يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"химиоиммунотерапия"', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The authors express their gratitude to the team of the Oncology Department No. 1 of the Moscow Center for Rehabilitation Treatment: E.S. Chernyshova, A.A. Kosmynin, R.R. Shakirov, D.S. Shakirova, T.R. Eynullaeva, A.I. Tekeeva, Ya.V. Koroleva, A.A. Ploschik, as well as the administrator of the chemotherapy department No. 1 of the City Clinical Oncology Hospital No. 1 R. Blazhentseva., Авторы выражают благодарность коллективу отделения онкологии №1 Московского центра восстановительного лечения: Е.С. Чернышовой, А.А. Космынину, Р.Р. Шакирову, Д.С. Шакировой, Т.Р. Эйнуллаевой, А.И. Текеевой, Я.В. Королевой, А.А. Площик, а также администратору отделения химиотерапии №1 Городской клинической онкологической больницы №1 Р. Блаженцевой.

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 30-39 ; Медицинский Совет; № 22 (2023); 30-39 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7991/7079; Huang J, Deng Y, Tin MS, Lok V, Ngai CH, Zhang L et al. Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest. 2022;161(4):1101–1111. https://doi.org/10.1016/j.chest.2021.12.655.; Martin-Gisbert L, Ruano-Ravina A, Varela-Lema L, Penabad M, Giraldo- Osorio A, Candal-Pedreira C et al. Lung cancer mortality attributable to residential radon: a systematic scoping review. J Expo Sci Environ Epidemiol. 2023;33(3):368–376. https://doi.org/10.1038/s41370-022-00506-w.; Юдин ДИ, Лактионов КК, Моисеенко ФВ, Пономаренко ДМ, Чех ЕА, Чубенко ВА и др. Первые результаты применения дурвалумаба после химиолучевой терапии в лечении местнораспространенного немелкоклеточного рака легкого в России. Медицинский совет. 2022;(22):12–20. https://doi.org/10.21518/2079-701X-2022-16-22-12-20.; Cabezón-Gutiérrez L, Sereno M, Cervera-Calero R, Mielgo-Rubio X, Higuera O. High tumor burden in non-small-cell lung cancer: A review of the literature. J Clin Transl Res. 2022;8(5):403–413. https://doi.org/10.18053/jctres.08.202205.008.; Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–98. https://doi.org/10.1056/NEJMoa011954.; Puri S, Shafique M. Combination checkpoint inhibitors for treatment of non-small-cell lung cancer: an update on dual anti-CTLA-4 and anti-PD-1/PD-L1 therapies. Drugs Context. 2020;9:2019-9-2. https://doi.org/10.7573/dic.2019-9-2.; Qu J, Mei Q, Liu L, Cheng T, Wang P, Chen L, Zhou J. The progress and challenge of anti-PD-1/PD-L1 immunotherapy in treating non-small cell lung cancer. Ther Adv Med Oncol. 2021;13:1758835921992968. https://doi.org/10.1177/1758835921992968.; Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16(6):653–660. https://doi.org/10.1586/14737140.2016.1170596.; Bodor JN, Kasireddy V, Borghaei H. First-Line Therapies for Metastatic Lung Adenocarcinoma Without a Driver Mutation. J Oncol Pract. 2018;14(9):529–535. https://doi.org/10.1200/JOP.18.00250.; Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics. 2021;11(15):7360–7378. https://doi.org/10.7150/thno.58413.; Ellis PM, Vella ET, Ung YC. Immune Checkpoint Inhibitors for Patients With Advanced Non-Small-Cell Lung Cancer: A Systematic Review. Clin Lung Cancer. 2017;18(5):444–459.e1. https://doi.org/10.1016/j.cllc.2017.02.001.; Nagano T, Tachihara M, Nishimura Y. Molecular Mechanisms and Targeted Therapies Including Immunotherapy for Non-Small Cell Lung Cancer. Curr Cancer Drug Targets. 