يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"терапия остеоартрита"', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 5 (2024); 183-190 ; Медицинский Совет; № 5 (2024); 183-190 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8237/7260; Vrijens B, De Geest S, Hughes DA, Przemyslaw K, Demonceau J, Ruppar T et al ABC Project Team. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73(5):691–705. https://doi.org/10.1111/j.1365-2125.2012.04167.x.; Gellad WF, Thorpe CT, Steiner JF, Voils CI. The myths of medication adherence. Pharmacoepidemiol Drug Saf. 2017;26(12):1437–1441. https://doi.org/10.1002/pds.4334.; van den Bemt BJ, Zwikker HE, van den Ende CH. Medication adherence in patients with rheumatoid arthritis: a critical appraisal of the existing literature. Expert Rev Clin Immunol. 2012;8(4):337–351. https://doi.org/10.1586/eci.12.23.; DiMatteo MR, Giordani PJ, Lepper HS, Croghan TW. Patient adherence and medical treatment outcomes: a meta-analysis. Med Care. 2002;40(9):794–811. https://doi.org/10.1097/00005650-200209000-00009.; Jimmy B, Jose J. Patient medication adherence: measures in daily practice. Oman Med J. 2011;26(3):155–159. https://doi.org/10.5001/omj.2011.38.; Jaam M, Awaisu A, Mohamed Ibrahim MI, Kheir N. A holistic conceptual framework model to describe medication adherence in and guide inter ventions in diabetes mellitus. Res Social Adm Pharm. 2018;14(4):391–397. https://doi.org/10.1016/j.sapharm.2017.05.003.; Oori MJ, Mohammadi F, Norouzi K, Fallahi-Khoshknab M, Ebadi A. Conceptual Model of Medication Adherence in Older Adults with High Blood Pressure-An Integrative Review of the Literature. Curr Hypertens Rev. 2019;15(2):85–92. https://doi.org/10.2174/1573402114666181022152313.; Wilder ME, Kulie P, Jensen C, Levett P, Blanchard J, Dominguez LW et al The Impact of Social Determinants of Health on Medication Adherence: a Systematic Review and Meta-analysis. J Gen Intern Med. 2021;36(5):1359–1370. https://doi.org/10.1007/s11606-020-06447-0.; Asche C, LaFleur J, Conner C. A review of diabetes treatment adherence and the association with clinical and economic outcomes. Clin Ther. 2011;33(1):74–109. https://doi.org/10.1016/j.clinthera.2011.01.019.; Han E, Suh D, Lee S, Jang S. The impact of medication adherence on health outcomes for chronic metabolic diseases: a retrospective cohort study. Res Social Adm Pharm. 2014;10(6):87–98. https://doi.org/10.1016/j.sapharm.2014.02.001.; Lee S, Raamkumar AS, Li J, Cao Y, Witedwittayanusat K, Chen L, Theng Y. Reasons for primary medication nonadherence: a systematic review and metric analysis. J Manag Care Spec Pharm. 2018;24(8):778–794. https://doi.org/10.18553/jmcp.2018.24.8.778.; Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, Steiner JF et al Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med. 2006;166(17):1836–1841. https://doi.org/10.1001/archinte.166.17.1836; Dal-Fabbro AL. Adherence to long term therapies: evidence for action. Cad Saúde Pública. 2005;21(4):1297–1298. https://doi.org/10.1590/s0102-311x2005000400037.; Haynes RB, Ackloo E, Sahota N, McDonald HP, Yao X. Interventions for enhancing medication adherence. Cochrane Database Syst Rev. 2008;(2):CD000011. https://doi.org/10.1002/14651858.CD000011.pub3.; Brown M, Bussell J. Medication adherence: WHO cares? Mayo Clin Proc. 2011;86(4):304–314. https://doi.org/10.4065/mcp.2010.0575.; Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. https://doi.org/10.1038/s41392-023-01330-w.; Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325:568–578. https://doi.org/10.1001/jama.2020.22171.; Richard MJ, Driban JB, McAlindon TE. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage. 2023;31(4):458–466. https://doi.org/10.1016/j.joca.2022.11.005.; Oo WM, Yu SP, Daniel MS, Hunter DJ. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs. 2018;23(4):331–347. https://doi.org/10.1080/14728214.2018.1547706.; Punchak S, Goodyer LI, Miskelly F. Use of an electronic monitoring aid to investigate the medication pattern of analgesics and non-steroidal anti-inflammatory drugs prescribed for osteoarthritis. Rheumatology (Oxford). 2000;39(4):448–449. https://doi.org/10.1093/rheumatology/39.4.448.; Blamey R, Jolly K, Greenfield S, Jobanputra P. Patterns of analgesic use, pain and self-efficacy: a cross-sectional study of patients attending a hospital rheumatology clinic. BMC Musculoskelet Disord. 