يعرض 1 - 20 نتائج من 218 نتيجة بحث عن '"триптофан"', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: The research was supported by the Ministry of Science and Higher Education of the Russian Federation (124020500028-4).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 15-23 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 15-23 ; 2500-3259

    وصف الملف: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4051/1796; Amato S.M., Orman M.A., Brynildsen M.P. Metabolic control of persister formation in Escherichia coli. Mol. Cell. 2013;50(4):475-487. DOI 10.1016/j.molcel.2013.04.002; Arenz S., Abdelshahid M., Sohmen D., Payoe R., Starosta A.L., Berninghausen O., Hauryliuk V., Beckmann R., Wilson D.N. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res. 2016;44(13):6471-6481. DOI 10.1093/nar/gkw470; Balsalobre C., Johansson J., Uhlin B.E. Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J. Bacteriol. 2006;188(16):5935-5944. DOI 10.1128/JB.00235-06; Bansal T., Englert D., Lee J., Hegde M., Wood T.K., Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157: H7 chemotaxis, colonization, and gene expression. Infect. Immun. 2007;75(9):4597-4607. DOI 10.1128/IAI.00630­-07; Botsford J.L., Harman J.G. Cyclic AMP in prokaryotes. Microbiol. Rev. 1992;56(1):100-122. DOI 10.1128/mr.56.1.100-122.1992; Chant E.L., Summers D.K. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol. Microbiol. 2007;63(1):35-43. DOI 10.1111/j.1365-2958.2006.05481.x; Chu W., Zere T.R., Weber M.M., Wood T.K., Whiteley M., Hidalgo-Romano B., Valenzuela E.J., McLean R.J.C. Indole production promotes Escherichia coli mixed­culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl. Environ. Microbiol. 2012;78(2):411-419. DOI 10.1128/AEM.06396-­11; Dalebroux Z.D., Svensson S.L., Gaynor E.C., Swanson M.S. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 2010;74(2): 171-199. DOI 10.1128/MMBR.00046-­09; Dalebroux Z.D., Swanson M.S. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 2012;10(3):203-212. DOI 10.1038/nrmicro2720; Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 2000;97(12):6640-6645. DOI 10.1073/pnas.120163297; Deutscher J., Francke C., Postma P.W. How phosphotransferase system­related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 2006;70(4):939­1031. DOI 10.1128/MMBR.00024-­06; Duysak T., Tran T.T., Afzal A.R., Jung C. Fluorescence spectroscopic analysis of ppGpp binding to cAMP receptor protein and histonelike nucleoid structuring protein. Int. J. Mol. Sci. 2021;22(15):7871. DOI 10.3390/ijms22157871; Gosset G., Zhang Z., Nayyar S., Cuevas W.A., Saier M.H. Transcriptome analysis of Crp­dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol. 2004;186(11):3516-3524. DOI 10.1128/JB.186.11.3516-3524.2004; Gutierrez-Ríos R.M., Freyre-Gonzalez J.A., Resendis O., Collado-Vides J., Saier M., Gosset G. Identification of regulatory network topological units coordinating the genome­wide transcriptional response to glucose in Escherichia coli. BMC Microbiol. 2007;7:53. DOI 10.1186/1471-2180-7-53; Hauryliuk V., Atkinson G.S., Murakami K.S., Tenson T., Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 2015;13(5):298-309. DOI 10.1038/nrmicro3448; Hengge R., Häussler S., Pruteanu M., Stülke J., Tschowri N., Turgay K. Recent advances and current trends in nucleotide second messenger signaling in bacteria. J. Mol. Biol. 2019;431(5):908-927. DOI 10.1016/j.jmb.2019.01.014; Hirakawa H., Inazumi Y., Masaki T., Hirata T., Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 2005;55(4):1113-1126. DOI 10.1111/j.1365-2958.2004.04449; Imamura R., Yamanaka K., Ogura T., Hiraga S., Fujita N., Ishihama A., Niki H. Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem. 1996;271(41):25423-25429. DOI 10.1074/jbc.271.41.25423; Irving S.E., Corrigan R.M. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology. 2018;164(3):268-276. DOI 10.1099/mic.0.000621; Isaacs H., Chao D., Yanofsky C., Saier M.H. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology. 