2019;19(8):595–630. https://doi.org/10.2174/1568009619666181210114559.; Broderick SR. Adjuvant and Neoadjuvant Immunotherapy in Non-small Cell Lung Cancer. Thorac Surg Clin. 2020;30(2):215–220. https://doi.org/10.1016/j.thorsurg.2020.01.001.; Доможирова АС, Трофименко ИА, Гележе ПБ, Липкина ЕА, Мокиенко ОА, Морозов СП. iRECIST: критерии оценки ответов опухолей на иммуно­ терапию: методические рекомендации №37. М.; 2021. 28 с. Режим доступа: https://mosgorzdrav.ru/ru-RU/science/default/download/887.html.; Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med. 2018;378(22):2078–2092. https://doi.org/10.1056/NEJMoa1801005.; Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a ran-domised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508. https://doi.org/10.1016/S1470-2045(16)30498-3.; Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774.; Paz-Ares L, Vicente D, Tafreshi A, Robinson A, Soto Parra H, Mazières J et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients With Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J Thorac Oncol. 2020;15(10):1657–1669. https://doi.org/10.1016/j.jtho.2020.06.015.; Borghaei H, Gettinger S, Vokes EE, Chow LQM, Burgio MA, de Castro Carpeno J et al. Five-Year Outcomes From the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. J Clin Oncol. 2021;39(7):723–733. https://doi.org/10.1200/JCO.20.01605.; Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(25):2415–2426. https://doi.org/10.1056/NEJMoa1613493.; Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2019;381(21):2020–2031. https://doi.org/10.1056/NEJMoa1910231.; Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211. https://doi.org/10.1016/S1470-2045(20)30641-0.; Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2016;34(25):2980–2987. https://doi.org/10.1200/JCO.2016.66.9929.; Vaddepally R, Doddamani R, Sodavarapu S, Madam NR, Katkar R, Kutadi AP et al. Review of Immune-Related Adverse Events (irAEs) in Non-Small-Cell Lung Cancer (NSCLC)-Their Incidence, Management, Multiorgan irAEs, and Rechallenge. Biomedicines. 2022;10(4):790. https://doi.org/10.3390/biomedicines10040790.; Zhang W, Gu J, Bian C, Huang G. Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors for Advanced Non-small Cell Lung Cancer: A Network Meta-Analysis of Randomized Clinical Trials. Front Pharmacol. 2021;12:686876. https://doi.org/10.3389/fphar.2021.686876.; Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW et al. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis. Front Pharmacol. 2017;8:730. https://doi.org/10.3389/fphar.2017.00730.; Akamatsu H, Murakami E, Oyanagi J, Shibaki R, Kaki T, Takase E et al. Immune-Related Adverse Events by Immune Checkpoint Inhibitors Significantly Predict Durable Efficacy Even in Responders with Advanced Non-Small Cell Lung Cancer. Oncologist. 2020;25(4):e679–e683. https://doi.org/10.1634/theoncologist.2019-0299.; Pillai RN, Behera M, Owonikoko TK, Kamphorst AO, Pakkala S, Belani CP et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer. 2018;124(2):271–277. https://doi.org/10.1002/cncr.31043.; Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/ PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther. 2021;219:107694. https://doi.org/10.1016/j.pharmthera.2020.107694.; Guo X, Chen S, Wang X, Liu X. Immune-related pulmonary toxicities of checkpoint inhibitors in non-small cell lung cancer: Diagnosis, mechanism, and treatment strategies. Front Immunol. 2023;14:1138483. https://doi.org/10.3389/fimmu.2023.1138483.; https://www.med-sovet.pro/jour/article/view/7991