2009;10:137. https://doi.org/10.1186/1471-2474-10-137.; Salt E, Peden A. The complexity of the treatment: the decision-making process among women with rheumatoid arthritis. Qual Health Res. 2011;21(2):214–222. https://doi.org/10.1177/1049732310381086.; Lehane E, McCarthy G. Intentional and unintentional medication non-adherence: a comprehensive framework for clinical research and practice? A discussion paper. Int J Nurs Stud. 2007;44(8):1468–1477. https://doi.org/10.1016/j.ijnurstu.2006.07.010.; Sale JE, Gignac M, Hawker G. How “bad” does the pain have to be? A qualitative study examining adherence to pain medication in older adults with osteoarthritis. Arthritis Rheum. 2006;55(2):272–278. https://doi.org/10.1002/art.21853.; Milder TY, Lipworth WL, Williams KM, Ritchie JE, Day RO. “It looks after me”: how older patients make decisions about analgesics for osteoarthritis. Arthritis Care Res (Hoboken). 2011;63(9):1280–1286. https://doi.org/10.1002/acr.20514.; Milder TY, Williams KM, Ritchie JE, Lipworth WL, Day RO. Use of NSAIDs for osteoarthritis amongst older-aged primary care patients: engagement with information and perceptions of risk. Age Ageing. 2011;40(2):254–259. https://doi.org/10.1093/ageing/afq160.; Ratcliffe J, Buxton M, McGarry T, Sheldon R, Chancellor J. Patients’ preferences for characteristics associated with treatments for osteoarthritis. Rheumatology (Oxford). 2004;43(3):337–345. https://doi.org/10.1093/rheumatology/keh038.; Laba TL, Brien JA, Fransen M, Jan S. Patient preferences for adherence to treatment for osteoarthritis: the MEdication Decisions in Osteoarthritis Study (MEDOS). BMC Musculoskelet Disord. 2013;14:160. https://doi.org/10.1186/1471-2474-14-160.; Hofstede SN, Marang-van de Mheen PJ, Vliet Vlieland TP, van den Ende CH, Nelissen RG, van Bodegom-Vos L. Barriers and Facilitators Associated with Non-Surgical Treatment Use for Osteoarthritis Patients in Orthopaedic Practice. PLoS ONE. 2016;11(1):0147406. https://doi.org/10.1371/journal.pone.0147406.; Hoogeboom TJ, Snijders GF, Cats HA, de Bie RA, Bierma-Zeinstra SM, van den Hoogen FH et al. Prevalence and predictors of health care use in patients with early hip or knee osteoarthritis: two-year follow-up data from the CHECK cohort. Osteoarthritis Cartilage. 2012;20(6):525–531. https://doi.org/10.1016/j.joca.2012.03.003.; Cavazos JM, Naik AD, Woofter A, Abraham NS. Barriers to physician adherence to nonsteroidal anti-inflammatory drug guidelines: a qualitative study. Aliment Pharmacol Ther. 2008;28(6):789–798. https://doi.org/10.1111/j.1365-2036.2008.03791.x.; Hofstede SN, van Bodegom-Vos L, Wentink MM, Vleggeert-Lankamp CL, Vliet Vlieland TP, Marang-van de Mheen PJ. Most important factors for the implementation of shared decision making in sciatica care: ranking among professionals and patients. PLoS ONE. 2014;9(4):e94176. https://doi.org/10.1371/journal.pone.0094176.; Замятина ЕА, Багирова ГГ, Цурко ВВ. Остеоартроз: ведение пациентов с учетом коморбидности и приверженности к лечению. Практикующий врач сегодня. 2014;(2-3):21–30. Режим доступа: https://www.elibrary.ru/xbwrnd.; Carmona-Terés V, Moix-Queraltó J, Pujol-Ribera E, Lumillo-Gutiérrez I, Mas X, Batlle-Gualda E et al. Understanding knee osteoarthritis from the patients’ perspective: a qualitative study. BMC Musculoskelet Disord. 2017;18(1):225. https://doi.org/10.1186/s12891-017-1584-3.; Иванова АВ, Даудова ПГ, Оптовко ДА. Социально-демографические, психологические и клинические факторы, влияющие на приверженность к терапии у пациентов с остеоартритом и коморбидными заболеваниями. В: Вебер ВР, Сулиманов РА (ред.). Актуальные проблемы современной медицины: сборник научных статей по материалам XXVI научно-практической конференции сотрудников и студентов Института медицинского образования Новгородского государственного университета имени Ярослава Мудрого, Великий Новгород, 8–13 апреля 2019 г. Великий Новгород: Новгородский государственный университет имени Ярослава Мудрого; 2019. 264 с. Режим доступа: https://elibrary.ru/item.asp?edn=iazrsl.; Swain S, Sarmanova A, Coupland C, Doherty M, Zhang W. Comorbidities in Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. Arthritis Care Res (Hoboken). 2020;72(7):991–1000. https://doi.org/10.1002/acr.24008.; Kovari E, Kaposi A, Bekes G, Kiss Z, Kurucz R, Mandl P et al. Comorbidity clusters in generalized osteoarthritis among female patients: A crosssectional study. Semin Arthritis Rheum. 