1994;140(8):2125-2134. DOI 10.1099/13500872-140-8-2125; Ishizuka H., Hanamura A., Inada T., Aiba H. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J. 1994;13(13):3077-3082. DOI 10.1002/j.1460-2075.1994.tb06606.x; Kashevarova N.M., Akhova A.V., Khaova E.A., Tkachenko A.G. Role of alarmone (p)ppGpp in the regulation of indole formation depending on glucose content in Escherichia coli. Acta Biomedica Scientifica. 2022;7(3):162­-168. DOI 10.29413/ABS.2022-7.3.17 (in Russian); Kawamura-Sato K., Shibayama K., Horii T., Iimuma Y., Arakawa Y., Ohta M. Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol. Lett. 1999;179(2):345-352. DOI 10.1016/S0378­-1097(99)00433-­4; Kim D., Sitepu I.R., Hashidokoa Y. Induction of biofilm formation in the betaproteobacterium Burkholderia unamae CK43B exposed to exogenous indole and gallic acid. Appl. Environ. Microbiol. 2013; 79(16):4845-4852. DOI 10.1128/AEM.01209-13; Kwan B.W., Osbourne D.O., Hu Y., Benedik M.J., Wood T.K. Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol. Bioeng. 2015;112(3):588-600. DOI 10.1002/bit.25456; Lee J., Jayaraman A., Wood T.K. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 2007;7:42. DOI 10.1186/1471-­2180-­7-­42; Maisonneuve E., Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157(3):539-548. DOI 10.1016/j.cell.2014.02.050; Mechold U., Potrykus K., Murphy H., Murakami K.S., Cashel M. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res. 2013;41(12):6175-6189. DOI 10.1093/nar/gkt302; Oh Y.T., Lee K., Bari W., Raskin D.M., Yoon S.S. (p)ppGpp, a small nucleotide regulator, directs the metabolic fate of glucose in Vibrio cholera. J. Biol. Chem. 2015;290(21):13178-13190. DOI 10.1074/jbc.M115.640466; Potrykus K., Cashel M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 2008;62:35-51. DOI 10.1146/annurev.micro.62.081307.162903; Rickenberg H.V. Cyclic AMP in prokaryotes. Annu. Rev. Microbiol. 1974;28:353-369. DOI 10.1146/annurev.mi.28.100174.002033; Ro C., Cashel M., Fernández­Col L. The secondary messenger ppGpp interferes with cAMP­CRP regulon by promoting CRP acetylation in Escherichia coli. PLoS One. 2021;16(10):e0259067. DOI 10.1371/journal.pone.0259067; Sanchez-Vazquez P., Dewey C.N., Kitten N., Ross W., Gourse R.L. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc. Natl. Acad. Sci. USA. 2019;116(17):8310-8319. DOI 10.1073/pnas.1819682116; Stewart V., Yanofsky C. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J. Bacteriol. 1985;164(2):731-740. DOI 10.1128/jb.164.2.731-740.1985; Traxler M.F., Chang D.E., Conway T. Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose­lactose diauxie in Escherichia coli. Proc. Natl. Acad. Sci. USA. 2006;103(7): 2374-2379. DOI 10.1073/pnas.0510995103; Traxler M.F., Summers S.M., Nguyen H., Zacharia V.M., Smith J.T., Conway T. The global, ppGpp­mediated stringent response to amino acid starvation in Escherichia coli. Mol. Microbiol. 2008;68(5): 1128-1148. DOI 10.1111/j.1365-2958.2008.06229.x; Wood T.K., Knabel S.J., Kwan B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013;79(23):7116-­7121. DOI 10.1128/AEM.02636-­13; Yanofsky C., Horn V., Gollnick P. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J. Bacteriol. 1991;173(19):6009-6017. DOI 10.1128/jb.173.19.6009­-6017.1991; Yoshimura-Suzuki T., Sagami I., Yokota N., Kurokawa H., Shimizu T. DOS(Ec), a heme-regulated phosphodiesterase, plays an important role in the regulation of the cyclic AMP level in Escherichia coli. J. Bacteriol. 2005;187(19):6678-6682. DOI 10.1128/JB.187.19.6678-6682.2005; Zhang T., Zhu J., Wei S., Luo Q., Li L., Li S., Tucker A., Shao H., Zhou R. The roles of RelA/(p)ppGpp in glucose­starvation induced adaptive response in the zoonotic Streptococcus suis. Sci. Rep. 2016;6:27169. DOI 10.1038/srep27169; Zhou X., Meng X., Sun B. An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli. Cell Res. 2008;18(9):937-948. DOI 10.1038/cr.2008.67; https://vavilov.elpub.ru/jour/article/view/4051