  2. 2
    Academic Journal

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 77-91 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 77-91 ; 2413-5496 ; 2311-1267

    وصف الملف: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/939/826; Johnsen J.I., Dyberg C., Wickström M. Neuroblastoma – A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci. 2019;12:9. doi:10.3389/fnmol.2019.00009.; Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078. doi:10.1038/nrdp.2016.78.; Park J.R., Eggert A., Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24(1):65–86. doi :10.1016/j.hoc.2009.11.011.; Maris J.M., Hogarty M.D., Bagatell R., Cohn S.L. Neuroblastoma. Lancet. 2007;369(9579):2106–20. doi:10.1016/S0140-6736(07)60983-0.; Brodeur G.M., Pritchard J., Berthold F., Carlsen N.L., Castel V., Castelberry R.P., De Bernardi B., Evans A.E., Favrot M., Hedborg F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77. doi:10.1200/JCO.1993.11.8.1466.; Spitz R., Betts D.R., Simon T., Boensch M., Oestreich J., Niggli F.K., Ernestus K., Berthold F., Hero B. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet Cytogenet. 2006;167(1):51–6. doi:10.1016/j.cancergencyto.2005.09.001.; [Electronic resource]: https://nodgo.org/sites/default/files/protokol_neuroblastoma-1.pdf. NB 2004 Trial Protocol for Risk Adapted Treatment of Children with Neuroblastoma. Berthold F. (principal investigator).; Kachanov D., Shamanskaya T., Andreev E., Talypov S., Khismatullina R., Shevtsov D., Skorobogatova E., Kirgizov K., Hachatryan L., Roschin V., Olshanskaya Y., Kazakova A., Shcherbakov A., Tereschenko G., Nechesnyuk A., Grachev N., Fomin D., Maschan M., Likar Y., Varfolomeeva S. P-0503 Treatment of High-Risk Neuroblastoma: Experience of Russian Federal Centers. 48th Congress of the International Society of Paediatric Oncology (SIOP). 19–22 October, 2016. Dublin, Ireland. Pediatric Blood Cancer. 2016;63(Suppl. S3):197.; Tepmongkol S., Heyman S. 131I-MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol. 1999;32(6):427–31. doi:10.1002/(sici)1096-911x(199906)32:63.0.co;2-t.; Шаманская Т.В., Андреева Н.А., Уталиева Д.Т., Качанов Д.Ю. GD2-направленная иммунотерапия нейробластомы группы высокого риска с использованием химерных антител ch14.18. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(3):173–8. doi:10.24287/1726-1708-2020-19-3-173-188.; Pinto N., Naranjo A., Hibbitts E., Kreissman S.G., Granger M.M., Irwin M.S., Bagatell R., London W.B., Greengard E.G., Park J.R., DuBois S.G. Predictors of diff erential response to induction therapy in high-risk neuroblastoma: A report from the Children’s Oncology Group (COG). Eur J Cancer. 2019;112:66–79. doi:10.1016/j.ejca.2019.02.003.; Шаманская Т.В., Качанов Д.Ю., Ядгаров М.Я. Оценка влияния ответа на индукционный этап терапии у пациентов с нейробластомой группы высокого риска на бессобытийную и общую выживаемость: систематический обзор и метаанализ. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):141–56. doi:10.24287/1726-1708-2022-21-2-141-156.; Pearson A.D., Pinkerton C.R., Lewis I.J., Imeson J., Ellershaw C., Machin D., European Neuroblastoma Study Group; Children’s Cancer and Leukaemia Group (CCLG formerly United Kingdom Children's Cancer Study Group). High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9(3):247–56. doi:10.1016/S1470-2045(08)70069-X.; Peinemann F., Tushabe D.A., van Dalen E.C., Berthold F. Rapid COJEC versus standard induction therapies for high-risk neuroblastoma. Cochrane