2020;50(2):183–191. https://doi.org/10.1016/j.semarthrit.2019.09.001.; Agustini B, Lotfaliany M, Woods RL, McNeil JJ, Nelson MR, Shah RC et al. Patterns of Association between Depressive Symptoms and Chronic Medical Morbidities in Older Adults. J Am Geriatr Soc. 2020;68(8):1834–1841. https://doi.org/10.1111/jgs.16468.; Филатова ЮС, Соловьев ИН. Пациент с остеоартритом коленных суставов: тактика ведения в амбулаторных условиях. Медицинский совет. 2021;(2):86–93. https://doi.org/10.21518/2079-701X-2021-2-86-93.; Филатова ЮС, Соловьев ИН. Некоторые аспекты противовоспалительной терапии остеоартрита. Медицинский совет. 2023;17(13):157–164. https://doi.org/10.21518/ms2023-251.; Аникин СГ, Алексеева ЛИ. Хондроитина сульфат: механизмы действия, эффективность и безопасность при терапии остеоартроза. Современная ревматология. 2012;6(3):78–82. https://doi.org/10.14412/1996-7012-2012-753.; Ho J, Mak CCH, Sharma V, To K, Khan W. Mendelian Randomization Studies of Lifestyle-Related Risk Factors for Osteoarthritis: A PRISMA Review and Meta-Analysis. Int J Mol Sci. 2022;23(19):11906. https://doi.org/10.3390/ijms231911906.; Chen X, Hu JG, Huang YZ, Li S, Li SF, Wang M et al. Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3- dependent cytoskeleton remodeling. J Cell Physiol. 2020;235(1):221–231. https://doi.org/10.1002/jcp.28961.; Yassin NZ, El-Shenawy SM, Abdel-Rahman RF, Yakoot M, Hassan M, Helmy S. Effect of a topical copper indomethacin gel on inflammatory parameters in a rat model of osteoarthritis. Drug Des Devel Ther. 2015;9:1491–1498. https://doi.org/10.2147/DDDT.S79957.; Roczniak W, Brodziak-Dopierała B, Cipora E, Jakóbik-Kolon A, Kluczka J, Babuśka-Roczniak M. Factors that affect the content of cadmium, nickel, copper and zinc in tissues of the knee joint. Biol Trace Elem Res. 2017;178(2):201–209. https://doi.org/10.1007/s12011-016-0927-5.; Xu C, Chen J, Li L, Pu X, Chu X, Wang X et al. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: implications for new cartilage repair biomaterials. Mater Sci Eng C Mater Biol Appl. 2018;93:106–114. https://doi.org/10.1016/j.msec.2018.07.074.; Kot K, Kosik-Bogacka D, Zietek P, Karaczun M, Ciosek Z, Łanocha-Arendarczyk N. Impact of varied factors on iron, nickel, molybdenum and vanadium concentrations in the knee joint. Int J Environ Res Public Health. 2020;17(3):813. https://doi.org/10.3390/ijerph17030813.; Díaz-Castro J, López-Frías MR, Campos MS, López-Frías M, Alférez MJ, Nestares T et al. Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr. 2012;51(2):241–247. https://doi.org/10.1007/s00394-011-0212-5.; Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. Oral magnesium supplementation decreases C-reactive protein levels in subjects with prediabetes and hypomagnesemia: a clinical randomized double-blind placebo-controlled trial. Arch Med Res. 2014;45(4):325–330. https://doi.org/10.1016/j.arcmed.2014.04.006.; Konstari S, Sares-Jäske L, Heliövaara M, Rissanen H, Knekt P, Arokoski J et al. Dietary magnesium intake, serum high sensitivity C-reactive protein and the risk of incident knee osteoarthritis leading to hospitalization-A cohort study of 4,953 Finns. PLoS ONE. 2019;14(3):e0214064. https://doi.org/10.1371/journal.pone.0214064.; Belluci MM, de Molon RS, Rossa CJr, Tetradis S, Giro G, Cerri PS et al. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem. 2020;77:108301. https://doi.org/10.1016/j.jnutbio.2019.108301.; Feyerabend F, Witte F, Kammal M, Willumeit R. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng. 2006;12(12):3545–3556. https://doi.org/10.1089/ten.2006.12.3545.; Rył A, Miazgowski T, Szylińska A, Turoń-Skrzypińska A, Jurewicz A, Bohatyrewicz A et al. Bone health in aging men: does zinc and cuprum level matter? Biomolecules. 2021;11(2):237. https://doi.org/10.3390/biom11020237.; Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng. 2020;117(1):194–209. https://doi.org/10.1002/bit.27173.; Rodríguez JP, Rosselot G. Effects of zinc on cell proliferation and proteoglycan characteristics of epiphyseal chondrocytes. J Cell Biochem. 2001;82(3):501–511. https://doi.org/10.1002/jcb.1178.; https://www.med-sovet.pro/jour/article/view/8237

  2. 2
