يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"хроническая неонатальная легочная гипертензия"', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: PULMONOLOGIYA; Том 34, № 3 (2024); 340-349 ; Пульмонология; Том 34, № 3 (2024); 340-349 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4557/3657; Абдулатипова И.В., Белкина М.В., Белозеров Ю.М. и др. Легочная гипертензия у детей: руководство. М.: Актелион Фармасьютикалз; 2013.; Министерство здравоохранения Российской Федерации. Клинические рекомендации. Легочная гипертензия у детей. М.; 2017. Доступно на: https://cr.minzdrav.gov.ru/recomend/31_1?ysclid=lwumvccw7r222227221; Ruoss J.L., Rios D.R., Levy P.T. Updates on management for acute and chronic phenotypes of neonatal pulmonary hypertension. Clin. Perinatol. 2020; 47 (3): 593–615. DOI:10.1016/j.clp.2020.05.006.; Буров А.А., Пруткин М.Е., Гребенников В.А. и др. Проект клинического протокола по диагностике и терапии персистируюшей легочной гипертензии новорожденных. Неонатология: новости, мнения, обучение. 2014; (1): 145–160. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/82.html; Миклашевич И.М., Школьникова М.А., Горбачевский С.В. и др. Современная стратегия терапии легочной гипертензии у детей. Кардиоваскулярная терапия и профилактика. 2018; 17 (2): 101–124. DOI:10.15829/1728-8800-2018-2-101-124.; Буров А.А. Терапия оксидом азота в неонатологии. Неонатология: новости, мнения, обучение. 2014; (4): 73–86. Доступно на: https://www.neonatology-nmo.ru/ru/jarticles_neonat/123.html?SSr=410134d89315ffffffff27c__07e8051f0f2905-1352; Roberts J.D., Polaner D.M., Lang P., Zapol W.M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 818–819. DOI:10.1016/0140-6736(92)92686-a.; Kinsella J.P., Neish S.R., Shaffer E., Abman S.H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 819–820. DOI:10.1016/0140-6736(92)92687-b.; Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N. Engl. J. Med. 1997; 336 (9): 597–604. DOI:10.1056/NEJM199702273360901.; Clark R.H., Kueser T.J., Walker M.W. et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N. Engl. J. Med. 2000; 342 (7): 469–474. DOI:10.1056/NEJM200002173420704.; Stahlman M. Treatment of cardiovascular disorders of the newborn. Pediatr. Clin. North Am. 1964; 11 (2): 363–400. DOI:10.1016/s0031-3955(16)31554-1.; Rudolph A.M., Drorbaugh J.E., Auld P.A. et al. Studies on the circulation in the neonatal period. The circulation in the respiratory distress syndrome. Pediatrics. 1961; 27: 551–566. DOI:10.1542/peds.27.4.551.; Roberton N.R., Hallidie-Smith K.A., Davis J.A. Severe respiratory distress syndrome mimicking cyanotic heart-disease in term babies. Lancet. 1967; 2 (7526): 1108–1110. DOI:10.1016/s0140-6736(67)90616-2.; Gersony W.M., Duc G.V., Sinclair J.C. "PFC" syndrome (persistence of fetal circulation). Circulation. 1969; 40 (Suppl. 1): 3–87.; Levin D.L., Heymann M.A., Kitterman J.A. et al. Persistent pulmonary hypertension of the newborn infant. J. Pediatr. 1976; 89 (4): 626–630. DOI:10.1016/s0022-3476(76)80405-2.; Harrison M.R., de Lorimier A.A. Congenital diaphragmatic hernia. Surg. Clin. North Am. 1981; 61 (5): 1023–1035. DOI:10.1016/s0039-6109(16)42528-4.; Rudolph A.M. High pulmonary vascular resistance after birth: I. Pathophysiologic considerations and etiologic classification. Clin. Pediatr. (Phila). 1980; 19 (9): 585–590. DOI:10.1177/000992288001900902.; Mous D.S., Buscop-van Kempen M.J., Wijnen R.M.H. et al. Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy. Respir. Res. 2017; 18 (1): 187. DOI:10.1186/s12931-017-0670-2.; Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288 (5789): 373–376. DOI:10.1038/288373a0.; Cornfield D.N., Chatfield B.A., McQueston J.A. et al. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am. J. Physiol. 