-
1Academic Journal
المؤلفون: E. S. Mohova, D. E. Mohov, E. V. Yakovlev, S. A. Zhivolupov, D. Y. Butko, R. V. Aliev, I. M. Gasanbekov, A. S. Vedyashkina, A. A. Smirnov, Е. С. Мохова, Д. Е. Мохов, Е. В. Яковлев, С. А. Живолупов, Д. Ю. Бутко, Р. В. Алиев, И. М. Гасанбеков, А. С. Ведяшкина, А. А. Смирнов
المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 330-344 ; Медицинский Совет; № 6 (2023); 330-344 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: смещение фасциальных слоев, finite element analysis, neck biomechanics, somatic dysfunction, displacement of fascial layers, конечно-элементный анализ, биомеханика шеи, соматическая дисфункция
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7536/6720; Мохов Д.Е., Беляев А.Ф., Азаренков М.Д., Аптекарь И.А., Болотов Д.А., Вяльцев А.В. и др. Остеопатическая диагностика соматических дисфункций в педиатрии: клинические рекомендации. СПб.: Невский ракурс; 2015. 60 с. Режим доступа: http://www.osteopathy-official.ru/rekomendacii_pediatria.pdf?ysclid=lgmcrgxnpr89098514.; Schnell H., Wagner F.M., Locher H. Segmental and somatic dysfunction: How does manual medicine work? Orthopade. 2022;51(4):253–262. https://doi.org/10.1007/s00132-022-04230-z.; Schnell H. From acute coronary syndrome to zoster: Differential diagnostics in segmental and somatic dysfunction of the thoracic spine and ribs. Orthopade. 2022;51(4):274–282. https://doi.org/10.1007/s00132-022-04227-8.; Wagner F.M. Somatic dysfunction of the cervical spine and its complex clinical picture: The fundamentals of diagnostics of cervicobrachialgia and cervicocephalic syndrome through manual medicine. Orthopade. 2022;51(4):263–273. https://doi.org/10.1007/s00132-022-04227-8.; Andrews M.A.W. Stretch Receptor and Somatic Dysfunction: A Narrative Review. J Am Osteopath Assoc. 2019;119(8):511–519. https://doi.org/10.7556/jaoa.2019.094.; Liem T.A.T. Still’s Osteopathic Lesion Theory and Evidence-Based Models Supporting the Emerged Concept of Somatic Dysfunction. J Am Osteopath Assoc. 2016;116(10):654–661. https://doi.org/10.7556/jaoa.2016.129.; Tramontano M., Tamburella F., Dal Farra F., Bergna A., Lunghi C., Innocenti M. et al. International Overview of Somatic Dysfunction Assessment and Treatment in Osteopathic Research: A Scoping Review. Healthcare (Basel). 2021;10(1):28. https://doi.org/10.3390/healthcare10010028.; Jung B., Bhutta B.S. Anatomy, Head and Neck, Neck Movements. StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK557555/; Lazennec J.Y., Laudet C.G., Guérin-Surville H., Roy-Camille R., Saillant G. Dynamic anatomy of the acetabulum: an experimental approach and surgical implications. Surg Radiol Anat. 1997;19(1):23–30. https://doi.org/10.1007/BF01627730.; Armstrong C.G., Bahrani A.S., Gardner D.L. In vitro measurement of articular cartilage deformations in the intact human hip joint under load. JBJS. 1979;61(5):744–755. Available at: https://pubmed.ncbi.nlm.nih.gov/457718/; McMurrich J.P. Leonardo da Vinci, the anatomist. Carnegie institution of Washington, Williams & Wilkins Company, Baltimore; 1930. Available at: https://embryology.med.unsw.edu.au/embryology/images/0/0c/1930_Leonardo_da_Vinci_-_the_anatomist.pdf.; Pirogov N.I. Anatome Topographica Sectionibus Per Corpus Humanum Congelatum Triplici Directione Ductis Illustrata (Atlas): Fasciculi 1. 1A-1B. St Petersburg; 1853. Available at: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-61120970RX1-mvpart.; Anderson P., Chapman P.M., Ma M., Rea P. Real-time medical visualization of human head and neck anatomy and its applications for dental training and simulation. Cur Med Imag. 2013;9(4):298–308. https://doi.org/10.2174/15734056113096660004.; Nguyen N., Wilson T.D. A head in virtual reality: Development of a dynamic head and neck model. Anat Sci Educ. 2009;2(6):294–301. https://doi.org/10.1002/ase.115.; Clifton W., Damon A., Nottmeier E., Pichelmann M. Investigation of a three‐dimensional printed dynamic cervical spine model for anatomy and physiology education. Clinical Anatomy. 