny M., Eggebrecht H., Sodeck G., Verzini F., Cao P., Maritati G. et al. Mechanisms of symptomatic spinal cord ischemia after TEVAR: insights from the European Registry of Endovascular Aortic Repair Complications (EuREC). J. Endovasc. Ther. 2012;19:37–43. DOI:10.1583/11-3578.1.; Della Corte A., Scardone M., Romano G., Amarelli C., Biondi A., De Santo L.S. et al. Aortic arch surgery: thoracoabdominal perfusion during antegrade cerebral perfusion may reduce postoperative morbidity. Ann. Thorac. Surg. 2006;81:1358–1364. DOI:10.1016/j.athoracsur.2005.11.062.; Nappi G., Maresca L., Torella M., Cotrufo M. Body perfusion in surgery of the aortic arch. Tex. Heart Inst. J. 2007;34(1):23–29.; Peterss S., Khaladj N., Pichlmaier M., Hoeffler K., von Wasielewski R., Shrestha M.L. et al. Hypothermic circulatory arrest with “low flow” lower body perfusion: an experimental feasibility study of microcirculatory parameters. Thorac. Cardiovasc. Surg. 2011;59:335–341. DOI:10.1055/s0030-1250727.; https://www.sibjcem.ru/jour/article/view/2304

  2. 2
    Academic Journal

    المساهمون: Проект поддержан грантом правительства Новосибирской области молодым ученым № гр-22 от 18 сентября 2023 г.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 13, № 1 (2024); 28-35 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 1 (2024); 28-35 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1184/875; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1184/1147; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1184/1148; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1184/1149; GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–1602. doi:10.1016/S0140-6736(16)31678-6.; A.A. Tulupov, A.M. Korostyshevskaya, A.A. Savelov, Y.A. Stankevich, O.B. Bogomyakova, L.M. Vasilkiv, E.D. Petrovsky, K.V. Zhuravleva, R.Z. Sagdeev Magnetic resonance in the evaluation circulation and mass transfer in human. Russian Chemical Bulletin. 2021;70(12):2266-2277. doi:10.1007/s11172-021-3344-7.; Ю.А. Станкевич, О.Б. Богомякова, Л.М. Василькив, А.А. Тулупов Особенности изменения гемодинамических характеристик магистрального и тканевого кровотока при патологической извитости внутренних сонных артерий по данным фазово-контрастной и перфузионной магнитно-резонансной томографии. Клиническая физиология кровообращения. 2019; 16(3):217-227. doi:10.24022/1814-6910-2019-16-3-217-227.; Семенов С.Е., Берген Т.А., Месропян Н.А., Смагина А.В., Юркевич Е.А. Возможности применения перфузионных и диффузионных методов в диагностике солитарного повреждения белого вещества головного мозга. REJR 2019; 9(2):30- 46. doi:10.21569/2222-7415-2019-9-2-30-46.; Buxton R.B., Frank L.R., Wong E.C., Siewert B., Warach S., Edelman R.R. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40:383–396. doi:10.1002/mrm.1910400308.; Su, P., Mao, D., Liu, P., Li, Y., Pinho, M.C. Multiparametric Estimation of Brain Hemodynamics with MR Fingerprinting ASL. Magn Reson Med. 2017;78(5):1812-1823. doi:10.1002/mrm.26587.; Fitch A., Arunachalam S., Lieberman A.M. Mapping Word to World in ASL: Evidence from a Human Simulation Paradigm. Cogn Sci. 2021;45(12):e13061. doi:10.1111/cogs.13061.; Tanaka Y., Nagaoka T., Nair G., Ohno K., Duong T.Q. Arterial spin labeling and dynamic susceptibility contrast CBF MRI in postischemic hyperperfusion, hypercapnia, and after mannitol injection. J Cereb Blood Flow Metab. 