1992; 262 (5, Pt 2): H1474–1481. DOI:10.1152/ajpheart.1992.262.5.H1474.; Abman S.H., Chatfield B.A., Hall S.L., McMurtry I.F. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 1990; 259 (6, Pt 2): H1921–1927. DOI:10.1152/ajpheart.1990.259.6.H1921.; Abman S.H., Chatfield B.A., Rodman D.M. et al. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am. J. Physiol. 1991; 260 (4, Pt 1): L280–285. DOI:10.1152/ajplung.1991.260.4.L280.; Fineman J.R., Soifer S.J., Heymann M.A. The role of pulmonary vascular endothelium in perinatal pulmonary circulatory regulation. Semin. Perinatol. 1991; 15 (1): 58–62. Available at: https://www.researchgate.net/publication/21093259_The_role_of_pulmonary_vascular_endothelium_in_perinatal_pulmonary_circulatory_regulation; Kinsella J.P., McQueston J.A., Rosenberg A.A., Abman S.H. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol. 1992; 263 (3, Pt 2): H875–880. DOI:10.1152/ajpheart.1992.263.3.H875.; Kinsella J.P., Ivy D.D., Abman S.H. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 1994; 267 (5, Pt 2): H1955–1961. DOI:10.1152/ajpheart.1994.267.5.H1955.; Shaul P.W., Afshar S., Gibson L.L. et al. Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 283 (6): L1192–1199. DOI:10.1152/ajplung.00112.2002.; Pepke-Zaba J., Higenbottam T.W., Dinh-Xuan A.T. et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet. 1991; 338 (8776): 1173–1174. DOI:10.1016/0140-6736(91)92033-x.; Frostell C., Fratacci M.D., Wain J.C. et al. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation. 1991; 83 (6): 2038–2047. DOI:10.1161/01.cir.83.6.2038.; Roberts J.D. Jr., Chen T.Y., Kawai N. et al. Inhaled nitric oxide reverses pulmonary vasoconstriction in the hypoxic and acidotic newborn lamb. Circ. Res. 1993; 72 (2): 246–254. DOI:10.1161/01.res.72.2.246.; Villamor E., Le Cras T.D., Horan M.P. et al. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am. J. Physiol. 1997; 272 (5, Pt 1): L1013–1020. DOI:10.1152/ajplung.1997.272.5.L1013.; Zayek M., Cleveland D., Morin F.C. 3rd. Treatment of persistent pulmonary hypertension in the newborn lamb by inhaled nitric oxide. J. Pediatr. 1993; 122 (5, Pt 1): 743–750. DOI:10.1016/s0022-3476(06)80020-x.; Kinsella J.P., Parker T.A., Galan H. et al. Independent and combined effects of inhaled nitric oxide, liquid perfluorochemical, and high-frequency oscillatory ventilation in premature lambs with respiratory distress syndrome. Chest. 1999; 116 (1, Suppl.): 15–16S. DOI:10.1378/chest.116.suppl_1.15s.; Rossaint R., Falke K.J., López F. et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993; 328 (6): 399–405. DOI:10.1056/NEJM199302113280605.; Tworetzky W., Bristow J., Moore P. et al. Inhaled nitric oxide in neonates with persistent pulmonary hypertension. Lancet. 2001; 357 (9250): 118–120. DOI:10.1016/S0140-6736(00)03548-0.; Davidson D., Barefield E.S., Kattwinkel J. et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN Study Group. Pediatrics. 1998; 101 (3, Pt 1): 325–334. DOI:10.1542/peds.101.3.325.; Sokol G.M., Fineberg N.S., Wright L.L., Ehrenkranz R.A. Changes in arterial oxygen tension when weaning neonates from inhaled nitric oxide. Pediatr. Pulmonol. 2001; 32 (1): 14–19. DOI:10.1002/ppul.1083.; Black S.M., Heidersbach R.S., McMullan D.M. et al. Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension. Am. J. Physiol. 1999; 277 (5): H1849–1856. DOI:10.1152/ajpheart.1999.277.5.H1849.; Rawat M., Lakshminrusimha S., Vento M. Pulmonary hypertension and oxidative stress: where is the link? Semin. Fetal Neonatal Med. 2022; 27 (4): 101347. DOI:10.1016/j.siny.2022.101347.; Roberts J.D. Jr, Fineman J.R., Morin F.C. 3rd et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N. Engl. J. Med. 1997; 336 (9): 605–610. DOI:10.1056/NEJM199702273360902.; Kinsella J.P., Truog W.E., Walsh W.F. et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J. Pediatr. 