يعرض 1 - 20 نتائج من 243 نتيجة بحث عن '"управление движением"', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: «System analysis and applied information science»; № 1 (2024); 26-36 ; «Системный анализ и прикладная информатика»; № 1 (2024); 26-36 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2024-1

    وصف الملف: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/657/492; Капский Д.В. Основы автоматизации интеллектуальных транспортных систем: Учебник / Д.В. Капский, Е.Н. Кот, С.В. Богданович [и др.]. – Вологда: ООО "Издательство "Инфра-Инженерия", 2022. – 412 с.; Скирковский, С.В. Теоретические и практические подходы к созданию и развитию интеллектуальной транспортной системы города / С.В. Скирковский, Д.В. Капский, Д.В. Навой; Министерство транспорта и коммуникаций Республики Беларусь; Белорусский государственный университет транспорта. – Гомель: Учреждение образования "Белорусский государственный университет транспорта", 2022. – 171 с.; Пугачев И.Н. Оценка экологических потерь в дорожном движении на основе GPS-данных о параметрах транспортных потоков и моделирования / И.Н. Пугачев, Д.В. Капский, Л.П. Майорова [и др.]. – Хабаровск: Тихоокеанский государственный университет, 2020. – 250 с.; Капский, Д.В. Анализ алгоритмов управления дорожным движением и их применимости на современном этапе развития ИИТС / Д.В. Капский, И.Н. Пугачев, Д.В. Навой // Дальний Восток: проблемы развития архитектурно-строительного комплекса. – 2019. – № 1-1. – С. 259-264.; Капский, Д.В. Трехуровневая модель управления транспортными и пешеходными потоками / Д.В. Капский, И.Н. Пугачев, Д.В. Навой // Дальний Восток: проблемы развития архитектурно-строительного комплекса. – 2019. – № 1-1. – С. 265-270.; Scemama G. (1989) Creation of a knowledge-based system for urban traffic control: methodology. Recherche Transport Securite. English Issue 5, June 1990.; Cuena J. (1989) AURA: a second generation expert system for traffic control in urban motorways.IX Int. Workshop on Expert Systems. EC2. Avignon.; Hunt, Robertson, Bretherton, Winton, 1981.SCOOT. A trac responsive method of coordinating signals. Transport and Road Research Laboratory, Report no. LR 1014, TRRL, Crow home, UK.; Sims A.G. and Dobinson K.W. 1981, “S.C.A.T. The Sydney co-ordinated adaptive traffic system: philosophy and benefits”, Proceedings from symposium on computer control of transport, Institution of engineers, Australia, Canberra.; N.H. Gartner, OPAC: Strategy for Demand-responsive Decentralized Traffic Signal Control, Volume 23, Issue 2, September 1990, рр. 241-244.; J.J. Henry, J.L. Farges, J. Tuffal. The Prodyn Real Time Traffic Algorithm, Volume 16, Issue 4, April 1983, Pages 305-310.; Mauro V., DiTaranto C. UTOPIA. Control, Computers, Communications in Transportation, 1990, pp. 245-252. 8. Traffic control in oversaturated street networks. NCRHPreport, 1978, no. 194, 152 p.; Cuena, J., Hern_andez, J.Z., Molina, M. 1995. Knowledge-based models for adaptive traffic management systems. Transportation Research, Part C 3 (5), 311-337.; Cuena, J., Hern_andez, J.Z., Molina, M., 1996a. Knowledge oriented design of an application for real time traffic management: The TRYS system. In: Wahlster, W. (Ed.), Eur. Conf. on Artificial Intelligence, ECAI_96. John Wiley and Sons, New York, pp. 308-312.; Cuena, J., Hern_andez, J.Z., Molina, M., 1996b. An intelligent model of road traffic management in the motorwaynetwork around Barcelona. In: Proc. 14th Int. Federation on Information Processing (IFIP) World Computer Congr., IFIP_96. Chapman & Hall, London, pp. 173-180.; Ossowski, S., Cuena, J., Garc_ıa-Serrano, A., 1998. A case of multiagent decision support: using autonomous agents for urban traffic control. In: Proc. Iberoamerican Conf. of Artificial Intelligence, IBERAMIA-98.; Ossowski, S., Garc_ıa-Serrano, A., 1999.In: Social Structure as a Computational Co-ordination Mechanism in Societies of Autonomous Problem-solving Agents. IntelligentAgentsV. Springer-Verlag, pp. 133-148.; Ossowski, S. 1999. Co-ordination in Artificial Agent Societies. LNAI 1535. Springer-Verlag, Berlin.; Daniele Buscema, Matteo Ignaccolo, Giuseppe Inturri, Alessandro Pluchino, Andrea Rapisarda, Corrado Santoro, Salvatore Tudisco. The impact of real time information on transport network routing through Intelligent Agent-Based Simulation, University of Catania, Italy, TIC-STH 2009.; Smart Urban Signal Networks: Initial Application of the SURTRAC Adaptive Traffic Signal Control System, Stephen F. Smith, Gregory J. Barlow, Xiao-Feng Xie, Zachary B. Rubinstein, Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling.; Aha DW. (1998). Theomnipresenceofcase-basedreasoninginscienceandapplication. KnowlBasedSyst 11:261–273.; Hao Zhang, GuangLong Dai. The strategy of traffic congestion management based on case-based reasoning, International Journal of System Assurance Engineering and Management, February 2019, Volume 10, Issue 1, pp. 142-147.; Mashrur Chowdhury, Adel Sadek, Yongchang Ma, Neeraj Kanhere, and Parth Bhavsar. ApplicationsofArtifi cialIntelligenceParadigmstoDecisionSupportinReal-TimeTrafficManagement, TransportationResearchRecord: JournaloftheTrans portationResearchBoard, No. 1968, TransportationResearchBoardoftheNationalAcademies, Washington, D.C., 2006, pp. 92-98.; Anders Kofod-Petersen, Ole Johan Andersen, and AgnarAamodt. Case-based Reasoning for Improving Traffic Flow in Urban Intersections, 22nd International Conference, ICCBR 2014, Cork, Ireland, September 29, 2014 October 1, 2014. Proceedings.; Webster, F.V. Trafic Signal Settings. Road Research Technical Paper No. 39. Great Britain Road Research Laboratory (1958).; StatensVegvesen: Trafikksignalanlegg: planlegging, driftogvedlikehold, Ha˚ndbok 142. (2007).; Zhenlong, L., Xiaohua, Z. A case-based reasoning approach to urban intersection control. In: 7th World Congress on Intelligent Control and Automation (WCICA2008). (2008) 7113–7118.; Ali LOUATI, Sabeur ELKOSANTINI, Saber DARMOUL and Lamjed BENSAID. A Case-Based Reasoning System to Control Traffic at Signalized Intersections, IFAC-Papers On Line 49-5 (2016) 149-154.; Пугачев И.Н. Оценка качества дорожного движения на основе навигационной информации об условиях движения транспортных потоков / И.Н. Пугачев, Д.В. Капский, В.В. Касьяник [и др.]