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 13 (2023); 157-164 ; Медицинский Совет; № 13 (2023); 157-164 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7724/6859; Hunter D.J., Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182): 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9.; Quicke J.G., Conaghan P.G., Corp N., Peat G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage. 2022;30(2):196–206. https://doi.org/10.1016/j.joca.2021.10.003.; Long H., Liu Q., Yin H., Wang K., Diao N., Zhang Y. et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172–1183. https://doi.org/10.1002/art.42089.; Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184–195. https://doi.org/10.1016/j.joca.2021.04.020.; Molnar V., Matišić V., Kodvanj I., Bjelica R., Jeleč Ž., Hudetz D. et. Al Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci. 2021;22(17):9208. https://doi.org/10.3390/ijms22179208.; Fioravanti A., Tenti S., Cheleschi S. Editorial: Year 2020: New Trends in Pharmacological Treatments for Osteoarthritis. Front Pharmacol. 2022;13:892934. https://doi.org/10.3389/fphar.2022.892934.; Abramoff B., Caldera F.E. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293–311. https://doi.org/10.1016/j.mcna.2019.10.007.; Fioravanti A., Tenti S., McAllister M., Chemaly M., Eakin A., McLaughlin J. et al. Exploring the Involvement of NLRP3 and IL-1β in Osteoarthritis of the Hand: Results from a Pilot Study. Mediators Inflamm. 2019;2019:2363460. https://doi.org/10.1155/2019/2363460.; Salaffi F., Ciapetti A., Carotti M. The sources of pain in osteoarthritis: A pathophysiological review. Reumatismo. 2014;66(1):57–71. https://doi.org/10.4081/reumatismo.2014.766.; Zhang Y., Nevitt M., Niu J., Lewis C., Torner J., Guermazi A. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–699. https://doi.org/10.1002/art.30148.; Morgan M., Thai J., Nazemian V., Song R., Ivanusic J.J. Changes to the activity and sensitivity of nerves innervating subchondral bone contribute to pain in late-stage osteoarthritis. Pain. 2022;163(2):390–402. https://doi.org/10.1097/j.pain.0000000000002355.; Zhu S., Zhu J., Zhen G., Hu Y., An S., Li Y. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Investig. 2019;129(3):1076–1093. https://doi.org/10.1172/JCI121561.; Belluzzi E., Stocco E., Pozzuoli A., Granzotto M., Porzionato A., Vettor R. et al. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. Biomed Res Int. 2019;2019:6390182. https://doi.org/10.1155/2019/6390182.; Belluzzi E., Macchi V., Fontanella C.G., Carniel E.L., Olivotto E., Filardo G. et al. Infrapatellar fat pad gene expression and protein production in patients with and without osteoarthritis. Int J Mol Sci. 2020;21(17):6016. https://doi.org/10.3390/ijms21176016.; Yu H., Huang T., Lu W.W., Tong L., Chen D. Osteoarthritis Pain. Int J Mol Sci. 2022;23(9):4642. https://doi.org/10.3390/ijms23094642.; Yao Q., Wu X., Tao C., Gong W., Chen M., Qu M. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. https://doi.org/10.1038/s41392-023-01330-w.; Katz J.N., Arant K.R., Loeser R.F. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA. 2021;325(6):568–578. https://doi.org/10.1001/jama.2020.22171.; Richard M.J., Driban J.B., McAlindon T.E. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage. 2023;31(4):458–466. https://doi.org/10.1016/j.joca.2022.11.005.; Oo W.M., Yu S.P., Daniel M.S., Hunter D.J. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs. 2018;23(4):331–347. https://doi.org/10.1080/14728214.2018.1547706.; Филатова Ю.С., Ильин М.В., Соловьев И.Н. Остеоартрит: современные возможности терапии. Амбулаторная хирургия. 2022;(1):60–67. https://doi.org/10.21518/1995-1477-2022-19-1-60-67.; Kolasinski S.L., Neogi T., Hochberg M.C., Oatis C., Guyatt G., Block J. et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2020;72(2):149–162. https://doi.org/10.1002/acr.24131.; Kloppenburg M., Kroon F.P., Blanco F.J., Doherty M., Dziedzic K.S., Greibrokk E. et al. 2018 update of the EULAR recommendations for the management of hand osteoarthritis. Ann Rheum Dis. 2019;78(1):16–24. https://doi.org/10.1136/annrheumdis-2018-213826.; Bannuru R.R., Osani M.C., Vaysbrot E.E., Arden N.K., Bennell K. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27(11):1578–1589. https://doi.org/10.1016/j.joca.2019.06.011.; Лила А.М., Мазуров В.И., Мартынов А.И., Загородний Н.В., Алексеева Л.И., Чичасова Н.В. и др. Резолюция консенсуса экспертов Российской Федерации по диагностике и лечению остеоартрита 2022. Современная ревматология. 2022;(6):106–116. https://doi.org/10.14412/1996-7012-2022-6-106-116.; da Costa B.R., Reichenbach S., Keller N., Nartey L., Wandel S., Jüni P., Trelle S. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet. 2017;390(10090):e21–e33. https://doi.org/10.1016/S0140-6736(17)31744-0.; Osani M.C., Vaysbrot E.E., Zhou M., McAlindon T.E., Bannuru R.R. Duration of Symptom Relief and Early Trajectory of Adverse Events for Oral Nonsteroidal Antiinflammatory Drugs in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken). 2020;72(5):641–651. https://doi.org/10.1002/acr.23884.; Ton J., Perry D., Thomas B., Allan G.M., Lindblad A.J., McCormack J. et al. PEER umbrella systematic review of systematic reviews: Management of osteoarthritis in primary care. Can Fam Physician. 2020;66(3):e89–e98. Available at: https://pubmed.ncbi.nlm.nih.gov/32165479.; Wongrakpanich S., Wongrakpanich A., Melhado K., Rangaswami J. A Comprehen sive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018;9(1):143–150. https://doi.org/10.14336/AD.2017.0306.; Sostres C., Gargallo C.J., Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;(Suppl. 3):S3. https://doi.org/10.1186/ar4175.; Honvo G., Leclercq V., Geerinck A., Thomas T., Veronese N., Charles A. et al. Safety of Topical Non-steroidal Anti-Inflammatory Drugs in Osteoarthritis: Outcomes of a Systematic Review and Meta-Analysis. Drugs Aging. 2019;36(1):45–64. https://doi.org/10.1007/s40266-019-00661-0.; Насонов Е.Л. Эффективность и переносимость нестероидного противовоспалительного препарата. Нимесулид: новые данные. РМЖ. 2001;(15): 636–638. Режим доступа: https://www.rmj.ru/articles/revmatologiya/Effektivnosty_i_perenosimosty_nesteroidnogo_protivovospalitelynogo_preparata_Nimesulid_novye_dannye/#.; Camu F., Shi L., Vanlersberghe C. The role of COX-2 inhibitors in pain modulation. Drugs. 2003;63(1):1–7. https://doi.org/10.2165/00003495200363001-00002.; Warner T.D., Giuliano F., Vojnovic I., Bukasa A., Mitchell J.A., Vane J.A. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563–7568. https://doi.org/10.1073/pnas.96.13.7563.; Magni E. The effect of nimesulide on prostanoid formation. Drugs. 1993;46(1):10–14. https://doi.org/10.2165/00003495-199300461-00004.; Davis R., Brogden R.N. Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs. 1994;48(3):431–454. https://doi.org/10.2165/00003495-199300461-00004.; Shaik M.S., Chatterjee A., Singh M. Effect of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of lung tumors and their expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma. Clin Cancer Res. 2004;10(4):1521–1529. https://doi.org/10.1158/1078-0432.ccr-0902-03.; Liang M., Yang H., Fu J. Nimesulide inhibits IFNgamma-induced programmed death-1-ligand 1 surface expression in breast cancer cells by COX-2 and PGE2 independent mechanisms. Cancer Lett. 2009;276(1): 47–52. https://doi.org/10.1016/j.canlet.2008.10.028.; Afzal M., Bhardwaj D.P., Khan R., Kazmi I., Saleem S., Al-Abbasi F.A., Anwar F. Antineoplastic influence of nimesulide in chemically induced hepatocellular carcinoma by inhibition of DNA synthesis. Inflammopharmacology. 2019;27(1):89–98. https://doi.org/10.1007/s10787-018-0481-1.; Candelario-Jalil E. Nimesulide as a promising neuroprotectant in brain ischemia: new experimental evidences. Pharmacol Res. 2008;57(4):266–273. https://doi.org/10.1016/j.phrs.2008.03.003; Zanjani T.M., Sabetkasaei M., Karimian B., Labibi F., Farokhi B., Mossafa N. The attenuation of pain behaviour and serum interleukin-6 concentration by nimesulide in a rat model of neuropathic pain. Scand J Pain. 2010;1(4):229–234. https://doi.org/10.1016/j.sjpain.2010.08.003.; Золотовская И.А., Давыдкин И.Л. Когнитивно-цитокиновый эффект нестероидных противовоспалительных препаратов в терапии больных пожилого возраста с остеоартрозом. Успехи геронтологии. 2017;(3):381–389. Режим доступа: http://www.gersociety.ru/netcat_files/userfiles/10/AG_2017-30-03.pdf.; Vunnam N., Young M.C., Liao E.E., Lo C.H., Huber E., Been M. et. al. Nimesulide, a COX-2 inhibitor, sensitizes pancreatic cancer cells to TRAILinduced apoptosis by promoting DR5 clustering. Cancer Biol Ther. 2023;24(1):2176692. https://doi.org/10.1080/15384047.2023.2176692.; Catarro M., Serrano J.L., Ramos S.S., Silvestre S., Almeida P. Nimesulide Analogues: From Anti-Inflammatory to Antitumor Agents. Bioorg Chem. 2019;88:102966. https://doi.org/10.1016/j.bioorg.2019.102966.; Caiazzo E., Ialenti A., Cicala C. The Relatively Selective Cyclooxygenase-2 Inhibitor Nimesulide: What’s Going on? Eur J Pharmacol. 