  3. 3
    Academic Journal

    المصدر: Medical Immunology (Russia); Том 26, № 4 (2024); 861-872 ; Медицинская иммунология; Том 26, № 4 (2024); 861-872 ; 2313-741X ; 1563-0625

    وصف الملف: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3060/1987; Моисеева Ю.П., Пискунов Г.З. Развитие персонализированного подхода в лечении полипозного риносинусита // Вестник оториноларингологии, 2022. Т. 87, № 3. С. 40-45.; Моисеева Ю.П., Пискунов Г.З. Биологическая терапия – новые возможности лечения Т2- индуцированного полипозного риносинусита // Фармакология & Фармакотерапия, 2022. № S1. С. 44-47.; Пискунов Г.З. Клинические фенотипы полипозного риносинусита // Российская ринология, 2019. Т. 27, № 4. С. 224-231.; Рязанцев С.В., Будковая М.А., Артемьева Е.С., Хамгушкеева Н.Н. Полипозный риносинусит: основные аспекты противорецидивной терапии и восстановления носового дыхания // Медицинский совет, 2019. № 20. С. 13-18.; Савлевич Е.Л., Егоров В.И., Шачнев К.Н., Татаренко Н.Г. Анализ схем лечения полипозного риносинусита в Российской Федерации // Российская оториноларингология, 2019. Т. 18, № 1 (98). С. 124-135.; Шабалдина Е.В., Шабалдин А.В., Михайленко В.А., Колобов А.А., Рязанцев С.В., Симбирцев А.С. Особенности динамики цитокинов назального секрета при локальном воздействии иммуномодулятора гамма -D-глутамил-L-триптофана (Бестим) на слизистую оболочку детей раннего и дошкольного возраста с гипертрофией миндалин лимфоидного глоточного кольца // Российская оториноларингология, 2013. № 2 (63). С. 89-96.; Bachert C., Bhattacharyya N., Desrosiers M., Khan A.H. Burden of disease in chronic rhinosinusitis with nasal polyps. J. Asthma Allergy., 2021, no. 14, pp. 127-134.; Fokkens W.J., Viskens A.S., Backer V., Conti D., de Corso E., Gevaert P., Scadding G.K., Wagemann M., Bernal-Sprekelsen M., Chaker A., Heffler E., Han J.K., van Staeyen E., Hopkins C., Mullol J., Peters A., Reitsma S., Senior B.A., Hellings P.W. EPOS/EUFOREA update on indication and evaluation of Biologics in Chronic Rhinosinusitis with Nasal Polyps 2023. Rhinology, 2023, Vol. 61, no. 3, pp. 194-202.; Gotlib J. World health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am. J. Hematol., 2015, no. 90, pp. 1077-1089.; Huber J.P., Gonzales-van Horn S.R., Roybal K.T., Gill M.A., Farrar J.D. IFN-α suppresses GATA3 transcription from a distal exon and promotes H3K27 trimethylation of the CNS-1 enhancer in human Th2 cells. J. Immunol., 2014, no. 192, pp. 5687-5694.; Laidlaw T.M., Menzies-Gow A., Caveney S., Han J.K, Martin N., Israel E., Lee J.K, Llanos J.P., Martin N., Megally A., Parikh B., Vong S., Welte T., Corren J. Tezepelumab efficacy in patients with severe, uncontrolled asthma with comorbid nasal polyps in NAVIGATOR. J. Asthma Allergy, 2023, no. 16, pp. 915-932.; Laidlaw T.M., Mullol J., Woessner K.M., Amin N., Mannent L.P. Chronic rhinosinusitis with nasal polyps and asthma. J. Allergy Clin. Immunol. Pract., 2021, Vol. 9, no. 3, pp. 1133-1141.; Radabaugh J.P., Han J.K., Moebus R.G., Somers E., Lam K. Analysis of histopathological endotyping for chronic rhinosinusitis phenotypes based on comorbid asthma and allergic rhinitis. Am. J. Rhinol. Allergy, 2019, Vol. 33, no. 5, pp. 507-512.; Sousa J.C., Etchbehere R.M., Rodovalho Alves E.A., Stark L.M., Murta E.F.C., Michelin M.A. Interferon-α action in cytokine profile in eosinophilic nasal polyp cultures. Braz. J. Otorhinolaryngol., 2021, Vol. 87, Iss. 3, pp. 260-268.; https://www.mimmun.ru/mimmun/article/view/3060