. – Хабаровск: Тихоокеанский государственный университет, 2018. – 148 с.; X. Ma, H. Yu, Y. Wang, and Y. Wang. Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one, 10(3):e0119044, 2015.; Капский Д.В., Кот Е.Н. Концепция развития автоматизированных систем управления дорожным движением в Республике Беларусь// Научно-технический журнал «Вестник БНТУ» – Минск, 5’2005. – С. 63-66.; Пугачев И.Н. Синергия подходов к совершенствованию интеллектуальных транспортных систем городов в России и Белоруссии / И.Н. Пугачев, Д.В. Капский, Д.В. Навой [и др.]. – Хабаровск: Тихоокеанский государственный университет, 2020. – 230 с.; S. Dunne, B. Ghosh. Weather adaptive traffic prediction using neuro wavelet models. IEEE Trans. Intell. Transportation Syst. 14(1), 370-379 (2013).; E. Mazloumi, G. Rose, G. Currie, S. Moridpour. Prediction intervals to account for uncertainties in neural network predictions: methodology and application in bus travel time prediction. Eng. Appl. Artif. Intell. 24(3), 534-542 (2011).; CPIJ van Hinsbergen, A Hegyi, JWC van Lint, HJ van Zuylen. Bayesian neural networks for the prediction of stochastic travel times in urban networks. IETIntell. TransportSyst. 5(4), 259-265 (2011).; Мартынова Е.С. Оценка уровней обслуживания движения транспортных потоков на основе нечетких экспертных систем, диссертация на соискание научной степени кандидата наук, Саратовский государственный технический университет имени Гагарина Ю.А., 2018.; Патент Glieretal. US 2002/0054210.; Sergey V. Anfilets, Vasilij N. Shuts, ARTIFICIAL NEURAL NETWORKS FOR ADAPTIVE MANAGEMENT TRAFFIC LIGHT OBJECTS AT THE INTERSECTION, Proceedings of the 10th International Conference “Reliability and Statistics in Transportation and Communication” (RelStat’10), 20–23 October 2010, Riga, Latvia, pр. 457-462. Transport and TelecommunicationI nstitute, Lomonosova 1, LV-1019, Riga, Latvia.; Ozkurt, C., Camci, F. Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural network.Math. Comput. Appl. 14(3), 187-196 (2009).; V. Murugan, V.R. Vijaykumar. AutomaticMovingVehicleDetectionandClassificationBasedonArtificialNeuralFuzzyI nferenceSystem, Wireless Personal Communications, June 2018, Volume 100, Issue 3, pp. 745-766.; Ozkurt, C., &Camci, F. (2009). Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural networks. Mathematicaland Computational Applications,14(3), 187-196.; Врубель, Ю.А. Координированное управление дорожным движением: монография / Ю.А. Врубель, Д.В. Капский, Д.В. Рожанский, Д.В. Навой, Е.Н. Кот. – Минск: БНТУ, 2011. – 230 с.; П. Пржибыл, М. Свитек. Телематика на транспорте. М.: МАДИ (ГТУ), 2003 – 540 с.; Д.Э. Казарян, В.А. Михалев, Е.A. Софронова. Нейросетевые подходы к управлению потоками транспорта, Вестник Российского университета Дружбы народоа, 2017. Vol. 18. No. 1, рр. 97-106.J.C.Chedjou, K. Kyamakya. Cellular neural networks based local traffic signals control at a junction/intersection. Proceedings of the 1st IFAC Conference on Embedded Systems 2012 (CESCIT-2012) 3-5 April, 2012, Wurzburg, Germany, pp. 81-85.; W. Genders, S. Razavi. Using a deep reinforcement learning agent for traffic signal control. Submitedto IEEE forpublicationon 3 November 2016.; C. Chedjou, K. Kyamakya. Cellular neural networks based local traffic signals control at a junction/intersection. Proceedings of the 1st IFAC Conference on Embedded Systems 2012 (CESCIT-2012) 3-5 April, 2012, Wurzburg, Germany, pp. 81-85.; W. Genders, S. Razavi. Using a deep reinforcement learning agent for traffic signal control. Submited to IEEE for publication on 3 November 2016.; G.B. Castro, J.C. Martini, A. Hirakawa. Biologically-inspired neural network for traffic signal control. Proc. of 17th International Conference on Intelligent Transportation Systems 2014 (ITSC) 8-11 October, 2014, Quingdao, China, pp. 21442149.; Абовский Н.П., Бабанин В.Б., Смолянинова Л.Г., Жуков В.И., Островский П.В. Нейросетевой способ межрайонного координированного управления транспортными потоками, патент 2169946.; Azura Che Soh / Lai Guan Rhung. MATLAB simulation of fuzzy traffic controller for multilane isolated intersection. Int. J. Comput. Sci. Eng. 02(04), 924-933 (2010).; Placzek, B. Performance evaluation of road traffic control using a fuzzy cellular model. In: 6th International Conference on HAIS, Wroclaw, pp. 59-66. Proceedings, Part II, 23–25 May 2011.; VPVijayan, B Paul. Multi objective traffic prediction using type-2 fuzzy logic and ambient intelligence, in Proceedings of 2010 International Conference on Advances in Computer Engineering (ACE) (Egypt, 2010), pp. 309-311; L Li, WH Lin, H Liu. Type-2 fuzzy logic approach for short-term traffic forecasting. IEEProc. Intell. TransportSyst. 153(1), 33-40 (2006).; Патент Lemelsonetal. U.S. Pat. No. 6,633.238.; Патент Lemelsonetal. (U.S. Pat. No. 6,317,058).; J.H. Holland. “Genetic algorithms and the optimal allocation of trials,” SIAM Journal on Computing, vol. 2, no. 2, pp. 88-105, 1973.; Gambardella Luca M. Ant colony optimization for ad-hoc networks. In: The first MICS workshop on routing for Mobile Ad-Hoc Networks, Zurich, 13 Feb 2003.; Cyrille, B., Antoine, D., Sylvain, L., Damien, O. Road traffic management based on ant system and regulation method (2006).; Штовба С.Д. Муравьиные алгоритмы // Exponenta Pro. Математика в приложениях. – 2003. – №4. – С. 70-75.; S. Araghi, A. Khosravi, D. Creighton. Optimal design of traffic signal controller, using neural networks and fuzzy logic systems. Proceedings of the International Joint Conference on Neural Networks 2014 (IJCNN) 6-11 July, 2014, Beijing, China, pp. 42-47.; Pedro Lopez-Garcia, Enrique Onieva, Eneko Osaba, Antonio D. Masegosa, and Asier Perallos. A Hybrid Method for Short-Term Traffic Congestion Forecasting Using Genetic Algorithms and Cross Entropy, IEEE Transactions on Intelligent Transportation Systems, 2016. Vol. 17. Issue 2.; S.M. Odeh, A.M. Mora, M.N. Moreno, and J.J.Merelo. A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System, Hindawi Publishing Corporation Advances in Fuzzy Systems, Volume 2015, Article ID 378156, 11 pages.; Anderson Hiroshi Hamamoto, Luiz Fernando Carvalho, Lucas Dias Hiera Sampaio, Taufik Abrão, Mario Lemes Proença. Network Anomaly Detection System using Genetic Algorithm and Fuzzy Logic. Expert system with application, Volume 92, February 2018, рр. 390-402.; https://sapi.bntu.by/jour/article/view/657