2021;(1):30–39. https://doi.org/10.1002/ca.23607.; Zhao G., Jiang G., Xun Yang X., Xireayi P., Wang E. Reconstruction of the Three-dimensional Model of Cervical Vertebrae Segments Based on CT Image and 3D Printing. Zhongguo Yi Liao Qi Xie Za Zhi. 2019;43(6):451–453. https://doi.org/10.3969/j.issn.1671-7104.2019.06.016.; Zhang Y., Zhou J., Guo X. Biomechanical Effect of Different Graft Heights on Adjacent Segment and Graft Segment Following C4/C5 Anterior Cervical Discectomy and Fusion: A Finite Element Analysis. Med Sci Monit. 2019;25:4169–4175. https://doi.org/10.12659/MSM.916629.; Ovsepyan A.L., Smirnov A.A., Pustozerov E.A., Mokhov D.E., Mokhova E.S., Trunin E.M. et al. Biomechanical analysis of the cervical spine segment as a method for studying the functional and dynamic anatomy of the human neck. Ann Anat. 2022;240:151856. https://doi.org/10.1016/j.aanat.2021.151856.; Yakovlev E.V., Ovsepyan A.L., Smirnov A.A., Safronova A.A., Starchik D.A., Zhivolupov S.A. et al. Reproducing morphological features of intervertebral disc using finite element modeling to predict the course of cervical spine dorsopathy. Rus Open Med J. 2022;11:e0118. https://doi.org/10.15275/rusomj.2022.0118.; Старчик Д.А., Акопов А.Л. Атлас распилов человеческого тела. СПб.: ММЦ; 2020. 172 с.; Mitsuhashi N., Fujieda K., Tamura T., Kawamoto S., Takagi T., Okubo K. BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 2009;37(Database issue):D782–785. https://doi.org/10.18908/lsdba.nbdc00837-000.; Broom N., Thambyah A. Relevant Anatomy and Macro-Level Structure. In: The Soft–Hard Tissue Junction: Structure, Mechanics and Function. Cambridge: Cambridge University Press; 2018, pp. 157–177. https://doi.org/10.1017/9781316481042.007.; Disney C.M., Eckersley A., McConnell J.C., Geng H., Bodey A.J., Hoyland J.A. et al. Synchrotron tomography of intervertebral disc deformation quantified by digital volume correlation reveals microstructural influence on strain patterns. Acta Biomaterialia. 2019;92:290–304. https://doi.org/10.1016/j.actbio.2019.05.021.; Tavakoli J., Diwan A.D., Tipper J.L. Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc. Acta Biomaterialia. 2020;113:407–416. https://doi.org/10.1016/j.actbio.2020.06.008.; Wade K.R., Robertson P.A., Broom N.D. On how nucleus‐endplate integration is achieved at the fibrillar level in the ovine lumbar disc. J Anat. 2012;221(1):39–46. https://doi.org/10.1111/j.1469-7580.2012.01507.x.; Sharabi M., Levi-Sasson A., Wolfson R., Wade K.R., Galbusera F., Benayahu D. et al. The Mechanical Role of the Radial Fiber Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study. J Biomech Eng. 2019;141(2):021006. https://doi.org/10.1115/1.4041769.; Kraft R.H., Fielding R.A., Lister K., Shirley A., Marler T., Merkle A.C. et al. Modeling Skeletal Injuries in Military Scenarios. In: The Mechanobiology and Mechanophysiology of Military-Related Injuries. Springer, Cham; 2016, pp. 3–35. https://doi.org/10.1007/8415_2016_191.; Dreischarf M., Shirazi-Adl A., Arjmand N., Rohlmann A., Schmidt H. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J Biomech. 2016;49(6):833–845. https://doi.org/10.1016/j.jbiomech.2015.12.038.; Henninger H.B., Reese S.P., Anderson A.E., Weiss J.A. Validation of computational models in biomechanics. Proc Inst Mech Eng H. 2010;224(7):801–812. https://doi.org/10.1243/09544119JEIM649.; Vasavada A.N., Peterson B.W., Delp S.L. Three-dimensional spatial tuning of neck muscle activation in humans. Exp Brain Res. 2002;147(4):437–448. https://doi.org/10.1007/s00221-002-1275-6.; https://www.med-sovet.pro/jour/article/view/7536