-
1Academic Journal
المؤلفون: E. V. Serebryakov, I. A. Zaytsev, A. A. Potaka, Е. В. Серебряков, И. А. Зайцев, А. А. Потака
المصدر: Gornye nauki i tekhnologii = Mining Science and Technology (Russia); Vol 9, No 3 (2024); 206-220 ; Горные науки и технологии; Vol 9, No 3 (2024); 206-220 ; 2500-0632
مصطلحات موضوعية: крепление, RMR, Udachnaya kimberlite pipe, televiewer, jointing, rock mass stability, supports, кимберлитовая трубка Удачная, телевьювер, трещиноватость, устойчивость массива
وصف الملف: application/pdf
Relation: https://mst.misis.ru/jour/article/view/830/458; https://mst.misis.ru/jour/article/view/830/459; Bieniawski Z. T. Engineering classification of jointed rock masses. Civil Engineer in South Africa. 1973;15(12):335–344.; Bieniawski Z. T. Engineering rock mass classifications. New York: Wiley;1989. 251 p.; Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design of rock support. Rock Mechanics. 1974;6:189–236. https://doi.org/10.1007/BF01239496; Barton N. Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences. 2002;39:185–216.; Laubscher D. H. G eomechanics classification system for the rating of rock mass in mine design. Journal of the Southern African Institute of Mining and Metallurgy. 1990;90(10):257–273. https://doi.org/10.1016/0148-9062(91)90830-F; Laubscher D. H., Jakubec J. The MRMR Rock mass classification for jointed rock masses. In: Hustrulid W. A., Bullock R. L. (Eds.) Underground Mining Methods: Engineering Fundamentals and International Case Histories. Littleton, Colorado: SME; 2001. Pp. 475–481.; Hoek E. Strength of rock and rock masses. ISRM News Journal. 1994;2(2):4–16.; Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019;11(3):445–463. https://doi.org/10.1016/j.jrmge.2018.08.001; Gwynn X., Brown M. C., Mohr P. J. Combined use of traditional core logging and televiewer imaging for practical geotechnical data collection. In: Dight P. M. (ed.) Slope Stability 2013: Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth: Australian Centre for Geomechanics; 2013. Pp. 261–272. https://doi.org/10.36487/ACG_rep/1308_13_Mohr; Серебряков Е. В., Гладков А. С., Гапфаров Т. Д. Обзор современных методов сбора данных для оценки структурной нарушенности горного массива. Горный информационно-аналитический бюллетень. 2023;(9):160–177. https://doi.org/10.25018/0236_1493_2023_9_0_160; Костровицкий С. И., Специус З. В., Яковлев Д. А. и др. Атлас коренных месторождений алмазов Якутской кимберлитовой провинции. Мирный: ООО «МГТ»; 2015. 480 с.; Колганов В. Ф., Акишев А. Н., Дроздов А. В. Горно-геологические особенности коренных месторождений алмазов Якутии. Мирный: АК «АЛРОСА», Институт «Якутнипроалмаз»; 2013. 568 с.; Kopylova M. G., Kostrovitsky S. I., Egorov K. N. Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth-Science Reviews. 2013;119:1–16. https://doi.org/10.1016/j.earscirev.2013.01.007; Celada B., Tardáguila I., Varona P. et al. Innovating tunnel design by an improved experience-based RMR system. In: Proceedings of the World Tunnel Congress 2014 – Tunnels for a Better Life. Foz do Iguaçu, Brazil, 9–15 May 2014. PP. 1–9.; Peyras L., Rivard P., Breul P. et al. Characterization of rock discontinuity openings using acoustic wave amplitude – Application to a metamorphic rock mass. Engineering Geology. 2015;193:402–411. https://doi.org/10.1016/j.enggeo.2015.05.014; McKenna G. T. C., Roberts-Kelly S. L. Televiewer imaging of boreholes; benefits and considerations for interpretation in the absence of physical rock core. In: Lehane B., Acosta-Martinez H. E., Kelly R. (Eds.) Geotechnical and Geophysical Site Characterisation, ISC’5. Sydney, Australia: Australian Geomechanics Society; 2016. Pp. 291–296.; Серебряков Е. В., Гладков А. С. Применение акустического телевьювера при оценке структурной нарушенности и геомеханического состояния горного массива. В: Инженерная и рудная геофизика 2023. Сборник материалов 19-й научно-практической конференции и выставки. М.: ООО «ЕАГЕ ГЕОМОДЕЛЬ»; 2023. С. 329–333.; Bae D. S., Kim K., Koh Y., Kim J. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer. Rock Mechanics and Rock Engineering. 2011;44:497–504. https://doi.org/10.1007/s00603-011-0134-9; Thomas R. D. H., King A. M., Neilsen J. M. Assessing waviness from televiewer for incorporation within defect plane shear strength models. In: Proceedings of the 48-th US Rock Mechanics / Geomechanics Symposium. 1–4 June 2014, Minneapolis, Minnesota.; Barton N., Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics. 1977;10:1–54. https://doi.org/10.1007/BF01261801; Fredrick F. D., Nguyen T., Seymour C., Dempers G. Geotechnical data from optical and acoustic televiewer surveys. The AusIMM Bulletin. 2014:62–66.; Katic N., Chalmas R., Christensen H. F. OATV for strength estimations in Copenhagen Limestone. In: Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic. 2016. Pp. 169–176.; Kao H.-Ch., Chou P.-Y., Lo H.-Ch. An innovative application of borehole acoustic image and amplitude logs for geotechnical site investigation. Acta Geophysica. 2020;68(6):1821–1832. https://doi.org/10.1007/s11600-020-00493-2; Подгаецкий А. В. Влияние минерального состава на формирование физико-механических свойств кимберлита. Горный информационно-аналитический бюллетень. 2011;(8):105–110.; Palmstrom A. Measurement and characterization of rock mass jointing. In: Sharma V. M., Saxena K. R. In-situ Characterization of Rocks. A. A. Balkema Publishers; 2001.; Deere D. U. Rock quality designation (RQD) after twenty years. U.S. Army Corps of Engineers Vicksburg, MS: Waterways Experimental Station; 1989. 93 p.; Terzaghi R. Sources of error in joint surveys. Géotechnique. 1965;15(3):287–304. https://doi.org/10.1680/geot.1965.15.3.287; Серебряков Е. В., Гладков А. С. Геолого-структурная характеристика массива глубоких горизонтов месторождения Трубка «Удачная». Записки Горного института. 2021;250:512–525. https://doi.org/10.31897/PMI.2021.4.4; Филиппов А. Г. Гидротермальный кварц из кимберлитов Якутии. Геология и геофизика. 1992;(11):108–115.; Алексеев С. В., Алексеева Л. П., Гладков А. С. и др. Рассолы глубоких горизонтов кимберлитовой трубки Удачная. Геодинамика и тектонофизика. 2018;9(4):1235–1253. https://doi.org/10.5800/GT-2018-9-4-0393; Петухов И. М. Горные удары на угольных шахтах. 2-е изд., перераб. и доп. СПб.: ФГУП «Гос. НИИ горн. геомеханики и маркшейд. дела – МНЦ ВНИМИ»; 2004. 238 с.; Barton N. The influence of joint properties in modelling jointed rock masses. In: 8 th ISRM Congress. September 25–29, 1995. International Society for Rock Mechanics and Rock Engineering. Pp. 1023–1032.; Sayeed I., Khanna R., Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks. In: International Conference on «Engineering Geology in New Millennium». New Delhi, 27–29 October, 2015. Pp. 1–12.; Sadeghi S., Sharifi Teshnizi E., Ghoreishi B. Correlations between various rock mass classification/characterization systems for the Zagros tunnel-W Iran. Journal of Mountain Science. 2020;17(1):1790–1806. https://doi.org/10.1007/s11629-019-5665-7; Barton N., Bieniawski Z. T. RMR and Q-Setting records. Tunnels and Tunnelling International. 2008:26–29.; Barton N. Some new Q-value correlations to assist in site characterisation and tunnel design. International Journal of Rock Mechanics and Mining Sciences. 2002;39(2):185–216. https://doi.org/10.1016/S1365-1609(02)00011-4; Palmstrom A. Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi). Tunnelling and Underground Space Technology. 1996;11(2):175–188.; https://mst.misis.ru/jour/article/view/830
-
2Academic Journal
المؤلفون: A. A. Tarasov, A. V. Golovin, А. А. Тарасов, А. В. Головин
المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0781 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0781 ; 2078-502X
مصطلحات موضوعية: трубка Удачная-Восточная, high-magnesian olivine, melt inclusions, alkaline-carbonatite melts, sulfur activity, Udachnaya-East pipe, высокомагнезиальный оливин, расплавные включения, щелочно-карбонатные расплавы, активность серы
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1917/845; Abersteiner A., Kamenetsky V.S., Goemann K., Golovin A., Kamenetsky M., 2022. Olivine in Kimberlites: Magma Evolution from Deep Mantle to Eruption. Journal of Petrology 63 (7), egac055. https://doi.org/10.1093/petrology/egac055.; Abersteiner A., Kamenetsky V.S., Golovin A., Goemann K., Ehrig K., 2021. Dissolution of Mantle Orthopyroxene in Kimberlitic Melts: Petrographic, Geochemical and Melt Inclusion Constraints from an Orthopyroxenite Xenolith from the Udachnaya-East Kimberlite (Siberian Craton, Russia). Lithos 398–399, 106331. https://doi.org/10.1016/j.lithos.2021.106331.; Abersteiner A., Kamenetsky V.S., Golovin A.V., Kamenetsky M., Goemann K., 2018b. Was Crustal Contamination Involved in the Formation of the Serpentine-Free Udachnaya-East Kimberlite? New Insights into Parental Melts, Liquidus Assemblage and Effects of Alteration. Journal of Petrology 59 (8), 1467–1492. https://doi.org/10.1093/petrology/egy068.; Abersteiner A., Kamenetsky V.S., Pearson D.G., Kamenetsky M., Goemann K., Ehrig K., Rodemann T., 2018a. Monticellite in Group-I Kimberlites: Implications for Evolution of Parental Melts and Post-Emplacement CO2 Degassing. Chemical Geology 478, 76–88. https://doi.org/10.1016/j.chemgeo.2017.06.037.; Bell A.S., Waters L., Ghiorso M., 2024. The Olivine-Spinel-α SiO2 melt (OSaS) Oxybarometer: A New Method for Evaluating Magmatic Oxygen Fugacity in Olivine-Phyric Basalts. American Mineralogist. https://doi.org/10.2138/am-2023-9021.; Brett R.C., Russell J.K., Andrews G.D.M., Jones T.J., 2015. The Ascent of Kimberlite: Insights from Olivine. Earth and Planetary Science Letters 424, 119–131. https://doi.org/10.1016/j.epsl.2015.05.024.; Brett R.C., Russell J.K., Moss S., 2009. Origin of Olivine in Kimberlite: Phenocryst or Impostor? Lithos 112 (1), 201– 212. https://doi.org/10.1016/j.lithos.2009.04.030.; Bussweiler Y., Foley S.F., Prelević D., Jacob D.E., 2015. The Olivine Macrocryst Problem: New Insights from Minor and Trace Element Compositions of Olivine from Lac de Gras Kimberlites, Canada. Lithos 220–223, 238–252. https://doi.org/10.1016/j.lithos.2015.02.016.; Casetta F., Asenbaum R., Ashchepkov I., Abart R., Ntaflos T., 2023. Mantle-Derived Cargo vs Liquid Line of Descent: Reconstructing the P-T-fO2-X Path of the Udachnaya-East Kimberlite Melts during Ascent in the Siberian Sub-Cratonic Lithosphere. Journal of Petrology 64 (1), egac122. https://doi.org/10.1093/petrology/egac122.; Cnopnras A., 1991. Single Crystal Raman Spectra of Forsterite, Fayalite, and Monticellite. American Mineralogist 76 (7–8), 1101–1109.; Fedortchouk Y., Canil D., 2004. Intensive Variables in Kimberlite Magmas, Lac de Gras, Canada and Implications for Diamond Survival. Journal of Petrology 45 (9), 1725– 1745. https://doi.org/10.1093/petrology/egh031.; Ganguly J., 2002. Diffusion Kinetics in Minerals: Principles and Applications to Tectono-Metamorphic Processes. In: C.M. Gramaccioli (Ed.), Energy Modelling in Minerals. Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/EMU-notes.4.9.; Giuliani A., 2018. Insights into Kimberlite Petrogenesis and Mantle Metasomatism from a Review of the Compositional Zoning of Olivine in Kimberlites Worldwide. Lithos 312–313, 322–342. https://doi.org/10.1016/j.lithos.2018.04.029.; Giuliani A., Schmidt M.W., Torsvik T.H., Fedortchouk Y., 2023. Genesis and Evolution of Kimberlites. Nature Reviews Earth & Environment 4, 738–753. https://doi.org/10.1038/s43017-023-00481-2.; Golovin A.V., Kamenetsky V.S., 2023. Compositions of Kimberlite Melts: A Review of Melt Inclusions in Kimberlite Minerals. Petrology 31, 143–178. https://doi.org/10.1134/S0869591123020030.; Golovin A.V., Sharygin I.S., Kamenetsky V.S., Korsakov A.V., Yaxley G.M., 2018. Alkali-Carbonate Melts from the Base of Cratonic Lithospheric Mantle: Links to Kimberlites. Chemical Geology 483, 261–274. https://doi.org/10.1016/j.chemgeo.2018.02.016.; Golovin A.V., Sharygin I.S., Korsakov A.V., 2017. Origin of Alkaline Carbonates in Kimberlites of the Siberian Craton: Evidence from Melt Inclusions in Mantle Olivine of the Udachnaya-East Pipe. Chemical Geology 455, 357–375. https://doi.org/10.1016/j.chemgeo.2016.10.036.; Golovin A.V., Sharygin I.S., Korsakov A.V., Kamenetsky V.S., Abersteiner A., 2020. Can Primitive Kimberlite Melts Be Alkali-Carbonate Liquids: Composition of the Melt Snapshots Preserved in Deepest Mantle Xenoliths. Journal of Raman Spectroscopy 51 (9), 1849–1867. https://doi.org/10.1002/jrs.5701.; Golovin A.V., Sharygin V.V., Pokhilenko N.P., 2007. Melt Inclusions in Olivine Phenocrysts in Unaltered Kimberlites from the Udachnaya-East Pipe, Yakutia: Some Aspects of Kimberlite Magma Evolution During Late Crystallization Stages. Petrology 15, 168–183. https://doi.org/10.1134/S086959110702004X.; Golovin A.V., Sharygin V.V., Pokhilenko N.P., Mal’kovets V.G., Kolesov B.A., Sobolev N.V., 2003. Secondary Melt Inclusions in Olivine from Unaltered Kimberlites of the Udachnaya-East Pipe, Yakutia. Doklady Earth Sciences 388 (1), 93–96.; Golovin A.V., Tarasov A.A., Agasheva E.V., 2023. Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle beneath the Baltic Super-Craton. Minerals 13 (5), 645. https://doi.org/10.3390/min13050645.; Howarth G.H., Taylor L.A., 2016. Multi-Stage Kimberlite Evolution Tracked in Zoned Olivine from the Benfontein Sill, South Africa. Lithos 262, 384–397. https://doi.org/10.1016/j.lithos.2016.07.028.; Jaoul O., Bertran-Alvarez Y., Liebermann R.C., Price G.D., 1995. Fe-Mg Interdiffusion in Olivine up to 9 GPa at T=600– 900 °C; Experimental Data and Comparison with Defect Calculations. Physics of the Earth and Planetary Interiors 89 (3–4), 199–218. https://doi.org/10.1016/0031-9201(94)03008-7.; Kamenetsky M.B., Sobolev A.V., Kamenetsky V.S., Maas R., Danyushevsky L.V., Thomas R., Pokhilenko N.P., Sobolev N.V., 2004. Kimberlite Melts Rich in Alkali Chlorides and Carbonates: A Potent Metasomatic Agent in the Mantle. Geology 32 (10), 845–848. https://doi.org/10.1130/G20821.1.; Kamenetsky V.S., Golovin A.V., Maas R., Giuliani A., Kamenetsky M.B., Weiss Ya., 2014. Towards a New Model for Kimberlite Petrogenesis: Evidence from Unaltered Kimberlites and Mantle Minerals. Earth-Science Reviews 139, 145– 167. https://doi.org/10.1016/j.earscirev.2014.09.004.; Kamenetsky V.S., Kamenetsky M.B., Golovin A.V., Sharygin V.V., Maas R., 2012. Ultrafresh Salty Kimberlite of the Udachnaya – East Pipe (Yakutia, Russia): A Petrological Oddity or Fortuitous Discovery? Lithos 152, 173–186. https://doi.org/10.1016/j.lithos.2012.04.032.; Kamenetsky V.S., Kamenetsky M.B., Sobolev A.V., Golovin A.V., Demouchy S., Faure K., Sharygin V.V., Kuzmin D.V., 2008. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. Journal of Petrology 49 (4), 823–839. https://doi.org/10.1093/petrology/egm033.; Khan S., Fedorchouk Ya., Feichter M., Toth T.M., 2024. Confocal Raman Spectroscopic Study of Melt Inclusions from Peridotite Xenoliths in Economic and Barren Kimberlites from Kaapvaal Craton. Journal of Raman Spectroscopy. https://doi.org/10.1002/jrs.6709.; Kolesov B.A., Geiger C.A., 2004. A Raman Spectroscopic Study of Fe-Mg Olivines. Physics and Chemistry of Minerals 31, 142–154. https://doi.org/10.1007/s00269-003-0370-y.; Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p. https://doi.org/10.1017/CBO9780511535581.; Li