Database Syst Rev. 2015;(5):CD010774. doi:10.1002/14651858.CD010774.pub2.; Garaventa A., Poetschger U., Valteau-Couanet D., Luksch R., Castel V., Elliott M., Ash S., Chan G.C.F., Laureys G., Beck-Popovic M., Vettenranta K., Balwierz W., Schroeder H., Owens C., Cesen M., Papadakis V., Trahair T., Schleiermacher G., Ambros P., Sorrentino S., Pearson A.D.J., Ladenstein R.L. Randomized Trial of Two Induction Therapy Regimens for High-Risk Neuroblastoma: HR-NBL1.5 International Society of Pediatric Oncology European Neuroblastoma Group Study. J Clin Oncol. 2021;39(23):2552–63. doi:10.1200/JCO.20.03144.; Berthold F., Faldum A., Ernst A., Boos J., Dilloo D., Eggert A., Fischer M., Frühwald M., Henze G., Klingebiel T., Kratz C., Kremens B., Krug B., Leuschner I., Schmidt M., Schmidt R., Schumacher-Kuckelkorn R., von Schweinitz D., Schilling F.H., Theissen J., Volland R., Hero B., Simon T. Extended induction chemotherapy does not improve the outcome for high-risk neuroblastoma patients: results of the randomized open-label GPOH trial NB2004-HR. Ann Oncol. 2020;31(3):422–9. doi:10.1016/j.annonc.2019.11.011.; DuBois S.G., Bagatell R. Improving Outcomes in Children With High-Risk Neuroblastoma: The Role of Randomized Trials. J Clin Oncol. 2021;39(23):2525–7. doi:10.1200/JCO.21.01066.; Sharma P., Jhawat V., Mathur P., Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med Oncol. 2022;39(5):76. doi:10.1007/s12032-022-01677-0.; Plana D., Palmer A.C., Sorger P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022;12(3):606–24. doi:10.1158/2159-8290.CD-21-0212.; Salas-Benito D., Pérez-Gracia J.L., Ponz-Sarvisé M., Rodriguez-Ruiz M.E., Martínez-Forero I., Castañón E., López-Picazo J.M., Sanmamed M.F., Melero I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021;11(6):1353–67. doi:10.1158/2159-8290.CD-20-1312.; Yoshida S., Kawaguchi H., Sato S., Ueda R., Furukawa K. An anti-GD2 monoclonal antibody enhances apoptotic eff ects of anticancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res. 2002;93(7):816–24. doi:10.1111/j.1349-7006.2002.tb01324.x.; Kowalczyk A., Gil M., Horwacik I., Odrowaz Z., Kozbor D., Rokita H. The GD2-specifi c 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett. 2009;281(2):171–82. doi:10.1016/j.canlet.2009.02.040.; Иванов Н.С., Качанов Д.Ю., Ларин С.С., Моллаев М.Д., Коновалов Д.М., Шаманская Т.В. Роль GD2 как диагностического и прогностического опухолевого маркера при нейробластоме (обзор литературы). Российский журнал детской гематологии и онкологии (РЖДГиО). 2021;8(4):47–59. doi:10.21682/2311-1267-2021-8-4-47-59.; Cazet A., Lefebvre J., Adriaenssens E., Julien S., Bobowski M., Grigoriadis A., Tutt A., Tulasne D., Le Bourhis X., Delannoy P. GD2 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res. 2010;8(11):1526–35. doi:10.1158/1541-7786.MCR-10-0302.; Cazet A., Bobowski M., Rombouts Y., Lefebvre J., Steenackers A., Popa I., Guérardel Y., Le Bourhis X., Tulasne D., Delannoy P. The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology. 2012;22(6):806–16. doi:10.1093/glycob/cws049.; Иванов Н.С., Холоденко Р.В., Качанов Д.Ю., Ларин С.С., Моллаев М.Д., Шаманская Т.В. Роль ганглиозидов в модуляции канцерогенеза. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):157–66. doi:10.24287/1726-1708-2022-21-2-157-166.; Mody R., Naranjo A., Van Ryn C., Yu A.L., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Sondel P.M., Bender J.G., Maris J.M., Park J.R., Bagatell R. Irinotecantemozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an openlabel, randomised, phase 2 trial. Lancet Oncol. 