  2. 2
    Academic Journal

    المصدر: «System analysis and applied information science»; № 4 (2023); 37-49 ; «Системный анализ и прикладная информатика»; № 4 (2023); 37-49 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2023-4

    وصف الملف: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/644/482; Abdulhai, B. and Ritchie, S.G. (1999). “ Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network.” Transportation Research Part C. Vol. 7, No. 5, pp. 261-280; Adeli, H. and Samant, A. (2000). “ An adaptive conjugate gradient neural network-wavelet model for traffic incident detection.” Computer-Aided Civil and Infrastructure Engineering. Vol. 15, No.4, pp. 251.260; Ahmed, M.S. and Cook, A.R. (1977). “Analysis of freeway traffic time-series data using Box Jenkins techniques.” Transportation Research Record, No. 722, TRB, National Research Council, pp. 1-9.; Ahmed, M.S. and Cook, A.R. (1980). “Time series models for freeway incident detection.” Journal of Transportation Engineering, Vol. 106, No. 6, ASCE, pp. 731-745.; Ahmed, M.S. and Cook, A.R. (1982). “Application of time-series analysis techniques to freeway incident detection.” Transportation Research Board, No. 841, TRB, National Research Council, pp. 19-21.; Al-Deek, H.M., Ishak, S.S. and Khan, A.A. (1996). “Impact of freeway geometric and incident characteristics on incident detection.” Journal of Transportation Engineering. Vol. 122, No. 6, ASCE, pp. 440-446.; Balke, K.N. (1993). “An evaluation of existing incident detection algorithms.” Research Report, FHWA/TX-93/123220, Texas Transportation Institute, the Texas A&M University System, College Station, TX, November 1993.; Black, J. and Sreedevi, I. (2001). “ Automatic incident detection algorithms.” ITS DecisionDatabase in PATH, http://www.path.berkeley.edu/~leap/TTM/Incident_Manage/Detection/aida.html, February 2001.; Chang, E.C.-P. and Wang, S.-H. (1994). “Improved freeway incident detection using fuzzy set theory.” Transportation Research Record, No. 1453, TRB, National Research Council, pp. 75-82; Chen, S., Wang, W., van Zuylen, H., 2009. Construct support vector machine ensemble to detect traffic incident. Expert Systems with Applications 36, рр. 10976-10986.; Cheu, R.L. and Ritchie, S.G. (1995). “Automated detection of lane-blocking freeway incidents using artificial neural networks.” Transportation Research Part C. Vol. 3, No. 6, pp. 371-388; CLIPS Reference Manual, Version 5.1 of CLIPS, Vol. I. Software Technology Branch, Lyndon B. Johnson Space Center, Sept. 1991.; CLIPS User's Guide, Version 5.1 of CLIPS, Vol. II. Software Technology Branch, Lyndon B. Johnson Space Center, Sept. 1991.; Collins, J.F., Hopkins, C.M. and Martin, J.A. (1979). “ Automatic incident detection ‒ TRRL algorithms HIOCC and PATREG.” TRRL Supplementary Report, No. 526, Crowthorne, Berkshire, U.K.; Dia, H. and Rose, G. (1997). “Development and evaluation of neural network freeway incident detection models using field data.” Transportation Research Part C. Vol. 5, No. 5, pp. 313-331; Dudek, C.L., Messer, C.J. and Nuckles, N.B. (1974). “Incident detection on urban freeway.” Transportation Research Record, No. 495, TRB, National Research Council, pp. 12-24; Fide Tutorial. Aptronix, 1992.; Fide Reference Manual. Aptronix, 1992.; Jian Lu, Shuyan Chen, Wei Wang, Henk van Zuylen (2011). A hybrid model of partial least squares and neural network for traffic incident detection, School of Transportation, Southeast University, Nanjing 210096, China Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands.; Hsiao, C.-H., Lin, C.-T. and Cassidy, M. (1994). “Application of fuzzy logic and neural networks to automatically detect freeway traffic incidents.” Journal of Transportation Engineering. Vol. 120, No. 5, ASCE, pp. 753-772; Ishak, S.S. and Al-Deek, H.M. (1998). “Fuzzy ART neural network model for automated detection of freeway incidents.” Transportation Research Record, No. 1634, TRB, National ResearchCouncil, pp. 56-63.; Levin, M. and Krause, G.M. (1978). “Incident detection: a Bayesian approach.” Transportation Research Record, No. 682, TRB, National Research Council, pp. 52-58.; Lin, C.K. and Chang, G.L. (1998). “Development of a fuzzy-expert system for incident detection and classification.” Mathematical and Computer Modeling. Vol. 27, No. 9-11, pp. 9-25.; Masters, P.H., Lam, J.K. and Wong, K. (1991). “Incident detection algorithms of COMPASS ‒ an advanced traffic management system.” Proceedings of Vehicle Navigation and InformationSystems Conference, Part 1, SAE, Warrendale, PA, October 1991, pp. 295-310.; Marijke, F. A., & Thomas, P. H. (2004). Evolving transfer functions for artificial neural networks. Neural Computation and Application, 13, 38-46.; Michalopoulos, P.G. (1991). “Vehicle detection video through image processing: the Autoscope system.” IEEE Transactions on Vehicular Technology. Vol. 40, No. 1, IEEE, pp. 21-29.; Michalopoulos, P.G., Jacobson, R.D., Anderson, C.A. and DeBruycker, T.B. (1993). “Automatic incident detection through video image processing.” Traffic Engineering and Control. Vol. 34, No. 2, pp. 66-75.; Payne, H.J. and Tignor, S.C. (1978). “Freeway incident-detection algorithms based on decision trees with states.” Transportation Research Record. No. 682, TRB, National Research Council, pp. 30-37.; Ritchie, S.G. and Cheu, R.L. (1993). “Simulation of freeway incident detection using artificial neural networks.” Transportation Research Part C. Vol. 1, No. 3, pp. 203-217.; Stephanedes, Y.J., Chassiakos, A.P. and Michalopoulos, P.G. (1992). “Comparative performance evaluation of incident detection algorithms.” Transportation Research Record, No. 1360, TRB, National Research Council, pp. 50-57.; Stephanedes, Y.J. and Liu, X. (1995). “Artificial neural networks for freeway incident detection.” Transportation Research Record, No. 1494, TRB, National Research Council, pp. 91-97.; Subramaniam, S. (1991). “Literature review of incident detection algorithms to initiative diversion strategies.” Working Paper, University Center of Transportation Research, Virginia Polytechnic Institute and State University, Blacksburg, VA.; Tsai, J. and Case, E.R. (1979). “Development of freeway incident detection algorithms by using patternrecognition techniques.” Transportation Research Record, No. 722, TRB, National Research Council, pp. 113-116.; Weil, R., Wootton, J. and Garcia-Ortiz, A. (1998). “Traffic incident detection: sensors and algorithms.” Mathematical and Computer Modeling. Vol. 27, No. 9-11, pp. 257-291.; Николаев А.