2019;848:105–111. https://doi.org/10.1016/j.ejphar.2019.01.044.; Uram Ł., Filipowicz-Rachwał A., Misiorek M., Winiarz A., Wałajtys-Rode E., Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted With Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules. 2019;9(9):437. https://doi.org/10.3390/biom9090437.; Suleyman H., Cadirci E., Albayrak A., Halici Z. Nimesulide is a Selective COX-2 Inhibitory, Atypical Non-Steroidal Anti-Inflammatory Drug. Curr Med Chem. 2008;15(3):278–283. https://doi.org/10.2174/092986708783497247.; Sengel-Turk C.T., Hascicek C., Bakar F., Simsek E. Comparative Evaluation of Nimesulide-Loaded Nanoparticles for Anticancer Activity Against Breast Cancer Cells. AAPS PharmSciTech. 2017;18(2):393–403. https://doi.org/10.1208/s12249-016-0514-2.; Nam K.T., Hahm K.B., Oh S.Y., Yeo M., Han S.U., Ahn B. et al. The Selective Cyclooxygenase-2 Inhibitor Nimesulide Prevents Helicobacter Pylori-Associated Gastric Cancer Development in a Mouse Model. Clin Cancer Res. 2004;10(23):8105–8113. https://doi.org/10.1158/1078-0432.CCR-04-0896.; Chu M., Wang T., Sun A., Chen Y. Nimesulide Inhibits Proliferation and Induces Apoptosis of Pancreatic Cancer Cells by Enhancing Expression of PTEN. Exp Ther Med. 2018;16(1):370–376. https://doi.org/10.3892/etm.2018.6191.; Ferreira R.G., Narvaez L.E.M., Espíndola K.M.M., Rosario A.C.R.S., Lima W.G.N., Monteiro M.C. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front Oncol. 2021;11:594917. https://doi.org/10.3389/fonc.2021.594917.; Mattia C., Ciarcia S., Muhindo A., Coluzzi F. Nimesulide: 25 years later. Minerva Med. 2010;101(4):285–293. Available at: https://pubmed.ncbi.nlm.nih.gov/21030939.; Rainsford K.D. Nimesulide – a multifactorial approach to inflammation and pain: scientific and clinical consensus. Curr Med Res Opin. 2006;22(6):1161–1170. https://doi.org/10.1185/030079906X104849.; Kress H.G., Baltov A., Basiński A., Berghea F., Castellsague J., Codreanu C. et. аl. Acute pain: a multifaceted challenge – the role of nimesulide. Curr Med Res Opin. 2016;32(1):23–36. https://doi.org/10.1185/03007995.2015.1100986.; Fossaluzza V., Montagnani G. Efficacy and tolerability of nimesulide in elderly patients with osteoarthritis: double-blind trial versus naproxen. J Int Med Res. 1989;17(3):295–303. https://doi.org/10.1177/030006058901700313.; Fioravanti A., Storri L., Di Martino S., Bisogno S., Oldani V., Scotti A., Marcolongo R. A randomized, double-blind, multicenter trial of nimesulide-beta-cyclodextrin versus naproxen in patients with osteoarthritis. Clin Ther. 2002;24(4):504–519. https://doi.org/10.1016/s0149-2918(02)85127-x.; Kriegel W., Korff K.J., Ehrlich J.C., Lehnhardt K., Macciocchi A., Moresino C., Pawlowski C. Double-blind study comparing the long-term efficacy of the COX-2 inhibitor nimesulide and naproxen in patients with osteoarthritis. Int J Clin Pract. 2001;55(8):510–514. Available at: https://pubmed.ncbi.nlm.nih.gov/11695069.; Алексеева Л.И., Каратеев А.Е., Попкова Т.В., Новикова Д.С., Шарапова Е.П., Маркелова Е.П., Насонов Е.Л. Эффективность и безопасность длительного применения нимесулида у больных остеоартрозом: результаты 12-месячного открытого контролируемого исследования ДИНАМО (Длительное Использование Нимесулида при Артрозе Многофакторная Оценка). Научно-практическая ревматология. 2009;(4):64–72. Режим доступа: https://elibrary.ru/item.asp?id=20343992.; Wober W., Rahlfs V.W., Büchl N., Grässle A., Macciocchi A. Comparative efficacy and safety of the non-steroidal anti-inflammatory drugs nimesulide and diclofenac in patients with acute subdeltoid bursitis and bicipital tendinitis. Int J Clin Pract. 1998;52(3):169–175. Available at: https://pubmed.ncbi.nlm.nih.gov/9684433/.; Huskisson E.C., Macciocchi A., Rahlfs V., Bernstein R.M., Bremner A.D., Doyle D.V. et al. Nimesulide versus diclofenac in the treatment of osteoarthritis of the hip or knee: An active controlled equivalence study. Curr Ther Res. 1999;60:253–265. https://doi.org/10.1016/S0011-393X(99)80002-2.; Pohjolainen T., Jekunen A., Autio L., Vuorela H. Treatment of acute low back pain with the COX–2–selective anti–inflammatory drug nimesulide: results of a randomized, double–blind comparative trial versus ibuprofen. Spine. 2000;25(12):1579–1585. https://doi.org/10.1097/00007632-200006150-00019.; Bradbury F. How important is the role of the physician in the correct use of a drug? An observational cohort study in general practice. Int J Clin Pract. 