يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"сенсоры на основе углеродных нанотрубок"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 20, № 1 (2017); 5-21 ; Известия высших учебных заведений. Материалы электронной техники; Том 20, № 1 (2017); 5-21 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2017-1

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/241/208; Blank V. D., Seepujak A., Polyakov E. V., Batov D. V., Kulnitskiy B. A., Parkhomenko Yu. N., Skryleva E. A., Bangert U., Gutiérrez−Sosa A., Harvey A. J. Growth and characterisation of BNC nanostructures // Carbon. 2009. V. 47, N 14. P. 3167—3174. DOI:10.1016/j.carbon.2009.07.022; Shul'ga Yu. M., Vasilets V. N., Baskakov S. A., Muradyan V. E., Skryleva E. A., Parkhomenko Yu. N. Photoreduction of graphite oxide nanosheets with vacuum ultraviolet radiation // High Energy Chemistry. 2012. V. 46, Iss. 2. P. 117—121. DOI:10.1134/ S0018143912020099; Елисеев А. А., Лукашин А. В. Функциональные наноматериалы. − М.: Физматлит, 2010. − 456 с.; Ивановский А. Л. Квантовая химия в материаловедении. Нанотубулярные формы вещества. − Екатеринбург : УрОРАН, 1999. − 176 с.; Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of fullerenes and carbon nanotubes. − New York : Academic Press, Inc., 1996. − 965 p. (https://www.elsevier.com/books/science-of-fullerenes-and-carbon-nanotubes/dresselhaus/978-0-12-221820-0); Saito R., Dresselhaus M. S., Dresselhaus G. Physical properties of carbon nanotubes. − London : Imperial College Press, 1998. − 251 p.; Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. − М. : Техносфера, 2003. − 336 с.; Запороцкова И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства. − Волгоград: Изд−во ВолГУ, 2009. − 490 с.; Dresselhaus M. S., Dresselhaus G., Avouris P. Сarbon nanotubes: synthesis, structure, properties, and application. − Springer− Verlag, 2000. − 464 p.; Дьячков П. Н. Электронные свойства и применение нанотрубок. − М. : БИНОМ. Лаборатория знаний, 2010. − 488 с.; Елецкий А. В. Сорбционные свойства углеродных наноструктур // Успехи физических наук. 2004. Т. 174, № 11. С. 1191— 1231. DOI:10.3367/UFNr.0174.200411c.1191; Ахмадишина К. Ф., Бобринецкий И. И., Комаров И. А., Маловичко А. М., Неволин В. К., Петухов В. А. Гибкие биологические сенсоры на основе пленок УНТ // Российские нанотехнологии. 2013. Т. 8, № 11–12. С. 35—40.; Zhang Wei−De, Zhang Wen−Hui. Carbon nanotubes as active components for gas sensors // J. Sensors. 2009. V. 2009. P. 160698. DOI:10.1155/2009/160698; Boyd A., Dube I., Fedorov G., Paranjape M., Barbara P. Gas sensing mechanism of carbon nanotubes: from single tubes to high− density networks // Carbon. 2014. V. 69. P. 417—423. DOI:10.1016/j. carbon.2013.12.044; Zhao J., Buldum A., Han J., Lu J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles // Nanotechnology. 2002. V. 13, N 2. Р. 195—200. DOI:10.1088/0957-4484/13/2/312; Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection // Nano Lett. 2003. V. 3, N 7. P. 929—933. DOI:10.1021/nl034220x; Chen R. J., Franklin N. R., Kong J., Cao J., Tombler Th. W., Zhang Yu., Dai H. Molecular photodesorption from single−walled carbon nanotubes // Appl. Phys Lett. 2001. V. 79, N 14. P. 2258—2260. DOI:10.1063/1.1408274; Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H. Nanotube molecular wires as chemical sensors // Science. 2000. V. 287, N 5453. Р. 622—625. DOI:10.1126/science.287.5453.622; Zhang J., Boyd A., Tselev A., Paranjape M., Barbara P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors // Appl. Phys. Lett. 2006. V. 88, N 12. P. 123112. DOI:10.1063/1.2187510; Helbling T., Pohle R., Durrer L., Stampferc C., Romana C., Jungena A., Fleischerb M., Hierolda C. Sensing NO2 with individual suspended single−walled carbon nanotubes // Sens. Actuators B: Chem. 2008. V. 132, N 2. P. 491—497. DOI:10.1016/j.snb.2007.11.036; Novak J. P., Snow E. S., Houser E. J., Park D., Stepnowski J. L., McGill R. A. Nerve agent detection using networks of single−walled carbon nanotubes // Appl. Phys. Lett. 2003. V. 83, N 19. P. 4026—4028. DOI:10.1063/1.1626265; Peng N., Zhang Q., Lee Y. C., Tan O. K., Marzari N. Gate modulation in carbon nanotube field effect transistors−based NH3 gas sensors // Sens. Actuators B: Chem. 2008. V. 132, N 1. P. 191—195. DOI:10.1016/j.snb.2008.01.025; Lucci M., Reale A., Di Carlo A., Orlanducci S., Tamburri E., Terranova M. L., Davoli I., Di Natale C., D’Amico A., Paolesse R. Optimization of a NOx gas sensor based on single walled carbon nanotubes // Sens. Actuators B: Chem. 2006. V. 118, N 1–2. P. 226—231. DOI:10.1016/j.snb.2006.04.027; Quang N. H., Van Trinh M., Lee B.−H., Huh J.