2011;31(6):1403-11. doi:10.1038/jcbfm.2010.228.; He Q., Li G., Jiang M., Zhou Q., Gao Y., Yan J. Predicting a Favorable (mRS 0-2) or Unfavorable (mRS 3-6) Stroke Outcome by Arterial Spin Labeling and Amide Proton Transfer Imaging in Post-Thrombolysis Stroke Patients. J Pers Med. 2023;13(2):248. doi:10.3390/jpm13020248. .; Yu S., Liebeskind D.S., Dua S., Wilhalme H., Elashoff D., Qiao X.J., Alger J.R., Sanossian N., Starkman S., Ali L.K., Scalzo F., Lou X., Yoo B., Saver J.L., Salamon N., Wang D.J.; UCLA Stroke Investigators. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab. 2015;35(4):630-7. doi:10.1038/jcbfm.2014.238. .; Huang H.-T., Li X., Wang X., Liang B., Li H., Liang J. Diffusion-weighted Imaging and Arterial Spin Labeling for Prediction of Cerebral Infarct Volume in Acute Atherothrombotic Stroke. Curr Med Imaging. 2023;19(3):271-277. doi:10.2174/1573405618666220509205920.; Nam K.W., Kim C.K., Yoon B.W., Hwang I., Sohn C.H. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke. Scientific Reports. 2022;12(1):1456. doi:10.1038/s41598-022-05465-8.; Alsop D.C., Detre J.A., Golay X., Günther M., Hendrikse J., Hernandez-Garcia L., Lu H., MacIntosh B.J., Parkes L.M., Smits M., van Osch M.J., Wang D.J., Wong E.C., Zaharchuk G. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102-16. doi:10.1002/mrm.25197. 2014.; Madai V.I., Martin S.Z., von Samson-Himmelstjerna F.C., Herzig C.X., Mutke M.A., Wood C.N., Thamm T., Zweynert S., Bauer M., Hetzer S., Günther M., Sobesky J. Correction for Susceptibility Distortions Increases the Performance of Arterial Spin Labeling in Patients with Cerebrovascular Disease. J Neuroimaging. 2016l;26(4):436-44. doi:10.1111/jon.12331.; Труфанов Г.Е., Фокин В.А., Асатурян Е.Г., Ефимцев А.Ю., Чегина Д.С., Левчук А.Г., Баев М.С., Романов Г.Г. Методика артериального спинового маркирования: физические основы и общие вопросы. REJR 2019; 9(3):190-200. doi:10.21569/2222-7415-2019-9-3-190-200.; https://www.nii-kpssz.com/jour/article/view/1184

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Medical Visualization; Том 25, № 2 (2021); 102-115 ; Медицинская визуализация; Том 25, № 2 (2021); 102-115 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/883/661; https://medvis.vidar.ru/jour/article/downloadSuppFile/883/833; https://medvis.vidar.ru/jour/article/downloadSuppFile/883/834; https://medvis.vidar.ru/jour/article/downloadSuppFile/883/835; https://medvis.vidar.ru/jour/article/downloadSuppFile/883/836; https://medvis.vidar.ru/jour/article/downloadSuppFile/883/837; Lee M., Zaharchuk G., Guzman R., Achrol A., Bell-Stephens T., Steinberg G.K. Quantitative hemodynamic studies in moyamoya disease: a review. Neurosurg. Focus. 2009; 26 (4): E5. https://doi.org/10.3171/2009.1.FOCUS08300; Grubb R.L. Jr., Powers W.J., Clarke W.R., Videen T.O., Adams H.P. Jr., Derdeyn C.P.; Carotid Occlusion Surgery Study Investigators. Surgical results of the Carotid Occlusion Surgery Study. J. Neurosurg. 2013; 118 (1): 25–33. https://doi.org/10.3171/2012.9.JNS12551; Wintermark M., Sesay M., Barbier E., Borbély K., Dillon W.P., Eastwood J.D., Glenn T.C., Grandin C.B., Pedraza S., Soustiel J.F., Nariai T., Zaharchuk G., Caillé J.M., Dousset V., Yonas H. Comparative overview of brain perfusion imaging techniques. Stroke. 2005; 36 (9): 11. https://doi.org/10.1161/01.STR.0000177884.72657.8b; Latchaw R.E., Yonas H., Pentheny S.L., Gur D. Adverse reactions to xenon-enhanced CT cerebral blood flow determination. Radiology. 1987; 163 (1): 251–254. https://doi.org/10.1148/radiology.163.1.3823444; Detre J.A., Alsop D.C., Vives L.R., Maccotta L., Teener J.W., Raps E.C. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology. 1998; 50 (3): 633–641. https://doi.org/10.1212/wnl.50.3.633; Goetti R., Warnock G., Kuhn F.P., Guggenberger R., O'Gorman R., Buck A., Khan N., Scheer I. Quantitative cerebral perfusion imaging in children and young adults with Moyamoya disease: comparison of arterial spinlabeling-MRI and H(2)[(15)O]-PET. Am. J. Neuroradiol. 2014; 35 (5): 1022–1028. https://doi.org/10.3174/ajnr.A3799; Goetti R., O'Gorman R., Khan N., Kellenberger C.J., Scheer I. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI. Neuroradiology. 2013; 55 (5): 639–647. https://doi.org/10.1007/s00234-013-1155-8; Noguchi T., Kawashima M., Irie H., Ootsuka T., Nishihara M., Matsushima T., Kudo S. Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur. J. Radiol. 2011; 80 (3): 18. https://doi.org/10.1016/j.ejrad.2011.01.016; Petcharunpaisan S., Ramalho J., Castillo M. Arterial spin labeling in neuroimaging. Wld J. Radiol. 2010; 2 (10): 384–398. https://doi.org/10.4329/wjr.v2.i10.384; Amukotuwa S.A., Yu C., Zaharchuk G. 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J. Magn. Reson. Imaging. 2016; 43 (1): 11–27. https://doi.org/10.1002/jmri.24873; Kwah L.K., Diong J. National Institutes of Health Stroke Scale (NIHSS). J. Physiother. 2014; 60 (1): 61. https://doi.org/10.1016/j.jphys.2013.12.012; Biagi L., Abbruzzese A., Bianchi M.C., Alsop D.C., Del Guerra A., Tosetti M. Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J. Magn. Reson. Imaging. 2007. 25 (4): 696–702. https://doi.org/10.1002/jmri.20839; Kohno N., Okada K., Yamagata S., Takayoshi H., Yamaguchi S. The clinical significance of arterial transit artifact on arterial spin labeling in patients with acute ischemic stroke. AME Medical J. 2017; 2 (9). https://doi.org/10.21037/amj.2017.08.27; Mutke M.A., Madai V.I., von Samson-Himmelstjerna F.C., Zaro Weber O., Revankar G.S., Martin S.Z., Stengl K.L., Bauer M., Hetzer S., Günther M., Sobesky J. Clinical evaluation of an arterial-spin-labeling product sequence in steno-occlusive disease of the brain. PLoS One. 2014; 9 (2): e87143. https://doi.org/10.1371/journal.pone.0087143; Suzuki J., Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch. Neurol. 1969; 20 (3): 288–299. https://doi.org/10.1001/archneur.1969.00480090076012; Togao O., Mihara F., Yoshiura T., Tanaka A., Noguchi T., Kuwabara Y., Kaneko K., Matsushima T., Honda H. Cerebral hemodynamics in Moyamoya disease: correlation between perfusion-weighted MR imaging and cerebral angiography. Am. J. Neuroradiol. 2006; 27 (2): 391–397.; Baltsavias G., Khan N., Valavanis A. The collateral circulation in pediatric moyamoya disease. Childs Nerv. Syst. 2015; 31 (3): 389–398. https://doi.org/10.1007/s00381-014-2582-5; Houkin K., Nakayama N., Kuroda S., Nonaka T., Shonai T., Yoshimoto T. Novel magnetic resonance angiography stage grading for moyamoya disease. Cerebrovasc. Dis. 2005; 20 (5): 347–354. https://doi.org/10.1159/000087935; Sugino T., Mikami T., Miyata K., Suzuki K., Houkin K., Mikuni N. Arterial spin-labeling magnetic resonance imaging after revascularization of moyamoya disease. J. Stroke Cerebrovasc. Dis. 2013; 22 (6): 811–816. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.05.010; Quon J.L., Kim L.H., Lober R.M., Maleki M., Steinberg G.K., Yeom K.W. Arterial spin-labeling cerebral perfusion changes after revascularization surgery in pediatric moyamoya disease and syndrome. J. Neurosurg. Pediatr. 