2004;(144):27–32. https://doi.org/10.1111/j.1742-1241.2004.027_e.x.; Conforti A., Leone R., Moretti U., Mozzo F., Velo G. Adverse drug reactions related to the use of NSAIDs with a focus on nimesulide: results of spontaneous reporting from a Northern Italian area. Drug Saf. 2001;24(14):1081–1090. https://doi.org/10.2165/00002018-200124140-00006.; Данилов А.Б. Алгоритм выбора лекарственной формы нестероидного противовоспалительного препарата. Лечащий врач. 2010;(7):74 Режим доступа: https://www.lvrach.ru/2010/07/15081982.; Combe B., Vélicitat P., Garzón N., Bluhmki E. Comparison of intramuscular and oral meloxicam in rheumatoid arthritis patients. Inflamm Res. 2001;50(1):10–16. https://doi.org/10.1007/PL00022374.; Neighbor M.L., Puntillo K.A. Intramuscular ketorolac vs oral ibuprofen in emergency department patients with acute pain. Acad Emerg Med. 1998;5(2):92–93. https://doi.org/10.1007/PL00022374.; Shrestha M., Morgan D.L., Moreden J.M., Singh R., Nelson M., Hayes J.E. Randomized double-blind comparison of the analgesic efficacy of intramuscular ketorolac and oral indomethacin in the treatment of acute gouty arthritis. Ann Emerg Med. 1995;26(6):682–686. https://doi.org/10.1016/s0196-0644(95)70037-4.; Tramèr M.R., Williams J.E., Carroll D., Wiffen P.J., Moore R.A., McQuay H.J. Comparing analgesic efficacy of non-steroidal anti-inflammatory drugs given by different routes in acute and chronic pain: a qualitative systematic review. Acta Anaesthesiol Scand. 1998;42(1):71–79. https://doi.org/10.1111/j.1399-6576.1998.tb05083.x.; Atkinson T.J., Fudin J. Nonsteroidal Antiinflammatory Drugs for Acute and Chronic Pain. Phys Med Rehabil Clin N Am. 2020;31(2):219–231. https://doi.org/10.1016/j.pmr.2020.01.002.10.; Gupta A., Bah M. NSAIDs in the Treatment of Postoperative Pain. Curr Pain Headache Rep. 2016;20(11):62. https://doi.org/10.1007/s11916-016-0591-7.; Shatsky М. Evidence for the use of intramuscular injections in outpatient practice. Fam Physician. 2009;79(4):297–300. Available at: https://pubmed.ncbi.nlm.nih.gov/19235496.; Dougados M., Listrat V., Duchesne L., Amor B. Comparative efficacy of ketoprofen related to the route of administration (intramuscular or per os). A double-blind study versus placebo in rheumatoid arthritis. Rev Rhum Mal Osteoartic. 1992;59(11):769–773. Available at: https://pubmed.ncbi.nlm.nih.gov/1306600.; Kim C., Armstrong M.J., Berta W.B., Gagliardi A.R. How to identify, incorporate and report patient preferences in clinical guidelines: A scoping review. Health Expect. 2020;23(5):1028–1036. https://doi.org/10.1111/hex.13099.; Дмитриева Е.В., Егорова С.Н. Твердые пероральные лекарственные формы: изучение потребительских предпочтений пациентов (на примере антигипертензивных препаратов). Медицинский альманах. 2010;(4):67–70. Режим доступа: https://www.elibrary.ru/item.asp?id=15321050.; https://www.med-sovet.pro/jour/article/view/7724

  3. 3
    Academic Journal

    المساهمون: Publication of this article has been supported by Sotex PharmFirma, Статья опубликована при поддержке компании ЗАО «ФармФирма «Сотекс».

    المصدر: Modern Rheumatology Journal; Том 16, № 4 (2022); 111-116 ; Современная ревматология; Том 16, № 4 (2022); 111-116 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1331/1277; Liu X, Machado GC, Eyles JP, et al. Dietary supplements for treating osteoarthritis: a systematic review and meta-analysis.Br J Sports Med. 2018 Feb;52(3):167-75. doi:10.1136/bjsports-2016-097333. Epub 2017 Oct 10.; Elango J, Sanchez C, de Val JEMS, et al. Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment. Sci Rep. 2018 Mar 28;8(1):5318. doi:10.1038/s41598-018-23532-x.; Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies.Polymers (Basel). 2021 Nov 9;13(22):3868. doi:10.3390/polym13223868.; Stupin V, Manturova N, Silina E, et al. The Effect of Inflammation on the Healing Process of Acute Skin Wounds Under the Treatment of Wounds with Injections in Rats. J Exp Pharmacol. 2020 Oct 30;12:409-22. doi:10.2147/JEP.S275791. eCollection 2020.; King S. Catrix: an easy-to-use collagen treatment for wound healing. Br J Community Nurs. 2005 Sep;10(9):S31-4. doi:10.12968/bjcn.2005.10.Sup3.19697.; Colak B, Yormaz S, Ece I, et al. Comparison of Collagen Granule Dressing Versus Conventional Dressing in Patients With Diabetic Foot Ulcer. Int J Low Extrem Wounds. 2020 Jul 31:1534734620938988. doi:10.1177/1534734620938988.; Leуn-Lopez A, Perez-Marroquin XA, Campos-Lozada G, et al. Characterization of Whey-Based Fermented Beverages Supplemented with Hydrolyzed Collagen: Antioxidant Activity and Bioavailability. Foods. 