Y., Audétat A., 2015. Effects of Temperature, Silicate Melt Composition, and Oxygen Fugacity on the Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, andBi between Sulfide Phases and Silicate Melt. Geochimica et Cosmochimica Acta 162, 25–45. https://doi.org/10.1016/j.gca.2015.04.036.; Lim E., Giuliani A., Phillips D., Goemann K., 2018. Origin of Complex Zoning in Olivine from Diverse, Diamondiferous Kimberlites and Tectonic Settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Mineralogy and Petrology 112, 539–554. https://doi.org/10.1007/s00710-018-0607-6.; Mernagh T.P., Kamenetsky V.S., Kamenetsky M.B., 2011. A Raman Microprobe Study of Melt Inclusions in Kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 80 (1), 82–87. https://doi.org/10.1016/j.saa.2011.01.034.; Patterson M., Francis D., McCandless T., 2009. Kimberlites: Magmas or Mixtures? Lithos 112, 191–200. https://doi.org/10.1016/j.lithos.2009.06.004.; Pilbeam L.H., Nielsen T.F.D., Waight T.E., 2013. Digestion Fractional Crystallization (DFC): An Important Process in the Genesis of Kimberlites. Evidence from Olivine in the Majuagaa Kimberlite, Southern West Greenland. Journal of Petrology 54 (7), 1399–1425. https://doi.org/10.1093/petrology/egt016.; Plechov P.Y., Shcherbakov V.D., Nekrylov N.A., 2018. Extremely Magnesian Olivine in Igneous Rocks. Russian Geology and Geophysics 59 (12), 1702–1717. https://doi.org/10.1016/j.rgg.2018.12.012.; Rezvukhin D.I., Alifirova T.A., Golovin A.V., Korsakov A.V., 2020. A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals 10 (3), 264. https://doi.org/10.3390/min10030264.; Sharygin I.S., Golovin A.V., Dymshits A.M., Kalugina A.D., Solovev K.A., Malkovets V.G., Pokhilenko N.P., 2021. Relics of Deep Alkali–Carbonate Melt in the Mantle Xenolith from the Komsomolskaya–Magnitnaya Kimberlite Pipe (Upper Muna Field, Yakutia). Doklady Earth Sciences 500, 842–847. https://doi.org/10.1134/S1028334X21100147.; Sharygin I.S., Golovin A.V., Tarasov A.A., Dymshits A.M., Kovaleva E., 2022. Confocal Raman Spectroscopic Study of Melt Inclusions in Olivine of Mantle Xenoliths from the Bultfontein Kimberlite Pipe (Kimberley Cluster, South Africa): Evidence for Alkali-Rich Carbonate Melt in the Mantle beneath Kaapvaal Craton. Journal of Raman Spectroscopy 53 (3), 508–524. https://doi.org/10.1002/jrs.6198.; Soltys A., Giuliani A., Phillips D., 2018. A New Approach to Reconstructing the Composition and Evolution of Kimberlite Melts: A Case Study of the Archetypal Bultfontein Kimberlite (Kimberley, South Africa). Lithos 304–307, 1– 15. https://doi.org/10.1016/j.lithos.2018.01.027.; Soltys A., Giuliani A., Phillips D., Kamenetsky V.S., 2020. Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-Rich Melts – Evidence from the Kimberley Kimberlites (South Africa). Journal of Petrology 61 (6), egaa062. https://doi.org/10.1093/petrology/egaa062.; Тарасов А.А., Головин А.В., Шарыгин И.С. Щелочесодержащие минералы из расплавных включений в оливинах мантийных ксенолитов из кимберлитов трубки Бултфонтейн (кратон Каапвааль): свидетельство высоких концентраций щелочей в кимберлитовых расплавах. Геодинамика и тектонофизика. 2022. Т. 13. № 4. 0662. https://doi.org/10.5800/GT-2022-13-4-0662.; Treiman A.H., Essene E.J., 1984. A Periclase-Dolomite-Calcite Carbonatite from the Oka Complex, Quebec, and Its Calculated Volatile Composition. Contributions to Mineralogy and Petrology 149, 149–157. https://doi.org/10.1007/BF00371705.
-
3Academic Journal
المؤلفون: L. N. Pokhilenko, V. N. Korolyuk, N. P. Pokhilenko, Л. Н. Похиленко, В. Н. Королюк, Н. П. Похиленко
المساهمون: The work was carried as part of the state assignment of the IGM SB RAS (122041400157-9)., Работа выполнена по государственному заданию ИГМ СО РАН (№ 122041400157-9).
المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0780 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0780 ; 2078-502X
مصطلحات موضوعية: трубка Удачная, geothermometer, olivine, megacrystalline dunites, megacrystalline harzburgites, microimpurities, Udachnaya pipe, геотермометр, оливин, мегакристаллические дуниты, мегакристаллические гарцбургиты, микропримеси
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1916/844; Bussweiler Y., Brey G.P., Pearson D.G., Stachel T., Stern R.A., Hardman M.F., Kjarsgaard B.A., Jackson S.E., 2017. The Aluminum-in-Olivine Thermometer for Mantle Peridotites – Experimental versus Empirical Calibration and Potential Applications. Lithos 272–273, 301–314. https://doi.org/10.1016/j.lithos.2016.12.015.; De Hoog J.C.M., Gall L., 2005. Trace Element Geochemistry of Mantle Olivine and Its Application to Geothermometry. Ofioliti 30 (2), 182–183.; De Hoog J.C.M., Gall L., Cornell D.H., 2010. Trace-Element Geochemistry of Mantle Olivine and Application to Mantle Petrogenesis and Geothermobarometry. Chemical Geology 270 (1–4), 196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017.; Ellis D.J., Green D.H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology 71, 13–22. https://doi.org/10.1007/BF00371878.; Finnerty A.A., Boyd F.R., 1987. Thermobarometry for Garnet Peridotites: Basis for the Determination of Thermal and Compositional Structure of the Upper Mantle. In: P.H. Nixon (Ed.), Mantle Xenoliths. Wiley-Interscience, New York, p. 381–402.; Finnerty A.A., Rigden S.M., 1981. Olivine Barometry Application to Pressure Estimation for Terrestrial and Lunar Rocks. Lunar and Planetary Science XII, 279–281.; Grütter H.S., Latti D., Menzies A., 2006. Cr-Saturation Arrays in Concentrate Garnet Compositions from Kimberlite and Their Use in Mantle Barometry. Journal of Petrology 47 (4), 801–820. https://doi.org/10.1093/petrology/egi096.; Harley S.L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology 86, 359–373. https://doi.org/10.1007/BF01187140.; Kennedy C.S., Kennedy G.C., 1976. The Equilibrium Boundary Between Graphite and Diamond. Journal of Geophysical Research 81 (14), 2467–2470. https://doi.org/10.1029/JB081i014p02467.; Korolyuk V.N., Lavrent’ev Y.G., Usova L.V., Nigmatulina E.N., 2008. JXA-8100 Microanalyzer: Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics 49 (3), 165–168. https://doi.org/10.1016/j.rgg.2007.07.005.; Korolyuk V.N., Pokhilenko L.N., 2016. Electron Probe Determination of Trace Elements in Olivine: Thermometry of Depleted Peridotites. Russian Geology and Geophysics 57 (12), 1750–1758. https://doi.org/10.1016/j.rgg.2016.04.011.; McGregor I.D., 1974. The System MgO-SiO2-Al2O3: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions. American Mineralogist 59, 110–119.; O’Neill H.S.C., Wood B.J., 1979. An Experimental Study of Fe-Mg Partitioning between Garnet and Olivine and Its Calibration as a Geothermometer. Contributions to Mineralogy and Petrology 70, 59–70. https://doi.org/10.1007/BF00371872.; Pokhilenko N.P., Sobolev N.V., 1995. Mineralogical Criteria for Kimberlite Diamond Grade. In: Sobolev N.V., Zuev V.M., Pokhilenko N.P., Zinchuk N.N. (Eds), Kimberlites of Yakutia. Field Guide Book. Sixth International Kimberlite Conference. Novosibirsk, p. 79–81.; Pokhilenko N.P., Sobolev N.V., Boyd F.R., Pearson D.G., Shimizu N., 1993. Megacrystalline Pyrope Peridotites in the Lithosphere of the Siberian Platform: Mineralogy, Geochemical Peculiarities and the Problem of Their Origin. Russian Geology and Geophysics 34 (1), 71–84.; Pollack H.N., Chapman D.S., 1977. On the Regional Variation of Heat Flow, Geotherms and Lithospheric Thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.; Sobolev N.V., Lavrent’ev Yu.G., Pokhilenko N.P., Usova L.V., 1973. Chrome-Rich Garnets from the Kimberlites of Yakutia and Their Parageneses. Contributions to Mineralogy and Petrology 40, 39–52. https://doi.org/10.1007/BF00371762.; Ваганов В.И., Соколов С.В. Термобарометрия ультраосновных парагенезисов. М.: Недра, 1988. 149 с.