Б., Ягудаев Г.Г., Сапего Ю.С., Еремин С.В., Кулаков А.В. Анализ алгоритмов управления инцидентами в интеллектуальных транспортных системах // Интернет-журнал «НАУКОВЕДЕНИЕ» Том 9, №4 (2017) http://naukovedenie.ru/PDF/16TVN417.pdf (доступ свободный). Загл. с экрана. Яз. рус., англ.; Bottino, A., Garbo, A., Loiacono, C. and Quer, S. (2016). Street viewer: An autonomous vision based traffic tracking system. Sensors, 16(6). doi:10.3390/s16060813; Chassiakos, A. and Stephanedes, Y. (1993a). Smoothing algorithms for incident detection. Transportation Research Record, no. 1394, pp. 8-16.; Chung, E. and Rosalion, N. (1999). [Electronic resource] Effective incident detection and management on freeways. Technical Report ARRB Transport Research Ltd. Access mode: https://trid.trb.org/view.aspx?id=1164576.; CTC & Associates LLC (2012). Automated video incident detection systems: Preliminary investigation. Technical Report Caltrans Division of Research and Innovation. [Electronic resource] Access mode: http://www.dot.ca.gov/newtech/researchreports/preliminary_investigations/docs/automated_incident_pi.pdf.; Dia, H. and Rose, G. (1997). Development and evaluation of neural network freeway incident detection models using field data. Transportation Research, 5C(5), 313-331.; Chintalacheruvu, N. and Muthukumar, V. (2012). Video based vehicle detection and its application in intelligent transportation systems. Journal of Transportation Technologies, 2. doi:10.4236/jtts.2012.24033.; Fishbain, B., Ideses, I., Mahalel, D. and Yaroslavsky, L. (2009). Real-time vision-based traffic flow measurements and incident detection. In Real-Time Image and Video Processing 2009, no. 7244 in Proc. SPIE, pages 72440I. doi:10.1117/12.812976; Kastrinaki, V., Zervakis, M. and Kalaitzakis, K. (2003a). A survey of video processing techniques for traffic applications. Image and Vision Computing, 21(4), 359-381. doi:10.1016/S0262-8856(03)00004-0.; Luk, J., Han, C. and Chin, D. (2010). [Electronic resource] Automatic freeway incident detection: Review of practices and guidance. In 24th ARRB conference : building on 50 years of road and transport research : proceedings. Access mode: http://railknowledgebank.com/Presto/content/GetDoc.axd?ctID=MjE1ZTI4YzctZjc1YS00MzQ4LTkyY2UtMDJmNTgxYjg2ZDA5& rID=NTY=&pID=MTQ3Ng==&attchmnt=VHJ1ZQ==&uSesDM=False&rIdx=NzgyNA==&rCFU=.; Martin, P. T., Perrin, J. and Hansen, B. (2001). [Electronic resource] Incident detection algorithm evaluation. Technical Report Utah Deportment of Transportation. Access mode: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.5951&rep=rep1&type=pdf.; Loureiro, P.F.Q., Rossetti, R.J.F. and Braga, R.A.M. (2009). Video processing techniques for traffic information acquisition using uncontrolled video streams. In ITSC ’09. 12th International IEEE Conference on Intelligent Transportation Systems . doi:10.1109/ITSC.2009.5309595; Netten, B., Weekley, J., Miles, A., Nitsche, P. and Baan, J. et al. (2013b). [Electronic resource] RAIDER – realising advanced incident detection on european roads: Generic specifications for incident detection systems. Technical Report ERA-NET ROAD. Access mode: http://www.cedr.eu/download/other_public_files/research_programme/eranet_road/call_2011/mobility/raider/02_raider-d4_1_genericspecificationsforincidentdetectionsystems_v5.pdf; Li, Q., fu Shao, C. and Zhao, Y. (2014). A robust system for real-time pedestrian detection and tracking. J. Cent. South Univ., 21, 1643-1653. doi:10.1007/s11771-014-2106-1; Mehboob, F., Abbas, M. and Jiang, R. (2016). Traffic event detection from road surveillance vide os based on fuzzy logic. In 2016 SAI Computing Conference (SAI), pp. 188-194. doi:10.1109/SAI.2016.7555981; Nathanail, E., Kouros, P. and Kopelias, P. (2017). Traffic volume responsive incident detection. Transportation Research Procedia, 25(Supplement C), 1755-1768. World Conference on Transport Research -WCTR 2016 Shanghai. 10-15 July 2016. doi:10.1016/j.trpro.2017.05.136; Porikli, F. and A. Yilmaz. Object detection and tracking, in Video Analytics for Business Intelligence. 2012, Springer.; Ren, J. (2016). Detecting and positioning of traffic incidents via video-based analysis of traffic states in a road segment. IET Intelligent Transport Systems, 10, 428-437(9).; Ritchie, S. and Cheu, R. (1993). Simulation of freeway incident detection using artificial neural networks. Transportation Research, 1C(3), 203-217.; Shukla, A. and M. Saini. “Moving Object Tracking of Vehicle Detection”: A Concise Review. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015.; Shahade, A.K. and G.Y. Patil. Efficient Background Subtraction and Shadow Removal Technique for Multiple Human object Tracking. International Journal, 2013.; Vasu, L. Effective Step to Real-time Implementation of Accident Detection System Using Image Processing. 2010.; Vinay, D. and N.L. Kumar. Object Tracking Using Background Subtraction Algorithm. International Journal of Engineering Research and General Science, 2015.; Wan, Y., Huang, Y. and Buckles, B. (2014). Camera calibration and vehicle tracking: Highway traffic video analytics. Transportation Research Part C: Emerging Technologies, 44, 202-213. doi:10.1016/j.trc.2014.02.018; Zhang, W., Q.J. Wu, and H. Bing Yin. Moving vehicles detection based on adaptive motion histogram. Digital Signal Processing, 2010.; Капский, Д.В. Основы автоматизации интеллектуальных транспортных систем : Учебник / Д.В. Капский, Е.Н. Кот, С.В. Богданович [и др.]. – Вологда : Общество с ограниченной ответственностью "Издательство "Инфра-Инженерия", 2022. – 412 с.; Скирковский, С.В. Теоретические и практические подходы к созданию и развитию интеллектуальной транспортной системы города / С.В. Скирковский, Д.В. Капский, Д.В. Навой; МТиК Респ. Бел.; УО «БелГУТ». – Гомель : УО «БелГУТ», 2022. – 171 с.; https://sapi.bntu.by/jour/article/view/644