1997; 131 (1, Pt 1): 55–62. DOI:10.1016/s0022-3476(97)70124-0.; Goldman A.P., Tasker R.C., Haworth S.G. et al. Four patterns of response to inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics. 1996; 98 (4, Pt 1): 706–713. DOI:10.1542/peds.98.4.706.; Foubert L., Fleming B., Latimer R. et al. Safety guidelines for use of nitric oxide. Lancet. 1992; 339 (8809): 1615–1616. DOI:10.1016/0140-6736(92)91886-d.; Frostell C.G., Zapol W.M. Inhaled nitric oxide, clinical rationale and applications. Adv. Pharmacol. 1995; 34: 439–456. DOI:10.1016/s1054-3589(08)61102-3.; Van Meurs K.P., Wright L.L., Ehrenkranz R.A. et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N. Engl. J. Med. 2005; 353 (1): 13–22. DOI:10.1056/NEJMoa043927.; Van Meurs K.P., Rhine W.D., Asselin J.M., Durand D.J. Response of premature infants with severe respiratory failure to inhaled nitric oxide. Preemie NO Collaborative Group. Pediatr. Pulmonol. 1997; 24 (5): 319–323. DOI:10.1002/(sici)1099-0496(199711)24:53.0.co;2-d.; Högman M., Frostell C., Arnberg H., Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet. 1993; 341 (8861): 1664–1665. DOI:10.1016/0140-6736(93)90802-n.; Bassenge E. Antiplatelet effects of endothelium-derived relaxing factor and nitric oxide donors. Eur. Heart. J. 1991; 12 (Suppl. E): 12–15. DOI:10.1093/eurheartj/12.suppl_e.12.; George T.N., Johnson K.J., Bates J.N., Segar J.L. The effect of inhaled nitric oxide therapy on bleeding time and platelet aggregation in neonates. J. Pediatr. 1998; 132 (4): 731–734. DOI:10.1016/s0022-3476(98)70370-1.; Ward J., Motwani J., Baker N. et al. Congenital methemoglobinemia identified by pulse oximetry screening. Pediatrics. 2019; 143 (3): e20182814. DOI:10.1542/peds.2018-2814.; Bischoff A.R., Habib S., McNamara P.J., Giesinger R.E. Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. J. Perinatol. 2021; 41 (9): 2345–2354. DOI:10.1038/s41372-021-01049-y.; James A.T., Corcoran J.D., McNamara P.J. et al. The effect of milrinone on right and left ventricular function when used as a rescue therapy for term infants with pulmonary hypertension. Cardiol. Young. 2016; 26 (1): 90–99. DOI:10.1017/S1047951114002698.; Kinsella J.P., Steinhorn R.H., Mullen M.P. et al. The left ventricle in congenital diaphragmatic hernia: Implications for the management of pulmonary hypertension. J. Pediatr. 2018; 197: 17–22. DOI:10.1016/j.jpeds.2018.02.040.; Cookson M.W., Abman S.H., Kinsella J.P., Mandell E.W. Pulmonary vasodilator strategies in neonates with acute hypoxemic respiratory failure and pulmonary hypertension. Semin. Fetal Neonatal Med. 2022; 27 (4): 101367. DOI:10.1016/j.siny.2022.101367.; Kinsella J.P., Abman S.H. Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia. J. Pediatr. 2000; 136 (6): 717–726. DOI:10.1016/S0022-3476(00)10660-2.; Clark R.H., Yoder B.A., Sell M.S. Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J. Pediatr. 1994; 124 (3): 447–454. DOI:10.1016/s0022-3476(94)70374-4.; Kuluz M.A., Smith P.B., Mears S.P. et al. Preliminary observations of the use of high-frequency jet ventilation as rescue therapy in infants with congenital diaphragmatic hernia. J. Pediatr. Surg. 2010; 45 (4): 698–702. DOI:10.1016/j.jpedsurg.2009.07.025.; Lotze A., Mitchell B.R., Bulas D.I. et al. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in term infants study group. J. Pediatr. 1998; 132 (1): 40–47. DOI:10.1016/s0022-3476(98)70482-2.; González A., Bancalari A., Osorio W. et al. Early use of combined exogenous surfactant and inhaled nitric oxide reduces treatment failure in persistent pulmonary hypertension of the newborn: a randomized controlled trial. J. Perinatol. 2021; 41 (1): 32–38. DOI:10.1038/s41372-020-00777-x.; Cornfield D.N., Reeve H.L., Tolarova S. et al. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA. 1996; 93 (15): 8089–8094. DOI:10.1073/pnas.93.15.8089.; Cornfield D.N. Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature. Adv. Exp. Med. Biol. 2010; 661: 201–220. DOI:10.1007/978-1-60761-500-2_13.; Farrow K.N., Groh B.S., Schumacker P.T. et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ. Res. 2008; 102 (2): 226–233. DOI:10.1161/CIRCRESAHA.107.161463.; Giesinger R.E., McNamara P.J. Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin. Perinatol. 2016; 40 (3): 174–188. DOI:10.1053/j.semperi.2015.12.005.; Nakanishi H., Suenaga H., Uchiyama A. et al. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 2018; 103 (6): F554–561. DOI:10.1136/archdischild-2017-313778.; Nelin L., Kinsella J.P., Courtney S.E. et al. Use of inhaled nitric oxide in preterm vs term/near-term neonates with pulmonary hypertension: results of the PaTTerN registry study. J. Perinatol. 2022; 42 (1): 14–18. DOI:10.1038/s41372-021-01252-x.; Peliowski A., Finer N.N., Etches P.C. et al. Inhaled nitric oxide for premature infants after prolonged rupture of the membranes. J. Pediatr. 1995; 126 (3): 450–453. DOI:10.1016/s0022-3476(95)70467-1.; Abman S.H., Hansmann G., Archer S.L. et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015; 132 (21): 2037–2099. DOI:10.1161/CIR.0000000000000329.; Kinsella J.P., Steinhorn R.H., Krishnan U.S. et al. Recommendations for the use of inhaled nitric oxide therapy in premature newborns with severe pulmonary hypertension. J. Pediatr. 2016; 170: 312–314. DOI:10.1016/j.jpeds.2015.11.050.; Chock V.Y., Van Meurs K.P., Hintz S.R. et al. Inhaled nitric oxide for preterm premature rupture of membranes, oligohydramnios, and pulmonary hypoplasia. Am. J. Perinatol. 2009; 26 (4): 317–322. DOI:10.1055/s-0028-1104743.; Kinsella J.P., Cutter G.R., Walsh W.F. et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. 2006; 355 (4): 354–364. DOI:10.1056/NEJMoa060442.; Ballard R.A., Truog W.E., Cnaan A. et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N. Engl. J. Med. 2006; 355 (4): 343–353. DOI:10.1056/NEJMoa061088.; Kinsella J.P., Walsh W.F., Bose C.L. et al. Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial. Lancet. 1999; 354 (9184): 1061–1065. DOI:10.1016/s0140-6736(99)03558-8.; Balasubramaniam V., Maxey A.M., Morgan D.B. et al. Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 291 (1): L119–127. DOI:10.1152/ajplung.00395.2005.; Tourneux P., Markham N., Seedorf G. et al. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 297 (6): L1103–1111. DOI:10.1152/ajplung.00293.2009.; Kinsella J.P., Parker T.A., Galan H. et al. Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 1997; 41 (4, Pt 1): 457–463. DOI:10.1203/00006450-199704000-00002.; Kumar P.; Committee on Fetus and Newborn; American Academy of Pediatrics. Use of inhaled nitric oxide in preterm infants. Pediatrics. 2014; 133 (1): 164–170. DOI:10.1542/peds.2013-3444.; Giesinger R.E., Rios D.R., Chatmethakul T. et al. Impact of early hemodynamic screening on extremely preterm outcomes in a high-performance center. Am. J. Respir. Crit. Care Med. 2023; 208 (3): 290–300. DOI:10.1164/rccm.202212-2291OC.; Kinsella J.P., Parker T.A., Ivy D.D., Abman S.H. Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J. Pediatr. 2003; 142 (4): 397–401. DOI:10.1067/mpd.2003.140.; Буранов С.Н., Карелин В.И., Селемир В.Д., Ширшин А.С. Аппарат для ингаляционной NO-терапии. Приборы и техника эксперимента. 2019; (5): 158–159. DOI:10.1134/S0032816219040037.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 1. DOI:10.33029/9704-7828-8-NNG-2023-1-752.; Володин Н.Н., Дегтярев Д.Н., ред. Неонатология: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2023; Т. 2. DOI:10.33029/9704-7829-5-NNG-2023-1-768.; https://journal.pulmonology.ru/pulm/article/view/4557