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: 1

    المصدر: Russian Journal of Infection and Immunity; Vol 13, No 3 (2023); 591-596 ; Инфекция и иммунитет; Vol 13, No 3 (2023); 591-596 ; 2313-7398 ; 2220-7619

    وصف الملف: application/pdf

  6. 6
    Academic Journal

    المساهمون: The study was performed without external funding., Работа выполнялась без спонсорской поддержки.

    المصدر: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 411-421 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 411-421 ; 2619-1156 ; 2221-996X

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/513/768; https://www.biopreparations.ru/jour/article/downloadSuppFile/513/704; https://www.biopreparations.ru/jour/article/downloadSuppFile/513/718; https://www.biopreparations.ru/jour/article/downloadSuppFile/513/771; Gburek J, Konopska B, Gołab K. Renal handling of albumin — from early findings to current concepts. Int J Mol Sci. 2021;22(11):5809. https://doi.org/10.3390/ijms22115809; Mishra V, Heath RJ. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. Int J Mol Sci. 2021;22(16):8411. https://doi.org/10.3390/ijms22168411; Тхай СВ, Захаров ВВ, Русанов ВМ. Альбумин — наиболее востребованный препарат крови в трансфузиологической практике. Вестник службы крови России. 2012;(3):40–5.; Kragh-Hansen U, Chuang VTG, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25(6):695–704. https://doi.org/10.1248/bpb.25.695; Tajmir-Riahi НА. An overview of drug binding to human serum albumin: protein folding and unfolding. Scientia Iranica. 2007;14(2):87–95.; Boldt J. Use of albumin: an update. Br J Anaesth. 2010;104(3):276–84. https://doi.org/10.1093/bja/aep393; Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol. 2007;151(5):580–90. https://doi.org/10.1038/sj.bjp.0707251; Клигуненко ЕН, Зозуля ОА. Человеческий сывороточный альбумин (прошлое и будущее). Медицина неотложных состояний. 2017;(5):26–30. https: //doi.org/10.22141/2224-0586.5.84.2017.109356; https://www.biopreparations.ru/jour/article/view/513

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (АААА-А19-119112290009-1).

