-
1Academic Journal
المؤلفون: K. Sazonov E., К. Сазонов Е.
المصدر: Ice and Snow; Том 63, № 2 (2023); 302-312 ; Лёд и Снег; Том 63, № 2 (2023); 302-312 ; 2412-3765 ; 2076-6734
مصطلحات موضوعية: brash ice, consolidated layer, porosity, strength, channel, тёртый лёд, консолидированный слой, пористость, прочность, канал
وصف الملف: application/pdf
Relation: https://ice-snow.igras.ru/jour/article/view/1228/668; Андреев О.М., Гудошников Ю.П., Виноградов Р.А., Клячкин С.В. Ледовые каналы как лимитирующий фактор при проектировании терминалов отгрузки углеводородов в прибрежной зоне арктических морей // Науч.-технич. сб. “Вести газовой науки”. 2019. № 2 (39). С. 46–52.; Астафьев В.Н., Сурков Г.А., Трусков П.А. Торосы и стамухи Охотского моря. СПб: “Прогресс-Погода”, 1997. 197 с.; Сазонов К.Е. К вопросу о пористости киля тороса (по поводу статьи В.В. Харитонова) // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 60–66. https://doi.org/10.30758/0555-2648-2021-67-1-60-66; Сазонов К.Е. Движение судов в тёртых льдах: результаты исследований // Проблемы Арктики и Антарктики. 2021. Т. 67. № 4. С. 406–424. https://doi.org/10.30758/0555-2648-2021-67-4-406-424; Сазонов К.Е. Тёртый лёд – рукотворная проблема морской ледотехники. // Природа. 2022. № 3. С. 15–26.; Смирнов А.П., Майнагашев Б.С., Голохвастов В.А., Соколов Б.М. Безопасность плавания во льдах. М.: Транспорт, 1993. 335 с; Харитонов В.В. Распределение пористости неконсолидированной части киля торосов // Проблемы Арктики и Антарктики. 2021. Т. 67. № 1. С. 44–59. https://doi.org/10.30758/0555-2648-2021-67-1-44-59; Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с.; Astrup O.S. Experimental Investigations of Ice Rubble: Shear Box and Pile Testing. Master Thesis. Norwegian University of Science and Technology. 2012. 145 p.; Astrup O.S., Helgøy H., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part III: shear box experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_090.pdf. Дата обращения: 01 03 2023; Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-106.pdf. Дата обращения: 01 03 2023; Boroojerdi M.T., Bailey E., Taylor R.S. Experimental study of the effect of submersion time on the strength development of freeze bonds // Cold Regions Science and Technology. 2020. V. 172. 102986. https://doi.org/10.1016/j.coldregions.2020.103120; Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proc. of the Thirtieth (2020) Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 617–621.; Bridges R., Riska K., Haase A. Experimental Tests on the Consolidation of Broken and Brash Ice // Электронный ресурс. https://www.poac.com/Papers/2019/pdf/POAC19-144.pdf. Дата обращения: 01 03 2023; Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proc. of the Thirtieth Intern. Ocean and Polar Engineering Conf. Shanghai, China, 2020. P. 639–643.; Carstens T. Maintaining an Ice-Free Harbor by Pumping of Warm Water // Proc. of the Fourth Intern. Conf. on Port and Ocean Engineering under Arctic Conditions, Delft, St. Johns, Canada. 1977. V. 1. P. 347–357.; Chomatas K. Development of Brash Ice Growth Models and Estimation of the Energy Needs to Manage Ice in the Yamal LNG port in Sabetta. Master of Science Case Study. Delft University of Technology. 2015. 202 p.; Coche E., Kalinin A. Yamal LNG: Challenges of an LNG port in Arctic // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_172.pdf. Дата обращения: 01 03 2023; Eranti E. Penttinen M., Rekonen T. Extending the Ice Navigation Season in the Saimaa Canal // Proc. 7th Int. POAC Conf. Helsinki, Finland. 1983. P. 494–504.; Ettema R., Huang H.P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90–40. 1990. 