  3. 3
    Academic Journal

    المصدر: Agricultural Machinery and Technologies; Том 17, № 1 (2023); 25-34 ; Сельскохозяйственные машины и технологии; Том 17, № 1 (2023); 25-34 ; 2073-7599

    وصف الملف: application/pdf

    Relation: https://www.vimsmit.com/jour/article/view/503/456; Shafi, U., Mumtaz R., García-Nieto J., Hassan S.A., Zaidi S.A.R., Iqbal N. Precision agriculture techniques and practices: Fromconsiderations to applications. Sensors. 2019. N9. 3796.; Moysiadis V., Sarigiannidis P., Vitsas V., Khelifi A. Smart farming in Europe. Computer Science Review. 2021. N39. 100345.; Blok P., Boheemen K., van Evert F.K., IJsselmuiden J., Kim G.-H. Robot navigation in orchards with localization based on Particle filter and Kalman filter. Computers and Electronics in Agriculture. 2019. N157. 261-269.; Himesh S. Digital revolution and Big Data: A new revolution in agriculture. CAB Reviews. 2018. N13. 1-7.; Zhang Y. The Role of Precision Agriculture. Resource. 2019. N19. 9.; Khort D.O., Kutyrev A.I., Smirnov I.G. Research into the Parameters of a Robotic Platform for Harvesting Apples. Lecture Notes in Networks and Systems. 2022. N463. 149-159.; Bochtis D., Griepentrog H.W., Vougioukas S., Busato P., Berruto R., Zhou K. Route planning for orchard operations. Computers and Electronics in Agriculture. 2015. N113. 51-60.; Khort D., Kutyrev A., Filippov R., Semichev S. Development control system robotic platform for horticulture. E3S Web of Conferences. 2021. N262. 01024.; Andersen J.C., Ravn O., Andersen N.A. Autonomous rule-based robot navigation in orchards. Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy. 2010. Vol. 43(16). 43-48.; Radcliffe J., Cox J., Bulanon D.M. Machine vision for orchard navigation. Computers in Industry. 2018. N98. 165-171.; Harper N., McKerrow P. Recognising plants with ultrasonic sensing for mobile robot navigation. Robotics and Autonomous Systems. 2001. N34(2-3). 71-82.; Jones M.H., Bell J., Dredge D., Seabright M., Scarfe A., Duke M., MacDonald B. Design and testing of a heavy-duty platform for autonomous navigation in kiwifruit orchards. Biosystems Engineering. 2019. N187. 129-146.; Park H., Kwon J., Hwang T., Kim D.A. Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment. Journal of the KoreaInstitute of Electronic Communication Sciences. 2018. Vol. 13(2). 313-320.; Kim M., Bae S., Kim H. Real-Time 3D-LiDAR Object Detection in Autonomous Vehicle Systems Using Cluster-Based Candidates and DeepLearning. Journal of the institute of control robotics andsystems. 2019. Vol. 25(9). 795-801.; Zong C.G., Ji Z.J., Yu Y., Shi H. Research on obstacle avoidance method for mobile robot based on multisensor information fusion. Sensors and Materials. 2020. N32. 1159-1170.; Teixid M., Pallej T., Font D., Tresanchez M., Moreno J., Palacn J. Two-Dimensional RadialLaser Scanning for Circular Marker Detection and External Mobile Robot Tracking. Sensors. 2012. N12. 16482-16497.; Garrido M. Active optical sensors for tree stem detection and classification in nurseries. Sensors. 2014. N14(6). 10783-10803.; Luan P.G., Thinh N.T. Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots. Applied Sciences. 2020. N10. 3355.; Ненайденко А.С., Поддубный В.И., Валекжанин А.И. Моделирование управления движением колесной сельскохозяйственной машины в режиме реального времени // Тракторы и сельхозмашины. 2018. N3. С. 32-38.; Измайлов А.Ю., Лобачевский Я.П., Ценч Ю.С. и др. О синтезе роботизированного сельскохозяйственного мабильного агрегата // Вестник российской сельскохозяйственной науки. 2019. N4. С. 63-68.; Бейлис В.М., Ценч Ю.С., Коротченя В.М., Старовойтов С.И., Кынев Н.Г. Тенденции развития прогрессивных машинных технологий и техники в сельскохозяйственном производстве // Вестник ВИЭСХ. 2018. N4 (33). С. 150-156.; Годжаев З.Д., Шевцов В.Г., Лавров А.В., Ценч Ю.С., Зубина В.А. Стратегия машинно-технологической модернизации сельского хозяйства России до 2030 года (Прогноз) // Технический сервис машин. 2019. N4(137). C. 220-229.; https://www.vimsmit.com/jour/article/view/503

  4. 4
    Academic Journal

    المؤلفون: Игнатюк, Н. С.