2017;18(7):946–57. doi:10.1016/S1470-2045(17)30355-8.; Mody R., Yu A.L., Naranjo A., Zhang F.F., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Hank J.A., Felder M., Birstler J., Sondel P.M., Asgharzadeh S., Glade-Bender J., Katzenstein H., Maris J.M., Park J.R., Bagatell R. Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children’s Oncology Group. J Clin Oncol. 2020;38(19):2160–9. doi:10.1200/JCO.20.00203.; Bagatell R., London W.B., Wagner L.M., Voss S.D., Stewart C.F., Maris J.M., Kretschmar C., Cohn S.L. Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(2):208–13. doi:10.1200/JCO.2010.31.7107.; Federico S.M., McCarville M.B., Shulkin B.L., Sondel P.M., Hank J.A., Hutson P., Meagher M., Shafer A., Ng C.Y., Leung W., Janssen W.E., Wu J., Mao S., Brennan R.C., Santana V.M., Pappo A.S., Furman W.L. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clin Cancer Res. 2017;23(21):6441–9. doi:10.1158/1078-0432.CCR-17-0379.; Park J.R., Scott J.R., Stewart C.F., London W.B., Naranjo A., Santana V.M., Shaw P.J., Cohn S.L., Matthay K.K. Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(33):4351–7. doi:10.1200/JCO.2010.34.3293.; Talleur A.C., Triplett B.M., Federico S., Mamcarz E., Janssen W., Wu J., Shook D., Leung W., Furman W.L. Consolidation Therapy for Newly Diagnosed Pediatric Patients with High-Risk Neuroblastoma Using Busulfan/Melphalan, Autologous Hematopoietic Cell Transplantation, Anti-GD2 Antibody, Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-2, and Haploidentical Natural Killer Cells. Biol Blood Marrow Transplant. 2017;23(11):1910–7. doi:10.1016/j.bbmt.2017.07.011.; Furman W.L., Federico S.M., McCarville M.B., Shulkin B.L., Davidoff A.M., Krasin M.J., Sahr N., Sykes A., Wu J., Brennan R.C., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V.M., Bahrami A., Anthony G., Yu A.L., Hank J., Gillies S.D., Sondel P.M., Leung W.H., Pappo A.S. A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clin Cancer Res. 2019;25(21):6320–8. doi:10.1158/1078-0432.CCR-19-1452.; Furman W.L., McCarville B., Shulkin B.L., Davidoff A., Krasin M., Hsu C.W., Pan H., Wu J., Brennan R., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V., Santiago T., Hank J.A., Gillies S.D., Yu A., Sondel P.M., Leung W.H., Pappo A., Federico S.M. Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. J Clin Oncol. 2022;40(4):335–44. doi:10.1200/JCO.21.01375.; Federico S.M., Naranjo A., Zhang F., Marachelian A., Desai A.V., Shimada H., Braunstein S.E., Tinkle C.L., Yanik G.A., Asgharzadeh S., Sondel P.M., Yu A.L., Acord M., Parisi M.T., Shulkin B.L., DuBois S.G., Bagatell R., Park J.R., Furman W.L., Shusterman S. A pilot induction regimen incorporating dinutuximab and sargramostim for the treatment of newly diagnosed high-risk neuroblastoma: A report from the Children’s Oncology Group. J Clin Oncol. 2022;40(16_suppl):10003. doi:10.1200/JCO.2022.40.16_suppl.10003.; [Electronic resource]: https://clinicaltrials.gov/ProvidedDocs/83/NCT03786783/Prot_SAP_000.pdf. ANBL17P1 Trial Protocol for Pilot Induction Regimen Incorporating Chimeric 14.18 Antibody (ch14.18, dinutuximab) (NSC# 764038) and Sargramostim (GM-CSF) for the Treatment of Newly Diagnosed High Risk Neuroblastoma. S.M. Federico (study chair).; Modak S., Kushner B.H., Mauguen A., Castañeda A., Varo A., Gorostegui M., Muñoz J.P., Santa-Maria V., Basu E.M., Iglesias Cardenas F., Pandit-Taskar N., Cheung N.K.V., Mora J. Naxitamabbased chemoimmunotherapy for resistant high-risk neuroblastoma: Results of “HITS” phase II study. J Clin Oncol. 