-
4Academic Journal
المؤلفون: L. N. Pokhilenko, N. P. Pokhilenko, V. P. Afanasiev, Л. Н. Похиленко, Н. П. Похиленко, В. П. Афанасьев
المساهمون: This research was funded by the Russian Foundation for Basic Research (Grant 20-05-00662), Russian Scientific Foundation (Project 21-17-00082) and was carried out for state assignment of IGM SB RAS., Работа выполнена при финансовой поддержке РФФИ (грант № 20–05–00662), РНФ (проект № 21–17–00082) и по государственному заданию ИГМ СО РАН. Авторы выражают благодарность В.Н. Королюку и М.В. Хлестову за помощь в проведении аналитических работ, рецензентам – за очень дельные замечания, которые помогли обратить внимание на принципиальные моменты изложения материала, от чего статья только выиграла.
المصدر: Geodynamics & Tectonophysics; Том 13, № 4 (2022); 0660 ; Геодинамика и тектонофизика; Том 13, № 4 (2022); 0660 ; 2078-502X
مصطلحات موضوعية: трубка Удачная, kimberlite, xenolith, upper mantle, Noyabrskaya pipe, Udachnaya pipe, кимберлит, ксенолит, верхняя мантия, трубка Ноябрьская
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1555/694; Brey G.P., Kohler T., 1990. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; De Hoog J.C.M., Gall L., Cornell D.H., 2010. Trace-Element Geochemistry of Mantle Olivine and Application to Mantle Petrogenesis and Geothermobarometry. Chemical Geology 270 (1–4), 196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017.; Finnerty A.A., Rigden S.M., 1981. Olivine Barometry Application to Pressure Estimation for Terrestrial and Lunar Rocks. Lunar and Planetary Science XII, 279–281.; Giuliani A., Phillips D., Kamenetsky V.S., Kendrick M.A., Wyatt B., Goemann K., Hutchinson G., 2014. Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology 55 (4), 831–858. http://doi.org/10.1093/petrology/egu008.; Harley S.L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology 86, 359–373. https://doi.org/10.1007/BF01187140.; Höfer H.E., Lazarov M., Brey G.P., Woodland A.B., 2009. Oxygen Fugacity of the Metasomatizing Melt in a Polymict Peridotite from Kimberley. Lithos 112, 1150–1154. http://doi.org/10.1016/J.LITHOS.2009.05.037.; Korolyuk V.N., Lavrent’ev Yu.G., Usova L.V., Nigmatulina E.N., 2008. JXA-8100 Microanalyzer: Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics 49 (3), 165–168. https://doi.org/10.1016/j.rgg.2007.07.005.; Lavrent’ev Yu.G., Karmanov N.S., Usova L.V., 2015. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope? Russian Geology and Geophysics 56 (8), 1154–1161. https://doi.org/10.1016/j.rgg.2015.07.006.; Lawless P.J., Gurney J.J., Dawson J.B., 1979. Polymict Peridotites from the Bultfontein and de Beers Mines, Kimberley, South Africa. In: F.R. Boyd, H.O.A. Meyer (Eds), The Mantle Sample: Inclusion in Kimberlites and Other Volcanics. Vol. 16. AGU Special Publication, p. 145–155. https://doi.org/10.1029/SP016p0145.; McGregor I.D., 1974. The System MgO-SiO2-Al2O3: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions. American Mineralogist 59, 110–119.; Nimis P., Taylor W., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.; Похиленко Л.Н. Особенности флюидного режима литосферной мантии Сибирской платформы (по ксенолитам глубинных пород в кимберлитах): Дис. … канд. геол.-мин. наук. Новосибирск, 2006. 129 с.; Pokhilenko L.N., 2018. Exotic Olivine-Mica Rocks from the Udachnaya-East Pipe (Yakutia): Features of the Chemical Composition and Origin. Doklady Earth Sciences 481 (2), 1050–1055. http://doi.org/10.1134/S1028334X18080202.; Pokhilenko N.P., 2009. Polymict Breccia Xenoliths: Evidence for the Complex Character of Kimberlite Formation. Lithos 112, 934–941. http://doi.org/10.1016/J.LITHOS.2009.06.019.; Zhang H.F., Menzies M.A., Gurney J.J., Zhou X., 2001а. Cratonic Peridotites and Silica-Rich Melts: Diopside-Enstatite Relationships in Polymict Xenoliths, Kaapvaal, South Africa. Geochimica et Cosmochimica Acta 65 (19), 