2019; 23 (4): 486–492. https://doi.org/10.3171/2018.11.PEDS18498; Ha J.Y., Choi Y.H., Lee S., Cho Y.J., Cheon J.E., Kim I.O., Kim W.S. Arterial spin labeling mri for quantitative assessment of cerebral perfusion before and after cerebral revascularization in children with moyamoya disease. Korean J. Radiol. 2019; 20 (6): 985–996. https://doi.org/10.3348/kjr.2018.0651; Zaharchuk G., Do H.M., Marks M.P., Rosenberg J., Moseley M.E., Steinberg G.K. Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke. 2011; 42 (9): 2485–2491. https://doi.org/10.1161/STROKEAHA.111.616466; Lee S., Yun T.J., Yoo R.E., Yoon B.W., Kang K.M., Choi S.H., Kim J.H., Kim J.E., Sohn C.H., Han M.H. Monitoring cerebral perfusion changes after revascularization in patients with moyamoya disease by using arterial spinlabeling MR imaging. Radiology. 2018; 288 (2): 565–572. https://doi.org/10.1148/radiol.2018170509; Chalela J.A., Alsop D.C., Gonzalez-Atavales J.B., Maldjian J.A., Kasner S.E., Detre J.A. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000; 31 (3): 680–687. https://doi.org/10.1161/01.str.31.3.680; Noguchi T., Kawashima M., Nishihara M., Hirai T., Matsushima T., Irie H. Arterial spin-labeling MR imaging in Moyamoya disease compared with clinical assessments and other MR imaging findings. Eur. J. Radiol. 2013; 82 (12): 1. https://doi.org/10.1016/j.ejrad.2013.08.040; Fan A.P., Guo J., Khalighi M.M., Gulaka P.K., Shen B., Park J.H., Gandhi H., Holley D., Rutledge O., Singh P., Haywood T., Steinberg G.K., Chin F.T., Zaharchuk G. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/ MRI Study. Stroke. 2017; 48 (9): 2441–2449. https://doi.org/10.1161/STROKEAHA.117.017773; https://medvis.vidar.ru/jour/article/view/883

  5. 5
    Academic Journal

    المصدر: Siberian Journal of Clinical and Experimental Medicine; Том 34, № 4 (2019); 83-90 ; Сибирский журнал клинической и экспериментальной медицины; Том 34, № 4 (2019); 83-90 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2019-34-4

    وصف الملف: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/867/493; Ильинов В.Н., Кривощеков Е.В., Шипулин В.М. Хирургическое лечение коарктации аорты в сочетании с гипоплазией дуги. Сибирский медицинский журнал. 2014;29(3):80-85. DOI:10.29001/2073-8552-2014-29-3-80-86.; Edwards J.E., Christensen N.A., Clagett O.T., McDonald J.R. Pathologic considerations in coarctation of the aorta. Proc. Staff Meet. Mayo Clin. 1948;23:324.; Moulaert A.J., Bruins C.C., Oppenheimer-Dekker A. Anomalies of the aortic arch and ventricular septal defects. Circulation. 1976;53:1011-1015. DOI:10.1161/01.cir.53.6.1011.; Celoria G.C., Patton R.B. Congenital absence of the aortic arch. Am. Heart J. 1959;58:407-413. DOI:10.1016/0002-8703(59)90157-7.; Rudolph A.M., Heymann M.A., Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am. J. Cardiol. 1972;30:514-525. DOI:10.1016/0002-9149(72)90042-2.; Langley S.M., Sunstrom R.E., Reed R.D., Rekito A.J., Gerrah R. The neonatal hypoplastic aortic arch:decisions and more decisions. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2013;16(3):43-51. DOI:10.1053/j.pcsu.2013.01.008.; Karl T.R., Sano S., Brawn W., Mee R.B. Repair of hypoplastic or interrupted aortic arch via sternotomy. J. Thorac. Cardiovasc. Surg. 1992;104(3):688-695.; Sakurai T., Stickley J., Stumper O., Khan N., Jones T.J., Barron D.J. et al. Repair of isolated aortic coarctation over two decades: impact of surgical approach and associated arch hypoplasia. Interact. Cardiovasc. Thorac. Surg. 2012;15(5): 865-870. DOI:10.1093/icvts/ivs265.; Elgamal M.A., McKenzie E.D., Fraser C.D. Jr. Aortic arch advancement: the optimal one-stage approach for surgical management of neonatal coarctation with arch hypoplasia. Ann. Thorac. Surg. 2002;73:1267-1272. DOI:10.1016/s0003-4975(01)03622-0.; Kotani Y, Anggriawan S., Chetan D., Zhao L., Liyanage N., Saedi A. et al. Fate of the hypoplastic proximal aortic arch in infants undergoing repair for coarctation of the aorta through a left thoracotomy. Ann. Thorac. Surg. 2014;98(4):1386-1393. DOI:10.1016/j.athorac-sur.2014.05.042.; Pettersen M.D., Du W., Skeens M.E., Humes R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 2008;21(8):922-934. DOI:10.1016/j.echo.2008.02.006.; Wade O.L., Bishop J.M. Cardiac output and regional blood flow. Oxford: Blackwell Scientific Publications Ltd.; 1962:65.; Clarke D.D., Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G.J. Basic neurochemistry molecular, cellular, and medical aspects. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 1999:637-670.; Michenfelder J.D., Milde J.H. The effect of profound levels of hypothermia (below 14 degrees C) on canine cerebral metabolism. J Cereb. Blood Flow Metab. 1992;12(5):877-880. DOI:10.1038/jcb-fm.1992.120.; Wass C.T., Lanier W.L., Hofer R.E., Scheithauer B.W., Andrews A.G. Temperature changes of > or = 1 degree C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology. 1995;83(2):325-335. DOI:10.1097/00000542-199508000-00013.; Hagerdal M., Harp J., Nilsson L., Siesjo B.K. The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 1975;24:311-316. DOI:10.1111/j.1471-4159.1975.tb11881.x.; Караськов А.М., Литасова Е.Е., Власов А.Ю. Очерк жизни и деятельности Евгения Николаевича Мешалкина. Патология кровообращения и кардиохирургия. 1999;1:4-11.; Gonzalez-Ibarra F.P., Varon J., Lopez-Meza E.G. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front. Neurol. 2011;2:4. DOI:10.3389/fneur.2011.00004.; Erecinska M., Thoresen M., Silver I.A. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab. 2003;23(5):513-530. DOI:10.1097/01.WCB.0000066287.21705.21.; Yenari M., Kitagawa K., Lyden P., Perez-Pinzon M. Metabolic downregu-lation: a key to successful neuroprotection? Stroke. 2008;39(10):2910-2917. DOI:10.1161/STROKEAHA.108.514471.; Lassen N.A. Autoregulation of cerebral blood flow. Circ. Res. 1964;15:201-204.; Joshi B., Brady K., Lee J., Easley B., Panigrahi R., Smielewski P. et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesthesia&Analgesia. 2010;110(2):321-328. DOI:10.1213/ANE.0b013e3181c6fd12.; Ono M., Joshi B., Brady K., Easley R.B., Zheng Y, Brown C. et al. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. BJA. 2012;109(3):391-398. DOI:10.1093/bja/aes148.; Ono M., Brown C., Lee J.K., Gottesman R.F., Kraut M., Black J. et al. Cerebral blood flow autoregulation is preserved after hypothermic circulatory arrest. Ann. Thorac. Surg. 2013;96(6):2045. DOI:10.1016/j.athoracsur.2013.07.086.; Whittaker C.L., Grist G.E. The theoretical prediction of safe deep hypothermic circulatory arrest (DHCA) time using estimated tissue oxygen loading. Prog. Pediatr. Cardiol. 2008;24:117-122. DOI:10.1016/j.ppedcard.2007.10.007.; Kirklin J.W., Barratt-Boyes B.G. Hypothermia, circulatory arrest, and cardiopulmonary bypass. Cardiac. Surgery. Second ed. New York: Churchill Livingstone; 1993:61-127.; McCullough J.N., Zhang N., Reich D.L., Juvonen T.S., Klein J.J., Spiel-vogel D. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann. Thorac. Surg. 1999;67:1895-1899. DOI:10.1016/S0003-4975(99)00441-5.; Coselli J.S., Crawford E.S., Beall A.C. Jr., Mizrahi E.M., Hess K.R., Patel V.M. Determination of brain temperatures for safe circulatory arrest during cardiovascular operation. Ann. Thorac. Surg. 1988;45(6):638-642. DOI:10.1016/S0003-4975(10)64766-2.; Wypij D., Newburger J.W., Rappaport L.A., du Plessis A.J., Jonas R.A., Wernovsky G. et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J. Thorac. Cardiovasc. Surg. 2003;126(5):1397-1403. DOI:10.1016/s0022-5223(03)00940-1.; Pigula F.A., Siewers R.D., Nemoto E.M. Regional perfusion of the brain during neonatal aortic arch reconstruction. J. Thorac. Cardiovasc. Surg. 1999;117:1023-1024. DOI:10.1016/S0022-5223(99)70387-9.; Pigula F.A., Nemoto E.M., Griffith B.P., Siewers R.D. Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J. Thorac. Cardiovasc. Surg. 2000;119:331-339. DOI:10.1016/S0022-5223(00)70189-9.; Fraser C.D. Jr., Andropoulos D.B. Principles of antegrade cerebral perfusion during arch reconstruction in newborns/infants. Semin. Tho-rac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2008:61-68. DOI:10.1053/j.pcsu.2007.12.005.; Dent C.L., Spaeth J.P., Jones B.V., Schwartz S.M., Glauser T.A., Hallinan B. et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J. Thorac. Car-diovasc. Surg. 2006;131:190-197. DOI:10.1016/j.jtcvs.2005.10.003.; Mahle W.T., Tavani F., Zimmerman R.A., Nicolson S.C., Galli K.K., Gay-nor J.W. et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002;106(12):I109-I114.; Ziganshin B.A., Elefteriades J.A. Deep hypothermic circulatory arrest. Ann. Cardiothorac. Surg. 2013;2(3):303-315. DOI:10.3978/j.issn.2225-319X.2013.01.05.; Messer J.V., Wagman R.J., Levine H.J., Neill W.A., Krasnow N., Gorlin R. Patterns of human myocardial oxygen extraction during rest and exercise. J. Clin. Invest. 1962;41(4):725-742. DOI:10.1172/JCI104531.; Stouffer G.A. Cardiovascular hemodynamics for the clinician. Massachusetts: Blackwell Publishing; 2008:233-235.; Dobson G.P., Faggian G., Onorati F., Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era? Front. Physiol. 2013;4:228. DOI:10.3389/fphys.2013.00228.; Piper H.M., Meuter K., Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg. 2003;75:S644-S648. DOI:10.1016/S0003-4975(02)04686-6.; Piper H.M., Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 2004;61:365-371. DOI:10.1016/j.cardiores.2003.12.012.; Cannon R.O. Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 2005;2:88-94. DOI:10.1038/ncpcardio0096.; Vinten-Johansen J., Zhao Z.Q., Jiang R., Zatta A.J., Dobson G.P. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. J. Appl. Physiol. 2007;103:1441-1448. DOI:10.1152/japplphysiol.00642.2007.; Vinten-Johansen J., Nakanishi K. Postcardioplegia acute cardiac dysfunction and reperfusion injury. J. Cardiothorac. Vasc. Anesth. 1993;7:6-18. DOI:10.1016/1053-0770(93)90092-Y.; Rudd D.M., Dobson G.P. Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery following 6 hours of cold static storage. J. Thorac. Cardiovasc. Surg. 2011;141:1044-1055. DOI:10.1016/j.jtcvs.2010.04.040.; Anselmi A., Abbate A., Girola F., Nasso G., Biondi-Zoccai G.G., Possati G. et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur. J. Cardiothorac. Surg. 2004;25:304-311. DOI:10.1016/j.ejcts.2003.12.003.; Anselmi A., Possati G., Gaudino M. Postoperative inflammatory reaction and atrial fibrillation: simple correlation or causation? Ann. Tho-rac. Surg. 2009;88:326-333. DOI:10.1016/j.athoracsur.2009.01.031.; Ruel M., Khan T.A., Voisine P., Bianchi C., Sellke F.W. Vasomotor dysfunction after cardiac surgery. Eur. J. Cardiothorac. Surg. 2004;26:1002-1014. DOI:10.1016/j.ejcts.2004.07.040.; Nomura F., Forbess J. M., Hiramatsu T., Mayer J.E. Relationship of blood flow effects of adenosine during reperfusion to recovery of ventricular function after hypothermic ischemia in neonatal lambs. Circulation. 