    جغرافية الموضوع: Минск

    وصف الملف: application/pdf

    Relation: Игнатюк, Н. С. Исследование влияния скорости на управление движением мобильной платформы = Investigation of the influence of speed on the movement control of the mobile platform / Н. С. Игнатюк // Электронные системы и технологии : сборник материалов 60-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 22–26 апреля 2024 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: Д. В. Лихаческий [и др.]. – Минск, 2024. – С. 270–274.; https://libeldoc.bsuir.by/handle/123456789/57032

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: D. V. Efanov, Д. В. Ефанов

    المصدر: World of Transport and Transportation; Том 17, № 1 (2019); 154-163 ; Мир транспорта; Том 17, № 1 (2019); 154-163 ; 1992-3252

    وصف الملف: application/pdf

    Relation: https://mirtr.elpub.ru/jour/article/view/1598/1917; https://mirtr.elpub.ru/jour/article/view/1598/1918; Розенберг Е . Н Батраев В . В . О стратегии развития цифровой железной дороги // Бюллетень Объединенного ученого совета ОАО «РЖД» . — 2018 . -№ 1. - С . 9-27 .; Digital Railway Strategy. - Network Rail . - April 2018 . - 42 p .; Bauer T, Benito D . N . Digital Railway Stations for Increased Throughput and a Better Passenger Experience // Signal+Draht. - 2018 . - issue 7+8 . - pp . 6-12 .; Смагин Ю . С ., Ефремов А. Ю . Первая цифровая система централизации в Германии // Железные дороги мира. - 2018 . - № 8 . - С . 63—67 .; Stauble R., Gschwend P. Digital Signalling in the Simmental // Signal+Draht. - 2018 . - issue 10 . -pp . 40-46.; Розенберг Е . Н., Уманский В. И ., Дзюба Ю .В . Цифровая экономика и цифровая железная дорога // Транспорт Российской Федерации . - 2017 . -№ 5 . - С. 45-49 .; Лёвин Б . А., Цветков В .Я . Цифровая железная дорога: принципы и технологии // Мир транспорта. -2018 . - № 3 . - С 50-61 .; Коэффициент полезного действия локомотива . [Электронный ресурс]: http://lokomo.ru/podvizhnoy-sostav/koefficient-poleznogo-deystviya-lokomotiva.html. Доступ 29.10.2018 .; Грачев В . А ., Плямина О . В . Экологическая безопасность и экологическая эффективность энергетики // Век глобализации . - 2017 . - № 1 . - С . 86-97.; Сила ветра: как Дания решила полностью перейти на возобновляемую энергию . [Электронный ресурс]: http://www.furfurme/furfur/changes/changes/217567-denmark. Доступ 29.10.2018 .; Hayashiya H ., Watanabe Y., Fukasawa Y., Miyagawa T., Egami A ., Iwagami T., Kikuchi S., Yoshizumi H . Cost Impacts of High Efficiency Power Supply Technologies in Railway Power Supply - Traction and Station // 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 4-6 September 2012, Novi Sad, Serbia, pp . LS3e . 4-1 -LS3e .4-6 . - DOI:10.1109/EPEPEMC.2012.6397441.; Hayashiya H ., Itagaki H ., Morita Y, Mitoma Y, Furukawa T., Kuraoka T., Fukasawa Y, Oikawa T. Potentials, Peculiarities and Prospects of Solar Power Generation on the Railway Premises // International Conference on Renewable Energy Research and Applications (ICRERA) . - 11-14 November 2012 . - Nagasaki, Japan . - pp. 1-6. - DOI:10.1109/ICRERA.2012.6477458 .; Srivastava A ., Singh A ., Joshi G ., Gupta A . Utilization of Wind Energy from Railways Using Vertical Axis Wind Turbine // International Conference on Energy Economics and Environment (ICEEE) . - 27-28 March 2015 . - Noida, India . - pp . 1-5 . - DOI:10.1109/EnergyEconomics.2015.7235107.; Kumar A ., Karandikar P. B ., Chavan D . S . Generating and Saving Energy by Installing Wind Turbines Along the Railway Tracks // International Conference on Energy Systems and Applications . - 30 October -1 November 2015 . - Pune, India. - pp . 25-27 . - DOI:10.1109/ICESA.2015.7503307.; Pankovits P., Pouget J ., Robyns B . , Delhaye F., Brisset S. Towards Railway-SmartGrid: Energy Management Optimization for Hybrid Railway Power Substations // IEEE PES Innovative Smart Grid Technologies, Europe . - 12-15 October 2014 . - Istanbul, Turkey. - DOI:10.1109/ISGTEurope.2014.7028816.; Aguado J . A ., Sanchez Racero A. J ., de la Torre S . Optimal Operation of Electric Railways with Renewable Energy and Electric Storage Systems // IEEE Transactions on Smart Grid . - 2018 . - vol . 9 . - iss. 2 . -pp. 993-1001. - DOI:10.1109/TSG.2016.2574200.; Гончаров Ю . П . , Сокол Е. И ., Замаруев В . В . и др . Система преобразования энергии, генерируемой в полосе отчуждения железной дороги с помощью солнечных панелей // Вестник Приазовского государственного технического университета . Серия: Технические науки . - 2015 . - № 30 . - С . 98-108 .; Кушпиль И . В . , Бут А. Н . Использование фотоэлектрических модулей для питания устройств железнодорожной автоматики и телемеханики // Автоматика на транспорте . - 2017 . - № 2 . - С. 202-215 .; Энергия Солнца послужит РЖД • [Электронный ресурс]: http://www.energovector.com/strategy-energiya-solntsa-poslujit-rjd.html. Доступ 29.10.2018 .; Капица П .А . Энергия и физика // Вестник АН СССР. - 1976 . - № 1. - С . 34-43 .; Ефанов Д. В ., Осадчий Г В ., Седых Д . В . Непрерывный мониторинг железнодорожной контактной подвески // Транспорт Российской Федерации . - 2017 . - № 3 . - С . 20-24.; Ефанов Д . В ., Осадчий Г В . Концепция современных систем управления на основе информационных технологий // Автоматика, связь, информатика. - 2018 . - № 5 . - С . 20-23.; Попов П . А ., Королев И . Н ., Мыльников П . Д . Основные принципы контроля корректности бортовой системы позиционирования средствами железнодорожной автоматики // Автоматика на транспорте . - 2015 . - № 4. - С. 355-366 .; Шаманов В . И . Системы интервального регулирования движения поездов с цифровыми радиоканалами // Автоматика на транспорте . - 2018 . -№ 2 . -С . 223-240.; Ossberger H . Modern Turnout Technology for High Speed . - TER Workshop Vienna. - 2016 . - 42 p .; Hahanov V. Cyber Physical Computing for IoT-driven Services . - New York, Springer International Publishing AG, 2018. - 279 p.; Бакуркин Р. С ., Безродный Б . Ф ., Коро-тин А . М . Противодействие компьютерным атакам в сфере железнодорожного транспорта // Вопросы кибербезопасности . - 2016 . - № 4 . - С . 29-35 .; Trackgaurd Cargo MSR32 . Greater Efficiency and Safety in Cargo Transport. - Siemens AG . - 2016. - 22 p.; https://mirtr.elpub.ru/jour/article/view/1598