2022;10028. doi:10.1200/JCO.2022.40.16_suppl.10028.; Ladenstein R., Pötschger U., Valteau-Couanet D., Luksch R., Castel V., Ash S., Laureys G., Brock P., Michon J.M., Owens C., Trahair T., Chi Fung Chan G., Ruud E., Schroeder H., Beck-Popovic M., Schreier G., Loibner H., Ambros P., Holmes K., Castellani M.R., Gaze M.N., Garaventa A., Pearson A.D.J., Lode H.N. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers (Basel). 2020;12(2):309. doi:10.3390/cancers12020309.; Mueller I., Ehlert K., Endres S., Pill L., Siebert N., Kietz S., Brock P., Garaventa A., Valteau-Couanet D., Janzek E., Hosten N., Zinke A., Barthlen W., Varol E., Loibner H., Ladenstein R., Lode H.N. Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD2 antibody ch14.18/ CHO. MAbs. 2018;10(1):55–61. doi:10.1080/19420862.2017.1402997.; Ladenstein R., Pötschger U., Valteau-Couanet D., Gray J., Luksch R., Balwierz W., Castel V., Ash S., Popovic M., Laureys G., Chan G., Ruud E., Vettenranta K., Owens C., Schroeder H., Loibner H., Ambros P., Sarnacki S., Boterberg T., Lode H. Randomization of dosereduced subcutaneous interleukin-2 (scIL2) in maintenance immunotherapy (IT) with anti-GD2 antibody dinutuximab beta (DB) long-term infusion (LTI) in front-line high risk neuroblastoma patients: Early results from the HR-NBL1/SIOPEN trial. J Clin Oncol. 2019;37(15):10013. doi:10.1200/JCO.2019.37.15_suppl.10013.; Lode H., Eggert A., Ladenstein R., Riesebeck S., Siebert N., Dworzak M., Arnardottir H., Hundsdoerfer P. Ch14.18/CHO and GPOH Induction Chemotherapy Cycles in Refractory Relapsed or Progressing High Risk Neuroblastoma Patients. Abstract Book for the ANR2018 Conference. P. 61.; Gray J., Moreno L., Weston R., Barone G., Rubio A., Makin G., Vaidya S., Ng A., Castel V., Nysom K., Laureys G., Van Eijkelenburg N., Owens C., Gambart M., DJ Pearson A., Laidler J., Kearns P., Wheatley K. BEACON-Immuno: Results of the dinutuximab beta (dB) randomization of the BEACON-Neuroblastoma phase 2 trial – A European Innovative Therapies for Children with Cancer (ITCC – International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN) trial. J Clin Oncol. 2022;40(16_suppl):10002.; [Electronic resource]: https://clinicaltrials.gov/ct2/show/study/NCT05272371. ChIm-NB-PL Trial Protocol for Immunotherapy With Dinutuximab Beta in Combination With Chemotherapy for the Treatment of Patients With Primary Neuroblastoma Refractory to Standard Therapy and With Relapsed or Progressive Disease. W. Balwierz., A. Wieczorek.; Wieczorek A., Zaniewska-Tekieli A., Ehlert K., Pawinska-Wasikowska K., Balwierz W., Lode H. Dinutuximab beta combined with chemotherapy in patients with relapsed or refractory neuroblastoma. Front Oncol. 2023;13:1082771. doi:10.3389/fonc.2023.1082771.; Olgun N., Cecen E., Ince D., Kizmazoglu D., Baysal B., Onal A., Ozdogan O., Guleryuz H., Cetingoz R., Demiral A., Olguner M., Celik A., Kamer S., Ozer E., Altun Z., Aktas S. Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol. 2022;12:1041443. doi:10.3389/fonc.2022.1041443.; Cheung I.Y., Hsu K., Cheung N.K. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocytemacrophage colony-stimulating factor. J Clin Oncol. 2012;30(4):426–32. doi:10.1200/JCO.2011.37.6236.; Petros W.P., Crawford J. Safety of concomitant use of granulocyte colony-stimulating factor or granulocyte-macrophage colonystimulating factor with cytotoxic chemotherapy agents. Curr Opin Hematol. 