2020 Aug 12;9(8):1106. doi:10.3390/foods9081106.; Lugo JP, Saiyed ZM, Lane NE. Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: a multicenter randomized, double-blind, placebo-controlled study. Nutr J. 2016 Jan 29;15:14. doi:10.1186/s12937-016-0130-8.; Harris RB, Fonseca FLA, Sharp MH, Ottinger CR. Functional characterization of undenatured type II collagen supplements: Are they interchangeable? J Diet Suppl. 2021 Jun 1;1-16. doi:10.1080/19390211.2021.1931621. Online ahead of print.; Selistre LFA, Goncalves GH, Vasilceac FA. The relationship between urinary C-Telopeptide fragments of type II collagen, knee joint load, pain, and physical function in individuals with medial knee osteoarthritis. Braz J Phys Ther. Jan-Feb 2021;25(1):62-9. doi:10.1016/j.bjpt.2020.02.002. Epub 2020 Feb 26.; Sahin K, Kucuk O, Orhan C. Niacinamide and undenatured type II collagen modulates the inflammatory response in rats with monoiodoacetate-induced osteoarthritis. Sci Rep. 2021 Jul 19;11(1):14724. doi:10.1038/s41598-021-94142-3.; Torshin IYu, Rudakov KV. On the Procedures of Generation of Numerical Features Over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognition and Image Analysis. 2019;29(4):654-67.; Torshin IYu. Optimal dictionaries of the final information on the basis of the solvability criterion and their applications in bioinformatics. Pattern Recognition and Image Analysis. 2013;23:319-27.; Torshin IYu, Rudakov KV. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015;25:577-87.; Zitnik M, Sosi R, Maheshwari S, Leskovec J. BioSNAP Datasets (2018): Stanford Biomedical Network Dataset Collection. http://snap.stanford.edu/biodata; Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. doi:10.1093/nar/gkaa1113.; Klatt AR, Paul-Klausch B, Klinger G, et al. A critical role for collagen II in cartilage matrix degradation: collagen II induces pro-inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res. 2009 Jan;27(1):65-70. doi:10.1002/jor.20716.; Sütö G. Undenatured type II collagen in the treatment of osteoarthritis.Orv Hetil. 2021 Sep 12;162(37):1481-4. doi:10.1556/650.2021.32337.; Bagchi D, Misner B, Bagchi M, et al. Effects of orally administered undenatured type II collagen against arthritic inflammatory diseases: a mechanistic exploration. Int J Clin Pharmacol Res. 2002;22(3-4):101-10.; Toda Y, Takemura S, Morimoto T, Ogawa R. Relationship between HLA-DRB1 genotypes and efficacy of oral type II collagen treatment using chicken cartilage soup in rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi. 1997 Feb;20(1):44-51. doi:10.2177/jsci.20.44.; Carafoli F, Bihan D, Stathopoulos S, et al. Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure. 2009 Dec 9;17(12):1573-81. doi:10.1016/j.str.2009.10.012.; Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal. 2006 Aug;18(8):1108-16. doi:10.1016/j.cellsig.2006.02.012. Epub 2006 Feb 28.; Gross O, Beirowski B, Harvey SJ, et al. DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int. 2004 Jul;66(1):102-11. doi:10.1111/j.1523-1755.2004.00712.x.; Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest. 2001 Mar;107(6):727-35. doi:10.1172/JCI10720.; Kano K, Marin de Evsikova C, Young J, et al. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol. 2008 Aug;22(8):1866-80. doi:10.1210/me.2007-0310. Epub 2008 May 15.; Bargal R, Cormier-Daire V, Ben-Neriah Z, et al. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet. 2009 Jan;84(1):80-4. doi:10.1016/j.ajhg.2008.12.004. Epub 2008 Dec 24.; Seo MC, Kim S, Kim SH, Zheng LT, Park EK, Lee WH, Suk K. Discoidin domain receptor 1 mediates collagen-induced inflammatory activation of microglia in culture. J Neurosci Res. 2008 Apr;86(5):1087-95. doi:10.1002/jnr.21552. PMID: 17969104; Raposo B, Dobritzsch D, Ge C, et al. Epitope-specific antibody response is controlled by immunoglobulin V(H) polymorphisms. J Exp Med. 2014 Mar 10;211(3):405-11. doi:10.1084/jem.20130968.; Yoshinari O, Moriyama H, Shiojima Y. An overview of a novel, water-soluble undenatured type II collagen (NEXT-II). J Am Coll Nutr. 2015;34(3):255-62. doi:10.1080/07315724.2014.919541. Epub 2015 Mar 9.; Garcia-Coronado JM, Martinez-Olvera L, Elizondo-Omaсa RE, et al. Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials. Int Orthop. 2019 Mar;43(3):531-8. doi:10.1007/s00264-018-4211-5. Epub 2018 Oct 27.; https://mrj.ima-press.net/mrj/article/view/1331

  4. 4