  9. 9
    Academic Journal

    Relation: Применение системно-объектного имитационного моделирования в задачах разработки и апробации алгоритмов управления движением беспилотных транспортных средств / И.А. Егоров [и др.]; НИУ БелГУ // Научные ведомости БелГУ. Сер. Экономика. Информатика. - 2019. - Т.46, №4.-С. 741-753. - Doi:10.18413/2411-3808-2019-46-4-741-753.; http://dspace.bsu.edu.ru/handle/123456789/62255

  10. 10
  11. 11
    Academic Journal

    المصدر: Eastern-European Journal of Enterprise Technologies

    وصف الملف: application/pdf

  12. 12
    Academic Journal

    المصدر: Science & Technique; Том 17, № 5 (2018); 401-412 ; НАУКА и ТЕХНИКА; Том 17, № 5 (2018); 401-412 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2018-17-5

    وصف الملف: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/1869/1748; Review of Road Traffic Control Strategies / М. Papageorgiou [et al.]. Proceedings of the IEEE, 2003. Vol. 91, Iss. 12. Р. 2043–2067. https://doi.org/10.1109/jproc.2003.819610.; Врубель, Ю. А. Определение потерь в дорожном движении / Ю. А. Врубель, Д. В. Капский, Е. Н. Кот. Минск: БНТУ, 2006. 240 с.; Координированное управление дорожным движением / Ю. А. Врубель [и др.]. Минск: БНТУ, 2011. 230 с.; Капский, Д. В. Совершенствование применения периферийных устройств при модернизации АСУ дорожным движением / Д. В. Капский, Д. В. Рожанский, Д. В. Навой // Безпека дорожнього руху Украïни. 2006. № 1–2. С. 112–120.; Капский, Д. Рекомендации по разработке режимов светофорного регулирования на пешеходных переходах / Д. Капский, Е. Кот // Transport and Telecommunication. 2006. Т. 7, № 3. С. 496–503.; Капский, Д. В. Проведение исследований интенсивности движения транспортных потоков: теория и эксперимент / Д. В. Капский, Д. В. Рожанский, Д. В. Мозалевский // Безпека дорожнього руху Украïни. 2006. Т. 23, № 3–4. С. 35–40.; Мочалов, В. В. Влияние на безопасность движения автомобильных телематических систем / В. В. Мочалов, А. Я. Андреев, Д. В. Капский // Вместе к эффективному дорожному движению: сб. науч. ст. Междунар. науч.-практ. конф., Минск, 28–31 окт. 2008 г. / Белорус. нац. техн. ун-т; редкол.: А. С. Калиниченко [и др.]. Минск, 2008. С. 136–145.; Discrete Choice Methods and their Applications to Short Term Travel Decisions / М. Ben-Akiva, M. Bierlaire, R. W. Hall (еd.) // Handbook of Transportation Science. International Series in Operations Research & Management Science. 1999. Vol. 23. Р. 5–33. https://doi.org/10.1007/978-1-4615-5203-1_2/; A Modified Logit Route Choice Model Overcoming Path Overlapping Problems: Specification and Some Calibration Results for Interurban Networks / Е. Cascetta [et al.] // Proceedings of the 13th International Symposium on Transportation and Traffic Theory. France: Lyon, 1996. Р. 697–711.; Robertson, D. I. TRANSYT: а Traffic Network Study Tool: Road Research Laboratory Report LR 253 / D. I. Robertson. Crowthorne, Berkshire, 1969.; Lowrie, P. R. SCATS – Principles, Methodology and Algorithms / P. R. Lowrie // Proceedings of the International Conference on Road Traffic Signalling. United Kingdom: London, 1982. Р. 67–70.; SCOOT– a Traffic Responsive Method of Co-Ordinating Signals / Р. В. Hunt [et al.]: TRRL Report 1014. Crowthorne, Berkshire, England, 1981. 44 p.; Gartner, N. H. OPAC: а Demand-Responsive Strategy for Traffic Signal Control / N. H. Gartner // Transportation Research Record 906. 1983. Р. 75–81.; Henry, J. J. PRODYN / J. J. Henry, J. L. Farges // Proceedings of the 6th IFAC/IFIP/IFORS Symposium on Control, Computers, Communications in Transportation. France: Paris, 1989. Р. 253–255. https://doi.org/10.1016/B978-0-08-037025-5.50043-8.; Di Taranto, C. UTOPIA / С. Di Taranto, V. Mauro // Proceedings of the 6th IFAC/IFIP/IFORS Symposium on Control, Computers, Communications in Transportation. France, Paris, 1989. Р. 245–252. https://doi.org/10.1016/b978-0-08-037025-5.50042-6.; Head, K. L. Hierarchical Framework for Real-Time Traffic Control / K. L. Head, P. B. Mirchandani, D. Sheppard // Transportation Research Record 1360. 1992. Р. 82–88.; Van Katwijk, R. T. Multi-Agent Look-Ahead TrafficAdaptive Control. / R. T. Van Katwijk. Netherlands, Delft: Delft University of Technology, 2008. 173 p.; Tassiulas, L. Stability Properties of Constrained Queueing Systems and Scheduling Policies for Maximum Throughput in Multihop Radio Networks / L. Tassiulas, A. Ephremides // IEEE Transactions on Automatic Control. 1992. Vol. 37, Iss. 12. Р. 1936–1948. https://doi.org/10.1109/9.182479.; Smith, M. J. A Local Traffic Control Policy Which Automatically Maximises the Overall Travel Capacity of an Urban Road Network / M. J. Smith // Traffic Engineering + Control. 1980. Vol. 21, No 6. Р. 298–302.; Smith, M. J. Traffic Signal Control and Route Choice: а New Assignment and Control Model Which Designs Signal Timings / M. J. Smith // T Transportation Research Part C: Emerging Technologies. 2015. Vol. 58. P. 451–473. https://doi.org/10.1016/j.trc.2015.02.002.; Varaiya, P. A Universal Feedback Control Policy for Arbitrary Networks of Signalized Intersections / Р. Varaiya // EECS, UC Berkeley. 2009.; Varaiya, P. Max Pressure Control of a Network of Signalized Intersections / Р. Varaiya // Transportation Research Part C: Emerging Technologies. 2013. Vol. 36. Р. 177–195. https://doi.org/10.1016/j.trc.2013.08.014.; Distributed Traffic Signal Control for Maximum Network Throughput / Т. Wongpiromsarn [et al.] // 15th International IEEE Conference on Intelligent Transportation Systems, IEEE. 2012. Р. 588–595. https://doi.org/10.1109/itsc.2012.6338817.; https://sat.bntu.by/jour/article/view/1869