    المصدر: Acta Biomedica Scientifica; Том 7, № 3 (2022); 162-168 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3563/2365; Kim J, Park W. Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J Microbiol. 2015; 53(7): 421-428. doi:10.1007/s12275-015-5273-3; Vega N, Allison K, Khalil A, Collins J. Signaling-mediated bacterial persister formation. Nat Chem Biol. 2012; 8(5): 431-433. doi:10.1038/nchembio.915; Potrykus K, Cashel M. (p)ppGpp: Still magical?Annu Rev Microbiol. 2008; 62: 35-51. doi:10.1146/annurev.micro.62.081307.162903; Korch SB, Henderson TA, Hill TM. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol. 2003; 50(4): 1199-1213. doi:10.1046/j.1365-2958.2003.03779.x; Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015; 13(5): 298-309. doi:10.1038/nrmicro3448; Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm. 2020; 2: 100018. doi:10.1016/j.bioflm.2019.100018; Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT Homolog (RSH) superfamily: Distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One. 2011; 6(8): e23479. doi:10.1371/journal.pone.0023479; Srivatsan A, Wang J. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol. 2008; 11(2): 100-105. doi:10.1016/j.mib.2008.02.001; Liu S, Wu N, Zhang S, Yuan Y, Zhang W, Zhang Y. Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Front Microbiol. 2017; 8: 1795. doi:10.3389/fmicb.2017.01795; Zarkan A, Liu J, Matuszewska M, Gaimster H, Summers DK. Local and universal action: The paradoxes of indole signalling in bacteria. Trends Microbiol. 2020; 28(7): 566-577. doi:10.1016/j.tim.2020.02.007; Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci USA. 2019; 116(17): 8310-8319. doi:10.1073/pnas.1819682116; Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000; 97(12): 6640-6645. doi:10.1073/pnas.120163297; Kim D, Sitepu IR, Hashidokoa Y. Induction of biofilm formation in the betaproteobacterium Burkholderia unamae CK43B exposed to exogenous indole and gallic acid. Appl Environ Microbiol. 2013; 79(16): 4845-4852. doi:10.1128/AEM.01209-13; Han TH, Lee JH, Cho MH, Wood TK, Lee J. Environmental factors affecting indole production in Escherichia coli. Res Microbiol. 2011; 162(2): 108-116. doi:10.1016/j.resmic.2010.11.005; Hu M, Zhang C, Mu Y, Shen Q, Feng Y. Indole affects biofilm formation in bacteria. Indian J Microbiol. 2010; 50(4): 362-368. doi:10.1007/s12088-011-0142-1; Isaacs HJr, Chao D, Yanofsky C, Saier MHJr. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology. 1994; 140(8): 2125-2134. doi:10.1099/13500872-140-8-2125; Stewart V, Yanofsky C. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J Bacteriol. 1985; 164(2): 731-740. doi:10.1128/jb.164.2.731-740.1985; Amato SM, Orman MA, Brynildsen MP. Metabolic control of persister formation in Escherichia coli. Mol Cell. 2013; 50(4): 475-487. doi:10.1016/j.molcel.2013.04.002; https://www.actabiomedica.ru/jour/article/view/3563

  9. 9
    Academic Journal

    المصدر: Food systems; Vol 4, No 1 (2021); 45-55 ; Пищевые системы; Vol 4, No 1 (2021); 45-55 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2021-4-1