120 p.; Ettema R., Urroz-Aguirre G.E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326.; Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part I: experimental set-up, ice-properties and freeze-bond texture // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_125.pdf. Дата обращения: 01 03 2023; Helgøy H., Astrup O.S., Høyland K.V. Laboratory work on freeze-bonds in ice rubble, part II: results from individual freeze-bond experiments // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_126.pdf. Дата обращения: 01 03 2023; Kannari P. Measurements of characteristics and propulsion performance of a ship in old ice-clogged channels // Proc. of the 7nd Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC–83, Espoo, Fin-land. 1983. V. 2. P. 600–619.; Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Электронный ресурс. https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions. Дата обращения 01.03.2023; Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Электронный ресурс. https://www.poac.com/Papers/2013/pdf/POAC13_023.pdf. Дата обращения: 01 03 2023; Liferov P., Bonnemaire B. Ice rubble behaviour and strength: Part I. Review of testing and interpretation of results // Cold Regions Science Technology. 2005. 41 (2). P. 135–151. https://doi.org/10.1016/j.coldregions.2004.10.001; Loset S., Shkhinek K.N., Gudmestad O.T., Hoyland K.V. Actions from Ice on Arctic Offshore and Coastal Structures. St. Petersburg: Publusher “Lan”, 2006. 272 p.; Marchenko A., Chenot C. Regelation of ice blocks in the water and the air // Proc. of the 20th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Lulea. Sweden. 2009. V. 1. P. 543–554.; Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. 108539. https://doi.org/10.1016/j.oceaneng.2020.108539; Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proc. of the 25th Intern. Conf. on Port and Ocean Engineering under Arctic Conditions. Delft, The Netherlands, 2019. P. 53–65.; Mellor M. Ship resistance in thick brash ice // Cold Regions Science Technology. 1980. V. 3 № 4. P. 305–321. Montenegro Cabrera I. Smoothed particle hydrodynamics modeling of brash ice. Master Thesis. University of Rostock. 2017. 94 p.; Nortala-Hoikkanen A. Development of brash ice in channels navigated by ship // Proc. of the 15th Intern. Conf. on Port and Ocean Engineering in Arctic Conditions, POAC-99, Espoo, Finland. 1999. V. 2. P. 620–630.; Palmer A., Croasdale K. Arctic Offshore Engineering. World Scientific Publ. 2013. 357 p.; Pan H., Eranti E. Applicability of Air Bubbler Lines for Ice Control in Harbours // China Ocean Engineering. 2007. V. 21. №. 2. P. 215–224.; Pan H., Eranti E. Flow and heat transfer simulations for the design of the Helsinki Vuosaari harbour ice control system // Cold Regions Science and Technology. 2009. № 55 P. 304–310. https://doi.org/10.1016/j.coldregions.2008.09.001; Patil A., Sand B., Fransson L., Bonath V., Cwirzen A. Simulation of brash ice behavior in the gulf of Bothnia using smoothed particle hydrodynamics formulation // Journ. of Cold Regions Engineering – ASCE. 2021. V. 35. № 2. 04021003. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000245; Prasanna M. Numerical Simulation of Brash Ice. Master Thesis. University of Rostock. 2018. 92 p.; Prasanna M., Wei M., Polojärvi А., Cole D.M. Breakage of saline ice blocks in ice-to-ice contact // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-065.pdf. Дата обращения: 01 03 2023; Prasanna M., Wei M., Polojärvi A., Cole D.M. Laboratory experiments on floating saline ice block breakage in ice-to-ice contact // Cold Regions Science and Technology 2021. V. 189. 103315. https://doi.org/10.1016/j.coldregions.2021b.103315; Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt .1997. V. 52. 72 p.; Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model – development and validation. // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. https://doi.org/10.1016/j.coldregions.2018.09.004; Sandkvist J. Brash Ice Behavior in Frequented Ship Channels // University of Luleå. 