  13. 13
    Academic Journal

    المصدر: Relevant lines of scientific research: theory and practice; 165-167 ; Актуальные направления научных исследований: перспективы развития; 165-167

    وصف الملف: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6041114-0-6; https://interactive-plus.ru/e-articles/545/Action545-470746.pdf; Zhang Peng. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids / Peng Zhang, Keping Liu, Bo Zhao, Yuanchun Li // PLoS ONE. – 2015. – P. 1–18.; Мирошник И.В. Теория автоматического управления. Линейные системы / И.В. Мирошник. – СПб.: Питер, 2005. – 336 c.; Бек В.В. Интегрированные системы терминального управления / В.В. Бек, Ю.С. Вишняков, А.Р. Махлин. – М.: Наука, 1989. – 224 c.; https://interactive-plus.ru/files/Books/Cover-545.jpeg?req=470746; https://interactive-plus.ru/article/470746/discussion_platform

  14. 14
    Academic Journal

    المصدر: «System analysis and applied information science»; № 3 (2017); 28-32 ; «Системный анализ и прикладная информатика»; № 3 (2017); 28-32 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2017-3

    وصف الملف: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/173/134; Aavani, P. A review on adaptive traffic controls systems / P. Aavani, K. S. Mithun, S. Sneha // International Journal of Latest Engineering and Management Research. – 2017. – Vol. 2, № 1. – P. 52–57.; Stevanovic, A. Adaptive Traffic Control Systems: Domestic and Foreign State of Practice / A. Stevanovic // A Synthesis of Highway Practice. NCHRP Synthesis 403. – 2010. – 114 p.; Hiertz, G. R. The IEEE 802.11 Universe / G. R. Hiertz [et al.] // IEEE Communications Magazine. – 2010. – Vol. 48, № 1. – P. 62–70.; Dar, K. Wireless communication technologies for ITS applications / K. Dar [et al.] // IEEE Communications Magazine. – 2010. – Vol. 48, № 5. – P. 156–162.; Martinez, F. J. Emergency services in future intelligent transportation systems based on vehicular communication networks / F. J. Martinez [et al.] // IEEE Intelligent Transportation Systems Magazine. – 2010. – Vol. 2, № 2. – P. 6–20.; Williams, B. M. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results / B. M. Williams, L. A. Hoel // Journal of Transportation Engineering. – 2003. – Vol. 129, № 6. – P. 664–672.; Wu, C.-H. Travel-time prediction with support vector regression / C.-H. Wu, J.-M. Ho, D. Lee // IEEE Transactions on Intelligent Transportation Systems. – 2004. – Vol. 5, № 4. – P. 276–281.; Chan, K. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg– Marquardt algorithm / K. Chan, T. Dillon, J. Singh // IEEE Transactions on Intelligent Transportation Systems. – 2012. – Vol. 13, № 2. – P. 644–654.; Dimitriou, L. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow / L. Dimitriou, T. Tsekeris, A. Stathopoulos // Transportation Research Part C: Emerging Technologies. – 2008. – Vol. 16, № 5. – P. 554–573.; Zhang, Y. Short-term traffic flow forecasting using fuzzy logic system methods / Y. Zhang, Z. Ye // Journal of Intelligent Transportation Systems. – 2008. – Vol. 12, № 3. – P. 102–112.; Vlahogianni, E. I. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach / E. I. Vlahogianni, M. G. Karlaftis, J. C. Golias // Transportation Research Part C: Emerging Technologies. – 2005. – Vol. 13, № 3. – P. 211–234.; Flemisch, F. Towards Highly Automated Driving: Intermediate report on the HAVEit-Joint System / F. Flemisch [et al.] // 3rd European Road Transport Research Arena – 2010. – P. 1–12.; Toffetti, A. CityMobil: Human Factors issues regarding highly-automated vehicles on an eLane / A. Toffetti [et al.] // Paper presented at the Transportation Research Board, New York. – 2009. – Vol. 2110. – P. 1–8.; Buehler, M. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic / M. Buehler, K. Iagnemma, S. Singh // Springer Tracts in Advanced Robotics. – 2010. – Vol. 56. – P. 441–508.; Wees, K. (2005) Product liability for ADAS; legal and human factors perspectives / K. Wees, K. Brookhuis // European Journal of Transport and Infrastructure Research. – 2005. – Vol. 5, № 4. – P. 357–372.; Fei, Y. New vehicle sequencing algorithms with vehicular infrastructure integration for an isolated intersection / Y. Fei, M. Dridi, A. El-Moudni // Telecommunication Systems. – 2012. – Vol 50, № 4. – P. 325–337.; Войцехович, О. Ю. Стратегия оптимизации движения автомобилей по магистрали города с использованием бинарного дерева решений / О. Ю. Войцехович, В. Н. Шуть // Информационные технологии и системы 2011 (ИТС 2011): материалы международной научной конференции. – Минск: БГУИР, 2011. – C. 187–188.; Li, Z. Signal control optimization for automated vehicles at isolated signalized intersections / Z. Li, L. Elefteriadou, S. Ranka // Transportation Research Part C Emerging Technologies. – 2014. – Vol. 49. – P. 1–18.; Wuthishuwong, C. Vehicle to infrastructure based safe trajectory planning for Autonomous Intersection Management / C. Wuthishuwong, A. Traechtler // In Proceedings of IEEE International Conference on ITS Telecommunications. – 2013. – P. 175–180.; Dresner, K. A Multiagent Approach to Autonomous Intersection Management / K. Dresner, P. Stone // Journal of Artificial Intelligence Research. – 2008. – Vol. 31. – P. 591–656.; Климович, А. Н. Современные подходы и алгоритмы управления транспортными потоками / А. Н. Климович, А. С. Рыщук, В. Н. Шуть // Вестник Херсонского национального технического университета. – 2015. – № 3. – С. 252–256.; https://sapi.bntu.by/jour/article/view/173

  15. 15
    Dissertation/ Thesis
  16. 16
  17. 17
  18. 18
    Academic Journal

    المؤلفون: Tovkach, S. S.

    المصدر: Electronics and Control Systems; Vol. 4 No. 50 (2016); 58-62 ; Электроника и системы управления; Том 4 № 50 (2016); 58-62 ; Електроніка та системи управління; Том 4 № 50 (2016); 58-62 ; 1990-5548

    وصف الملف: application/pdf

  19. 19
  20. 20