    وصف الملف: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/101/132; Lei, T., Sun, D. -W. (2019). Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends in Food Science and Technology, 88, 527-542. https://doi.org/10.1016/j.tifs.2019.04.013; Chen, Y., MacNaughtan, W., Jones, P., Yang, O., Williams, H., Foster, T. (2021). Selection of potential molecular markers for cheese ripening and quality prediction by NMR spectroscopy. LWT, 136, Article 110306. https://doi.org/10.1016/j.lwt.2020.110306; Kraggerud, H., Næs, T., Abrahamsen, R. K. (2014). Prediction of sensory quality of cheese during ripening from chemical and spectroscopy measurements. International Dairy Journal, 34(1), 6-18. https://doi.org/10.1016/j.idairyj.2013.07.008; Parrini, S., Crovetti, A., Aquilani, C., Nannucci, L., Bozzi, R. (2020). Nearinfrared spectroscopy to assess chemical composition of sheep and goat cheeses. Acta Fytotechnica Et Zootechnica, 23, 97-104. https://doi.org/10.15414/afz.2020.23.mi-fpap.97-104; Ayvaz, H., Mortas, M., Dogan, M. A., Atan, M., Yildiz Tiryaki, G., Karagul Yuceer, Y. (2020). Near- and mid-infrared determination of some quality parameters of cheese manufactured from the mixture of different milk species. Journal of Food Science and Technology, https://doi.org/10.1007/s13197-020-04861-0; Fox, P.F., McSweeney, P.L.H., Singh, T.K. (1995). Methods for assessing proteolysis in cheese during ripening, Chapter in a book: Chemistry of Structure-Function Relationships in Cheese. New York: Plenum Publishing Corp. 1995. ISBN 978-1-4615-1913-3; Bansal, N., Piraino, P., McSweeney, P.L.H. (2010). Determination of Proteolysis in Cheese. Chapter in a book: Handbook of Dairy Foods Analysis, Boca Raton: CRC Press. 2010. ISBN 978-1-4200-4631-1; Гудков А. В. Сыроделие: технологические, биологические и физико-химические аспекты. М.: ДеЛи принт. — 2004. — 804 с. ISBN 5-94343-071-7; Nielsen, S.S. (2017). Food Analysis. Springer. 2017. ISBN978-3-319-45776-5; Tremblay, L., Laporte, M.F., Leonil, J., Dupont, D., Paquin, P. (2003). Ouantitation of proteins in milk and milk products. Chapter in a book: Advanced Dairy Chemistry Volume 1: Proteins. Springer Science & Business Media. 2003. ISBN978-1-4419-8602-3; Wallace, J.M., Fox, P.F. (1998). Rapid spectrophotometric and fluorimet-ric methods for monitoring nitrogenous (proteinaceous) compounds in cheese and cheese fractions: a review. Food Chemistry, 62(2), 217-224. https://doi.org/10.1016/S0308-8146(97)00162-3; Myagkonosov, D.S., Abramov, D.V., Ovchinnikova, E.G., Krayushkina, V.N. (2020). Express Method for Assessing Proteolysis in Cheese and Aromatic Additives with Cheese Flavor. Food Systems, 3(4), 4-10. https://doi.org/10/21323/2618-9771-2020-3-4-4-10; Samples, D. R., Richter, R. L., Dill, C. W. (1984). Measuring proteolysis in Cheddar cheese slurries: Comparison of Hull and trinitrobenzene sulfonic acid procedures. Journal of Dairy Science, 67(1), 60-63. https://doi.org/10.3168/jds.S0022-0302(84)81266-7; Olson, B. J., Markwell, J. (2007). Assays for determination of protein concentration. Current Protocols in Protein Science / Editorial Board, John E. Coligan at al. Chapter 3. https://doi.org/10.1002/0471140864.ps0304s48; Hortin, G.L., Meilinger, B. (2005). Cross-Reactivity of Amino Acids and Other Compounds in the Biuret Reaction: Interference with Urinary Peptide Measurements. Clinical Chemistry, 51(8), 1411-1419. https://doi.org/10.1373/clinchem.2005.052019; Georgi, G., Sawatzki, G. (1988). Molecular Weight Determination of Protein Hydrolysates (FPLC). Chapter in a book: Milk proteins: nutritional, clinical, functional and technological aspects. Darmstadt: Steinkopff; New York: Springer. 1988. ISBN 13: 978-3-642-85375-3; Stoscheck, C.M. (1990). Quantitation of protein. Chapter in a book: Methods in Enzymology. Vol. 182. Guide to Protein Purification. Academic Press, Inc. 1990. https://doi.org/10.1016/0076-6879(90)82008-P; Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4(11), 2411-2423. https://doi.org/10.1002/pro.5560041120; Silvestre, M.P.C. (1997). Review of methods for the analysis of protein hydrolysates. Food Chemistry, 60(2), 263-271. https://doi.org/10.1016/S0308-8146(96)00347-0; Silvestre, M.P.C., Dauphin, C., Hamon, M. (1993). Application of UV absorption and second-derivative spectrophotometry for analysing casein hydrolysates. Analytica ChimicaActa, 282(3), 603-612. https://doi.org/10.1016/0003-2670(93)80125-5; Vakaleris, D. G., Price, W. V. (1959). A rapid spectrophotometric method for measuring cheese ripening. Journal of Dairy Science, 42(2), 264-276. https://doi.org/10.3168/jds.S0022-0302(59)90562-4; Schroeder, C. L., Bodyfelt, F. W., Wyatt, C. J., McDaniel, M. R. (1988). Reduction of sodium chloride in cheddar cheese: Effect on sensory, microbiological, and chemical properties. Journal of Dairy Science, 71(8), 2010-2020. https://doi.org/10.3168/jds.S0022-0302(88)79776-3; Lin, Y. C., Washam, C. J., Vedamuthu, E. R. (1982). Vakaleris-Price and Hull methods for determining soluble tyrosine and tryptophan in blue cheese. Journal of Dairy Science, 65(5), 707-711. https://doi.org/10.3168/jds.S0022-0302(82)82258-3; Ivens, K. O., Baumert, J. L., Hutkins, R. L., Taylor, S. L. (2017). Effect of proteolysis during Cheddar cheese aging on the detection of milk protein residues by ELISA. Journal of Dairy Science, 100(3), 1629-1639. https://doi.org/10.3168/jds.2016-11649; Visser, S., Slangen, C. J., Robben, A. J. P. M. (1992). Determination of molecular mass distributions of whey protein hydrolysates by high-performance size-exclusion chromatography. Journal of Chromatography A, 599(1-2), 205-209. https://doi.org/10.1016/0021-9673(92)85474-8; McSweeney, P. L. H., Fox, P. F. (1997). Chemical methods for the characterization of proteolysis in cheese during ripening. Lait, 77(1), 41-76. https://doi.org/10.1051/lait:199713; Kirschenbaum, D. M. (1982). Molar absorptivity and values for proteins at selected wavelengths of the ultraviolet and visible regions. XXII. Applied Biochemistry and Biotechnology: Part A: Enzyme Engineering and Biotechnology, 7(6), 475-495. https://doi.org/10.1007/BF02799179; https://www.fsjour.com/jour/article/view/101