1986. №. 139. 132 p.; Sorsimo A., Nyman T., Heinonen J. Ship-ice interaction in a channel. Winter navigation research board. Helsinki, Finland. Research Report. 2016. №. 93. 22 p.; Tuovinen P. The Size Distribution of Ice Blocks in a Broken Channel. Ship hydrodynamics laboratory, Helsinki University of Technology. Otaniemi, Espoo, 1979. 19 p.; Zhaka V., Bonath V., Sand B., Cwirzen A. Physical and mechanical properties of ice from a refrozen ship channel ice in Bay of Bothnia // Электронный ресурс. https://sintef.brage.unit.no/sintefxmlui/bit-stream/handle/11250/2716075/IAHR_2020_BS_-Physical%2band%2bmechanical%2bproperties%2bof%2bice%2bfrom%2ba%2brefrozen%2bship%2bchannel%2bice%2bin%2bBay%2bof%2bBothnia.pdf?sequence=1&isAllowed=y. Дата обращения: 01 03 2023; Zhaka V., Bridges R., Riska K., Cwirzen A. Brash ice formation on a laboratory scale // Электронный ресурс. https://www.poac.com/Papers/2021/POAC21-086.pdf. Дата обращения: 01 03 2023; https://ice-snow.igras.ru/jour/article/view/1228
-
2Academic Journal
المؤلفون: K. E. Sazonov, К. Е. Сазонов
المساهمون: Study was implemented within project SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Project are co-funded by the European Union, the Russian Feder, Исследование выполнено по Проекту SIMREC “Simulator for Improving Cross-border Oil Spill Response in Extreme Conditions”. Проект софинансируется Европейским Союзом, Российской Федерацией и Республикой Финляндия.
المصدر: Arctic and Antarctic Research; Том 67, № 4 (2021); 406-424 ; Проблемы Арктики и Антарктики; Том 67, № 4 (2021); 406-424 ; 2618-6713 ; 0555-2648 ; 10.30758/0555-2648-2021-67-4
مصطلحات موضوعية: тертый лед, ice basin, ice resistance, method of discrete elements, propeller, ледовое сопротивление, ледовый бассейн, метод дискретных элементов
وصف الملف: application/pdf
Relation: https://www.aaresearch.science/jour/article/view/406/216; Безопасность плавания во льдах / А.П. Смирнов, Б.С. Майнагашев, В.А. Голохвастов, Б.М. Соколов. М.: Транспорт, 1993. 335 с.; Сазонов К.Е. Развитие ледовой ходкости судов в ХХI веке // Труды Крыловского государственного научного центра. 2018. Вып. 2 (384). С. 9–28. doi:10.24937/2542-2324-2018-2-384-9-28.; Mellor M. Ship resistance in thick brash ice // Cold Reg. Sci. Technol. 1980. V. 3 (4). P. 305–321.; Kannari P. Measurements of characteristics and propulsion performance of a ship in old iceclogged channels // Proc. of the 7 International Conference on Port and Ocean Engineering in Arctic Conditions, POAC-83, Espoo, Finland. 1983.V. II. Р. 600–619.; Sandkvist J. Brash ice behaviour in frequented ship channels. WREL report series A. University of Luleå. 1986. V. 139. 132 р.; Ettema R., Huang H.-P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90-40. 1990. 120 p.; Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt. 1997. V. 52. 72 p.; Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Proceedings of Ocean and Polar Engineering Conference ISOPE-2018, Sapporo, Japan. URL: https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions (дата обращения 05.12.2021).; Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model — development and validation // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. doi.org/10.1016/j.coldregions.2018.09.004.; Ettema R., Urroz-Aguirre E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326.; Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/41321807_Field_measurements_on_the_behavior_of_brash_ice (дата обращения 05.12.2021).; Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).; Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. doi.org/10.1016/j.oceaneng.2020.108539; Riska K. The background of the powering requirements in the Finnish — Swedish ice class rules // Maritime Research Seminar’99, VVT Symposium 199, Espoo, Finland. 