1997;96:227-232.; Ellis R.J., Mavroudis C., Gardner C., Turley K., Ullyot D., Ebert P.A. Relationship between atrioventricular arrhythmias and the concentration of K+ ion in cardioplegic solution. J. Thorac. Cardiovasc. Surg. 1980;80:517-526.; Taggart P., Sutton P.M., Opthof T., Coronel R., Trimlett R., Pugsley W. et al. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell. Cardiol. 2000;32:621-630. DOI:10.1006/jmcc.2000.1105.; Bernhard W.F., Schwarz H.F., Mallick N.P. Elective hypothermic cardiac arrest in normothermic animals. Ann. Surg. 1961;153(1):43-51. DOI:10.1097/00000658-196101000-00005.; Durandy Y. Rationale for implementation of warm cardiac surgery in pediatrics. Front. Pediatr. 2016;4:43. DOI:10.3389/fped.2016.00043.; https://www.sibjcem.ru/jour/article/view/867

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
  10. 10
    Academic Journal

    المصدر: Acta Biomedica Scientifica; № 2 (2015); 15-20 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/22/23; Ильинов В.Н., Кривощеков Е.В., Шипулин В.М. Хирургическое лечение коарктации аорты в сочетании с гипоплазией дуги // Сибирский медицинский журнал. - 2014. - № 3, Т. 29. - С. 80-85. Iljinov V.N., Krivoshchekov E.V., Shipulin V.M. (2014). Surgical treatment of aorta coarctation in combination with aortic arch hypoplasia [Hirurgicheskoe lechenie koarktacii aorty v sochetanii s gipoplaziej dugi]. Sibirskij medicinskij zhurnal, 3 (29), 80-85.; Синельников Ю.С., Корнилов И.А., Сойнов И.А. и др. Защита головного мозга при реконструкции дуги аорты у новорожденных // Патология кровообращения и кардиохирургия. - 2013. - № 3. - С. 4-7. Sinelnikov Y.S., Kornilov I.A., Soynov I.A. et al. (2013). Brain protection at the aortic arch reconstruction in newborns [Zashhita golovnogo mozga pri rekonstrukcii dugi aorty u novorozhdennyh]. Patologija krovoobrashhenija i kardiohirurgija (3), 4-7.; Asou T., Kado H., Imoto Y. et al. (1996). Selective cerebral perfusion technique during aortic arch repair in neonates. Ann. Thorac. Surg., 5 (61), 1546-1548.; Kouchoukos N. (2013). Kirklin/Barratt - Boyes cardiac surgery: morphology, diagnostic criteria, natural history, techniques, results, and indications, 67-132, 1718-1779.; Ly M., Roubertie F., Belli E. et al. (2011). Continuous perfusion for aortic arch repair: hypothermia versus normothermia. Ann. Thorac. Surg. (92), 942-948.; Mavrodis C., Backer С. (2013). Pediatric cardiac surgery, 256-282.; Mossad E., Machado S., Apostolakis J. (2007). Bleeding following deep hypothermia and circulatory arrest in children. Semin. Cardiothorac. Vasc. Anesth. (11), 34-46.; Ungerleider R., Pasquali S. et al. (2013). Contemporary patterns of surgery and outcomes for aortic coarctation: an analysis of the society of thoracic surgeons congenital heart surgery database. J. Thorac. Cardiovasc. Surg., 145 (1), 1-20.; https://www.actabiomedica.ru/jour/article/view/22

  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    وصف الملف: text/html

  17. 17
  18. 18
  19. 19
  20. 20