  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المؤلفون: Mokryk, O. Ya.

    المصدر: Clinical Dentistry; No. 4 (2019); 33-44 ; Клінічна стоматологія; № 4 (2019); 33-44 ; 2415-3036 ; 2311-9624 ; 10.11603/2311-9624.2019.4

    وصف الملف: application/pdf

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المصدر: Pharmaceutical Review; No. 4 (2017); 22-29 ; Фармацевтичний часопис; № 4 (2017); 22-29 ; 2414-9926 ; 2312-0967 ; 10.11603/2312-0967.2017.4

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document

  18. 18
  19. 19
    Academic Journal

    المصدر: Biomedical Photonics; Том 9, № 2 (2020); 10-17 ; 2413-9432 ; 10.24931/2413-9432-2020-9-2

    وصف الملف: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/422/292; https://www.pdt-journal.com/jour/article/view/422/303; Kim B., Jerome D., Yeung J. Diagnosis and management of psoriasis // Can. Fam. Physician. – 2017. – Vol. 63, No. 4. – P. 278–285.; Kalyan S., Shirazi N., Jindal R., et al. Effect of Methotrexate Therapy on p53 and Bcl2 Expression in Patients with Psoriasis: A Prospective Hospital-Based Cohort Study // Ann. Med. Health. Sci. Res. – 2018. – Vol. 8, No. 1. – P. 84–89.; Raj D., Brash D., Grossman D. Keratinocyte apoptosis in epidermal development and disease // J. Invest. Dermatol. – 2006. – Vol. 126, No. 2. – P. 243–57; Moorchung N., Vasudevan B., Kumar D., et al. Expression of apoptosis regulating proteins p53 and bcl-2 in psoriasis // Indian Journal of Pathology and Microbiology. – 2015. – Vol. 58, No. 4. – P. 423–426.; Yoo I., Lee J., Song S., et al. T‐helper 17 cells: the driving force of psoriasis and psoriatic arthritis // Int. J. Rheum. Dis. – 2012. – Vol. 15, No. 6. – P. 531–537.; Mattozzi C., Salvi M., D’Epiro S. et al. Importance of regulatory T cells in the pathogenesis of psoriasis: review of the literature // Dermatology. – 2013. – Vol. 227, No. 2. – P. 134–145.; Tang Q., Bluestone J. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation // Nat. Immunol. – 2008. – Vol. 9, No. 3. – P. 239–244.; Zhang L., Yang l., Wei J., et al. Characterization of Th17 and FoxP3+ Treg Cells in Paediatric Psoriasis Patients // Scandinavian Journal of Immunology. – 2016. – Vol. 83, No. 3. – P. 174–180.; Feldman S., Fleischer A., Cooper J. New topical treatments change the pattern of treatment of psoriasis: dermatologists remain the primary providers of this care // Int. J. Dermatol. – 2000. – Vol. 39, No. 1. – P. 41–44.; Horn E., Fox K., Patel V. et al. Are patients with psoriasis undertreated? Results of National Psoriasis Foundation survey // J. Am. Acad. Dermatol. – 2007. – Vol. 57, No. 6. – P. 957–62.; Mason A., Mason J., Cork M., et al. Topical treatments for chronic plaque psoriasis: An abridged Cochrane Systematic Review // J. Am. Acad. Dermatol. – 2013. – Vol. 69, No. 5. – P. 799–807.; Menter A., Korman N., Elmets C., et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy // J. Am. Acad. Dermatol. – 2010. – Vol. 62, No. 1. – P. 114–35.; Weatherhead S., Farr P., Jamieson D, et al. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation // J. Invest. Dermatol. – 2011. – Vol. 131, No. 9. – P. 1916–26.; Wong T., Hsu L., Liao W. Phototherapy in Psoriasis: A review of mechanisms of action // J. Cutan. Med. Surg. – 2013. – Vol. 17, No. 1. – P. 6–12.; Н.Г. Короткий, В.Ю. Уджуху, А.Э. Абдуллаева. Терапевтические возможности тимодепрессина у больных псориазом и механизмы его лечебного действия // Поликлиника. – 2013. – Т. 1, №1. – С. 105–107.; https://www.pdt-journal.com/jour/article/view/422