1997;4(3):213–6. doi:10.1097/00062752-199704030-00010.; Martinez Sanz P., van Rees D.J., van Zogchel L.M.J., Klein B., Bouti P., Olsman H., Schornagel K., Kok I., Sunak A., Leeuwenburg K., Timmerman I., Dierselhuis M.P., Kholosy W.M., Molenaar J.J., van Bruggen R., van den Berg T.K., Kuijpers T.W., Matlung H.L., Tytgat G.A.M., Franke K. G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment. J Immunother Cancer. 2021;9(5):e002259. doi:10.1136/jitc-2020-002259.; Mora J., Chantada G.L. Correspondence on “G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment” by Martinez Sanz et al. J Immunother Cancer. 2021;9(12):e003751. doi:10.1136/jitc-2021-003751.; https://journal.nodgo.org/jour/article/view/939

  3. 3
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 158-165 ; Медицинский Совет; № 11 (2023); 158-165 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7700/6832; Perou C.М., Sørlie T., Eisen M.В., van de Rijn M., Jeffrey S., Rees C.А. et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. https://doi.org/10.1038/35021093.; Costa R.L.B., Gradishar W.J. Triple-Negative Breast Cancer: Current Practice and Future Directions. J Oncol Pract. 2017;13(5):301–303. https://doi.org/10.1200/jop.2017.023333.; Liu Y., Xin T., Huang D.Y., Shen W.X., Li L., Lv Y.J. et al. Prognosis in very young women with triple-negative breast cancer: retrospective study of 216 cases. Med Oncol. 2014;31(12):222. https://doi.org/10.1007/s12032-014-0222-2.; Foulkes W.D., Smith I.E., Reis-Filho J.S. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–1948. https://doi.org/10.1056/NEJMra1001389.; Sørlie T., Wang Y., Xiao C., Johnsen H., Naume B., Samaha R.R., BørresenDale A.L. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics. 2006;7:1–15. https://doi.org/10.1186/1471-2164-7-127.; Howlader N., Cronin K.A., Kurian A.W., Andridge R. Differences in Breast Cancer Survival by Molecular Subtypes in the United States. Cancer Epidemiol Biomarkers Prev. 2018;27(6):619–626. https://doi.org/10.1158/1055-9965.epi-17-0627.; Yao Y., Chu Y., Xu B., Hu Q., Song Q. Risk factors for distant metastasis of patients with primary triple-negative breast cancer. Biosci Rep. 2019;39(6):BSR20190288. https://doi.org/10.1042/BSR20190288.; Carey L.A., Dees E.C., Sawyer L., Gatti L., Moore D.T., Collichio F. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–2334. https://doi.org/10.1158/1078-0432.CCR-06-1109.; Liu M., Xie F., Liu M., Zhang Y., Wang S. Association between BRCA mutational status and survival in patients with breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2021;186(3):591–605. https://doi.org/10.1007/s10549-021-06104-y.; Easton D.F., Ford D., Bishop D.T. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56(1):265–271. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1801337.; Ford D., Easton D.F., Stratton M., Narod S., Goldgar D., Devilee P. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–689. https://doi.org/10.1086/301749.; Cortés J., Lipatov O., Im S.A., Gonçalves A., Lee K.S., Schmid P. et al. KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus singleagent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann Oncol. 2019;30:859–860. https://doi.org/10.1093/annonc/mdz394.010.; Emens L.A., Cruz C., Eder J.P., Braiteh F., Chung C., Tolaney S.M. et al. Longterm Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients With Metastatic Triple-Negative Breast Cancer: A Phase 1 Study. JAMA Oncol. 