2000. P. 91–106.; Juva M., Riska K. On the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2002. V. 53. 81 p.; Ice Class Regulations and the Application Thereof TRAFICOM/68863/03.04.01.00/2021. URL: https://www.traficom.fi/en/transport/maritime/ice-classes-ships (дата обращения 05.12.2021).; Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с.; Lee J., Kim G., Kim I., Kim D., Byun B. Effect of inter-particle strength on K0 correlation for granular materials // Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016 Australian Geomechanics Society, Sydney, Australia. Australian Geomechanics Society. 2016. P. 1003–1008.; Сазонов К.Е. Морская ледотехника. СПб.: СПбГМТУ, 2019. 311 с.; Таровик О.В. Модели для прогнозирования параметров рейсов судов в Арктике: существующие подходы и возможные пути развития // Арктика: экология и экономика. 2021. T. 11. C. 422–435.; Ritvanen H. Analysis of the influence of the channel profile validating the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2014. V. 66. 25 p.; Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16, 2020. P. 617–621. URL: https://www.researchgate.net/publication/344774965_Hydrodynamic_analysis_of_a_floating_hybrid_renewable_energy_system (дата обращения 05.12.2021).; Karulina M.M., Karulin E.B., Tarovik O.V. Extension of FSICR method for calculation of ship resistance in brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/333967969_Extension_of_FSICR_method_for_calculation_of_ship_resistance_in_brash_ice_channel (дата обращения 05.12.2021).; Dobrodeev A.A., Sazonov K.E. Ice resistance calculation method for a ship sailing via brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/335263770_Ice_resistance_of_ships_in_brash_ice_channel_calculation_method (дата обращения 05.12.2021).; Добродеев А.А., Сазонов К.Е. Метод расчета ледового сопротивления судна при движении в канале тертого льда // Труды Крыловского государственного научного центра. 2019. № 3 (389). С. 11–21. doi:10.24937/2542-2324-2019-3-389-11-21.; Hopkins M.A. Four stages of pressure ridging // J. Geophys. Res. 1998. V. 103 (C10). P. 21883–21891.; Hansen E., Loset S. Modeling floating offshore units moored in broken ice: model description // Cold Regions Science and Technology. 1999. V. 29. P. 97–106.; Lau M., Lawrence K.P., Rothenburg L. Discrete element analysis of ice loads on ships and structures // Ships and Offshore Structures. 2011. V. 6 (3). P. 211–221.; Van den Berg M., Lubbad R. The application of a non-smooth discrete element method in ice rubble modelling // Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2015 Trondheim, Norway. URL: https://www.researchgate.net/publication/283095075_The_application_of_a_non-smooth_discrete_element_method_in_ice_rubble_modelling (дата обращения 05.12.2021).; Metrikin I., Løset S. Nonsmooth 3D discrete element simulation of a drillship in discontinuous ice // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2013. Espoo, Finland. URL: https://www.researchgate.net/publication/256842759_Nonsmooth_3D_Discrete_Element_Simulation_of_a_Drillship_in_Discontinuous_Ice (дата обращения 05.12.2021).; Konno A., Nakane A., Kanamori S. Validation of numerical estimation of brash ice channel resistance with model test // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/ Papers/2013/pdf/POAC13_143.pdf (дата обращения 05.12.2021).; Guo C.Y., Zhang Z.T., Tian T. P., Li X.Y., Zhao D.G. Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions // China Ocean Eng. 2018. V. 32. № 5. P. 546–556. doi: https://doi.org/10.1007/s13344-018-0057-2.; Koivurova J. Simulation of Ship-Ice Interaction in a Brash Ice Channel. M. Sc. Thesis. Aalto University, 2020. URL: https://aaltodoc.aalto.fi/handle/123456789/42697 (дата обращения 05.12.2021).; Luo W., Jiang D., Wu T., Guo C., Wang Ch., Deng R., Dai S. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. URL: https://www.semanticscholar.org/paper/Numerical-simulation-of-an-ice-strengthened-bulk-in-Luo-Jiang/e70263687be90c853fd28207b069bd3d712cabc2 (дата обращения 05.12.2021).; Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16. 2020. P. 639–643.; Matala R. Channel resistance in full scale and in model scale. Winter Navigation Research Board, Res. Rpt. 2020. V. 107. 20 p.; Jeong S.-Y., Jang J., Kang K.-J., Kim H.-S. Implementation of ship performance test in brash ice channel // Ocean Engineering. 2017. V. 140. P. 57–65.; Matsuzawa T., Shimoda H., Wako D., Uto S., He Q., Watanabe S. Load-Varying Methods for Ship Power Estimation in Brash Ice Channel by Ice Tank Model Test // Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions June 11–16, 2017, Busan, Korea. URL: https://www.poac.com/Papers/2017/pdf/POAC17_124_Takatoshi.pdf (дата обращения 05.12.2021).; Wang J., Lau M., Lee C. J., Cho S.-R. Modeling of Brash Ice Channel and Tests with Model CCGS Terry Fox // International Journal of Offshore and Polar Engineering. 2009. V. 19. P. 206–213.; Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).; Matala R., Gong H. The effect of ice fragment shape on model-scale brash ice material properties for ship model testing // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).; Сазонов К.Е., Добродеев А.А., Чепраков Н.В., Нечаев Д.А., Кильдеев Р.И. Устройство для образования канала моделируемого ледяного покрова в ледовом опытовом бассейне. Патент на изобретение 2737841 C1, 03.12.2020. Заявка № 2020111377 от 17.03.2020.; Von Bock und Polach R., Molyneux D. Model ice: a review of its capacity and identification of knowledge gaps // Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25–30, 2017, Trondheim, Norway. URL: https://www.researchgate.net/publication/318093280_Model_Ice_A_Review_of_its_Capacity_and_Identification_of_Knowledge_Gaps (дата обращения 05.12.2021).; Kostilainen V. Performance of marine propellers in ice-clogged channels. Winter Navigation Research Board, Res. Rpt. 1981. V. 33. 26 p.; Juurmaa K., Segercrantz H. On Propulsion and its Efficiency in Ice // Sixth Ship Technology and Research (STAR) Symposium, Proceedings SNAME, Ottawa, 1981. P. 229–237.; Борусевич В.О., Русецкий А.А., Сазонов К.Е., Соловьев И.А. Современные гидродинамические лаборатории. СПб.: ФГУП «Крыловский государственный научный центр», 2019. 316 с.; Haskins K.L., Courville Z.R., Sodhi D.S., Stanley J.M., Zabilansky L.J., Story J.M. Interaction between Brash Ice and Boat Propulsion Systems. Cold Regions Research and Engineering Laboratory US Army Engineer Research and Development Center, ERDC TR-14-1. 2014. 85 p.; Karulina M.M., Karulin E.B. Analytical investigation of propeller operation in brash ice // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).; De Carolis G., Olla P., Pignagnoli L. Effective viscosity of grease ice in linearized gravity waves // J. Fluid Mechanics. 2005. V. 535. P. 369–381.; Справочник по теории корабля. T. 1. Гидродинамика. Сопротивление движению судов. Судовые движители. Л.: Судостроение, 1985. 768 c.; Eronen H., Riska K. Possibilities to decrease the attained EEDI of the finnish merchant ships. Winter Navigation Research Board, Res. Rpt. 2014. V. 78. 26 p.; Bridges R., Riska K., Haase A. Experimental Tests on the Consolidation of Broken and Brash Ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/337007935_Experimental_Tests_on_the_Consolidation_of_Broken_and_Brash_Ice(дата обращения 05.12.2021).; https://www.aaresearch.science/jour/article/view/406