  20. 20
    Academic Journal

    المساهمون: O.I. Shadyro, О.И. Шадыро

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 55, № 1 (2019); 26-31 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 55, № 1 (2019); 26-31 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2019-55-1

    وصف الملف: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/368/347; Изучение влияния акцепторов заряда на процесс радиационно-химического арбоксилиования системы индол-серин / Л. Н. Жигунова [и др.] // Химия высоких энергий. – 2015. – Т. 49, № 5. − С. 349–353.; Кеба, В. В. Математическая модель радиолиза воды и водных растворов / В. В. Кеба, Н. А. Семиколенова // Математические структуры и моделирование. – 2000. – Вып. 6. – C. 72–77.; Бугаенко, В. Л. Количественная модель радиолиза жидкой воды и разбавленных водных растворов водорода, кислорода и перекиси водорода. I. Формулировка модели / В. Л. Бугаенко, В. М. Бяков // Химия высоких энергий. – 1998. – Т. 32, № 6. – С. 407–414.; Пикаев, А. К. Реакционная способность первичных продуктов радиолиза воды / А. К. Пикаев, С. А. Кабакчи: Спр. – М.: Энергоиздат, 1982. – 200 c.; Пикаев, А. К. Современная радиационная химия. Радиолиз газов и жидкостей / А. К. Пикаев. – М.: Наука, 1986. – 440 с.; Chemical Kinetics Database [Electronic resource] / National Institute of Standarts and Technology. – 2013. – Mode of access: http://kinetics.nist.gov/index.php. – Date of access: 18.05.2016.; Сазонов, А. Б. Гамма-радиолиз бинарной системы «этанол–вода» в присутствии кислорода / А. Б. Сазонов, Н. В. Марченко, А. В. Никитин // Химия высоких энергий. – 2015. – Т. 49, № 4. – C. 253–264.; Гордеев, А. В. Моделирование радиационно-химических выходов Н2 и Н2О2 в концентрированных растворах / А. В. Гордеев, Б. Г. Ершов, А. В. Сафонов // Химия высоких энергий. – 2014. – Т. 48, № 4. – С. 272–280.; Радиационно-индуцированная деструкция гидроксилсодержащих аминокислот в водных растворах / А. А. Сладкова [и др.] // Химия высоких энергий. – 2012. – Т. 46, № 4. – C. 283–288.; https://vestichem.belnauka.by/jour/article/view/368