2019;5(1):74–82. https://doi.org/10.1001/jamaoncol.2018.4224.; Nanda R., Chow L.Q., Dees E.C., Berger R., Gupta S., Geva R. et al. Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34(21):2460–2467. https://doi.org/10.1200/jco.2015.64.8931.; Dirix L.Y., Takacs I., Jerusalem G., Nikolinakos P., Arkenau H.T., Forero-Torres A. et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018;167(3):671–686. https://doi.org/10.1007/s10549-017-4537-5.; Adams S., Schmid P., Rugo H.S., Winer E.P., Loirat D., Awada A. et al. Pembrolizumab monotherapy for previously treated metastatic triplenegative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):397–404. https://doi.org/10.1093/annonc/mdy517.; Tutt A., Tovey H., Cheang M.C.U., Kernaghan S., Kilburn L., Gazinska P. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24:628–637. https://doi.org/10.1038/s41591-018-0009-7.; Litton J.K., Hurvitz S.A., Mina L.A., Rugo H.S., Lee K.H., Gonçalves A. et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol. 2020;31(11):1526–1535. https://doi.org/10.1016/j.annonc.2020.08.2098.; Robson M.E., Tung N., Conte P., Im S.A., Senkus E., Xu B. et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30(4):558–566. https://doi.org/10.1093/annonc/mdz012.; Cortes J., Rugo H.S., Cescon D.W., Im S.A., Yusof M.M., Gallardo C. et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2022;387(3):217–226. https://doi.org/10.1056/nejmoa2202809.; Miles D., Gligorov J., André F., Cameron D., Schneeweiss A., Barrios C. et al. IMpassion131 investigators. Primary results from IMpassion131, a doubleblind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann Oncol. 2021;32(8):994–1004. https://doi.org/10.1016/j.annonc.2021.05.801.; Emens L.A., Adams S., Barrios C.H., Diéras V., Iwata H., Loi S. et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021;32(8):983–993. https://doi.org/10.1016/j.annonc.2021.05.355.; Litton J.K., Ettl J., Hurvitz S.A., Martin M., Roche H., Lee K.H. et al. Clinical outcomes in patients (pts) with a history of central nervous system (CNS) metastases receiving talazoparib (TALA) or physician’s choice of chemotherapy (PCT) in the phase 3 EMBRACA trial. J Clin Oncol. 2021;39(15 Suppl.):1090–1090. https://doi.org/10.1200/JCO.2021.39.15_suppl.1090.; Rugo H.S., Ettl J., Hurvitz S.A., Gonçalves A., Lee K.H., Fehrenbacher L. et al. Outcomes in Clinically Relevant Patient Subgroups From the EMBRACA Study: Talazoparib vs Physician’s Choice Standard-of-Care Chemotherapy. JNCI Cancer Spectr. 2020;4(1):pkz085. https://doi.org/10.1093/jncics/pkz085.; Gonçalves A., Eiermann W., Rugo H.S., Ettl J., Hurvitz S.A., Yerushalmi R. et al. EMBRACA: Efficacy and safety in comparing talazoparib (TALA) with physician’s choice of therapy (PCT) in patients (pts) with advanced breast cancer (aBC) and a germline BRCA mutation (gBRCAm); BRCA1/BRCA2 subgroup analysis. Ann Oncol. 2018;29(8 Suppl.):viii96–viii97. https://doi.org/10.1093/annonc/mdy272.294.; Robson M.E., Im S.A., Senkus E., Xu B., Domchek S.M., Masuda N. et al. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur J Cancer. 2023;184:39–47. https://doi.org/10.1016/j.ejca.2023.01.031.; Ettl J., Quek R.G.W., Lee K.H., Rugo H.S., Hurvitz S., Gonçalves A. et al. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol. 2018;29(9):1939–1947. https://doi.org/10.1093/annonc/mdy257; https://www.med-sovet.pro/jour/article/view/7700

  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16