3365–3377. http://doi.org/10.1016/S0016-7037(01)00675-5.; Zhang H.F., Menzies M.A., Mattey D., 2003. Mixed Mantle Provenance: Diverse Garnet Compositions in Polymict Peridotites, Kaapvaal Craton, South Africa. Earth and Planetary Science Letters 216 (3), 329–346. http://doi.org/10.1016/S0012-821X(03)00487-4.; Zhang H.F., Menzies M.A., Mattey D.P., Hinton R.W., Gurney J.J., 2001b. Petrology, Mineralogy and Geochemistry of Oxide Minerals in Polymict Xenoliths from the Bultfontein Kimberlites, South Africa: Implication for Low Bulk-Rock Oxygen Isotopic Ratios. Contributions to Mineralogy and Petrology 141, 367–379. http://doi.org/10.1007/S004100100254.; https://www.gt-crust.ru/jour/article/view/1555
-
5Academic Journal
المؤلفون: S. V. Alekseev, L. P. Alekseeva, A. S. Gladkov, N. S. Trifonov, E. V. Serebryakov, S. S. Pavlov, A. V. Il’in, С. В. Алексеев, Л. П. Алексеева, А. С. Гладков, Н. С. Трифонов, Е. В. Серебряков, С. С. Павлов, А. В. Ильин
المصدر: Geodynamics & Tectonophysics; Том 9, № 4 (2018); 1235-1253 ; Геодинамика и тектонофизика; Том 9, № 4 (2018); 1235-1253 ; 2078-502X
مصطلحات موضوعية: подземный рудник, chemical composition of groundwater, brine salinity, fracturing, fault-block structure, ring-shaped faults, physical-chemical simulation, Udachnaya kimberlite pipe, underground mine, химический состав подземных вод, минерализация рассолов, трещиноватость, разломно-блоковое строение, кольцевые разрывные нарушения, физико-химическое моделирование, кимберлитовая трубка Удачная
وصف الملف: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/679/414; Алексеев С.В. Криогидрогеологические системы Якутской алмазоносной провинции. Новосибирск: Гео, 2009. 319 с.; Алексеев С.В., Алексеева Л.П., Борисов В.Н. Динамика состава дренажных вод при разработке алмазодобывающего карьера (Якутия) // География и природные ресурсы. 2000. № 4. С. 143–146.; Alekseev S.V., Alekseeva L.P., Shvartsev S.L., Trifonov N.S., Sidkina E.S., 2017. Specifics of the Late Cenozoic geochemical evolution of chloride calcium brines in the Olenek cryoartesian basin. Geochemistry International 55 (5), 442–456. https://doi.org/10.1134/S0016702917050020.; Русский перевод: Рентгеновские методы изучения и структура глинистых минералов / Ред. Г. Браун. М.: Мир, 1965. 599 с.; Bukaty M.B., 1999a. Equilibrium between underground brines of the Tunguska basins and minerals of evaporite and terrigenous facies. Geologiya i Geofizika (Russian Geology and Geophysics) 40 (5), 750–763.; Букаты М.Б. Рекламно-техническое описание программного комплекса HydroGeo. М.: ВНТИЦ, 1999. 5 с. Номер государственной регистрации алгоритмов и программ во Всероссийском научно-техническом информационном центре (ВНТИЦ) №50980000051 ПК; Гладков А.С., Борняков С.А., Манаков А.В., Матросов В.А. Тектонофизические исследования при алмазопоисковых работах. Методическое пособие. М.: Научный мир, 2008. 175 с.; Hubbard C.R., Snyder R.L., 1988. RIR-measurement and use in quantitative XRD. Powder Diffraction 3 (2), 74–77. https://doi.org/10.1017/S0885715600013257.; Колганов В.Ф., Акишев А.Н., Дроздов А.В. Горно-геологические особенности коренных месторождений алмазов Якутии. Мирный: Мирнинская городская типография, 2013. 568 с.; Костровицкий С.И., Специус З.В., Яковлев Д.А., Фон-дер-Флаас Г.С., Суворова Л.Ф., Богуш И.Н. Атлас коренных месторождений алмазов Якутской кимберлитовой провинции. Мирный: Мирнинская городская типография, 2015. 480 с.; Мерзлотно-гидрогеологические условия Восточной Сибири / Ред. П.И. Мельников. Новосибирск: Наука, 1984. 191 с.; Вольф-сон Ф.Н., Яковлев П.Д. Структуры рудных полей и месторождений. М.: Недра, 1975. 271 с.; https://www.gt-crust.ru/jour/article/view/679
-
6Academic Journal
المؤلفون: Дроздов, Александр
مصطلحات موضوعية: КРИОЛИТОЗОНА, ГОРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ, ГАЗОНАСЫЩЕННЫЕ РАССОЛЫ,
ТРУБКА "УДАЧНАЯ", ПОДЗЕМНЫЙ РУДНИК, АГРЕССИВНОСТЬ МЕТАМОРФИЗОВАННЫХ ВОД وصف الملف: text/html