−S. Effect of NH3 gas on the electrical properties of single−walled carbon nanotube bundles // Sens. Actuators B: Chem. 2006. V. 113, N 1. P. 341—346. DOI:10.1016/j.snb.2005.03.089; Nguyen H.−Q., Huh J.−S. Behavior of single−walled carbon nanotube−based gas sensors at various temperatures of treatment and operation // Sens. Actuators B: Chem. 2006. V. 117, N 2. P. 426—430. DOI:10.1016/j.snb.2005.11.056; Varghese O. K., Kichambre P. D., Gong D., Ong K. G., Dickey E. C., Grimes C. A. Gas sensing characteristics of multi− wall carbon nanotubes // Sens. Actuators B: Chem. 2001. V. 81, N 1. P. 32—41. DOI:10.1016/S0925-4005(01)00923-6; Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen− Duc C., Fossard F. Synthesis of multi−walled carbon nanotubes for NH3 gas detection // Physica E. 2007. V. 37, N 1−2. P. 54—57. DOI:10.1016/j.physe.2006.12.006; Sun G., Liu S., Hua K., Lv X., Huang L., Wang Y. Electrochemical chlorine sensor with multi−walled carbon nanotubes as electrocatalysts // Electrochemistry Communications. 2007. V. 9, N 9. P. 2436—2440. DOI:10.1016/j.elecom.2007.07.015; Piloto C., Mirri F., Bengio E. A., Notarianni M., Gupta B., Shafiei M., Pasquali M., Motta N. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant−free dip coating // Sens. Actuators B: Chem. 2016. V. 227. P. 128—134. DOI:10.1016/j.snb.2015.12.051; Valentini L., Cantalini C., Armentano I., Kenny J. M., Lozzi L., Santucci S. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection // Diamond and Related Materials. 2004. V. 13, N 4–8. P. 1301—1305. DOI:10.1016/j. diamond.2003.11.011; Hoa N. D., Van Quy N., Cho Y., Kim D. An ammonia gas sensor based on non−catalytically synthesized carbon nanotubes on an anodic aluminum oxide template // Sens. Actuators B: Chem. 2007. V. 127, N 2. P. 447—454. DOI:10.1016/j.snb.2007.04.041; Fu D., Lim H., Shi Y., Dong X., Mhaisalkar S. G., Chen Y., Moochhala S., Li L.−J. Differentiation of gas molecules using flexible and all−carbon nanotube devices // J. Phys. Chem. C. 2008. V. 112, N 3. P. 650—653. DOI:10.1021/jp710362r; Tran T. H., Lee J.−W., Lee K., Lee Y. D., Ju B.−K. The gas sensing properties of single−walled carbon nanotubes deposited on an aminosilane monolayer // Sens. Actuators B: Chem. 2008. V. 129, N 1. P. 67—71. DOI:10.1016/j.snb.2007.07.104; Zhou Y., Jiang Y., Xie G., Du X., Tai H. Gas sensors based on multiple−walled carbon nanotubes−polyethylene oxide films for toluene vapor detection // Sens. Actuators B: Chem. 2014. V. 191. P. 24—30. DOI:10.1016/j.snb.2013.09.079; Liu S. F., Lin S., Swager T. M. An organocobalt−carbon nanotube chemiresistive carbon monoxide detector // ACS Sens. 2016. V. 1. N 4. P. 354—357. DOI:10.1021/acssensors.6b00005; Qi P., Vermesh O., Grecu M., Javey A., Wang Q., Dai H., Peng S., Cho K. J. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection // Nano Lett. 2003. V. 3, N 3. P. 347—351. DOI:10.1021/nl034010k; Bekyarova E., Davis M., Burch T., Itkis M. E., Zhao B., Sunshine S., Haddon R. C. Chemically functionalized single−walled carbon nanotubes as ammonia sensors // J. Phys. Chem. B. 2004. V. 108, N 51. P. 19717—19720. DOI:10.1021/jp0471857; Abraham J. K., Philip B., Witchurch A., Varadan V. K., Reddy C. C. A compact wireless gas sensor using a carbon nanotube/ PMMA thin film chemiresistor // Smart Materials and Structures. 2004. V. 13, N 5. P. 1045—1049. DOI:10.1088/0964-1726/13/5/010; Im J., Sterner E. S., Swager T. M. Integrated gas sensing system of swcnt and cellulose polymer concentrator for benzene, toluene, and xylenes // Sensors. 2016. V. 16, N 2. P. 183. DOI:10.3390/ s16020183; Abdelhalim A., Abdellah A., Scarpa G., Lugli P. Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications // Nanotechnology. 2014. V. 25, N 5. P. 055208. DOI:10.1088/0957-4484/25/5/055208; Kong J., Chapline M. G., Dai H. J. Functionalized carbon nanotubes for molecular hydrogen sensors // Adv. Mater. 2001. V. 13, N 18. P. 1384—1386. DOI:10.1002/1521-4095(200109)13:183.0.CO;2-8; Sayago I., Terrado E., Aleixandre M., Horrillo M. C., Fernández M. J., Lozano J., Lafuente E., Maser W. K., Benito A. M., Martinez M. T., Gutiérrez J., Muñoz E. Novel selective sensors based on carbon nanotube films for hydrogen detection // Sens. Actuators B: Chem. 2007. V. 122, N 1. P. 75—80. DOI:10.1016/j.snb.2006.05.005; Mubeen S., Zhang T., Yoo B., Deshusses M. A., Myung N. V. Palladium nanoparticles decorated single−walled carbon nanotube hydrogen sensor // J. Phys. Chem. C. 2007. V. 111, N 17. P. 6321—6327. DOI:10.1021/jp067716m; Kumar M. K., Ramaprabhu S. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor // J. Phys. Chem. B. 2006. V. 110, N 23. P. 11291—11298. DOI:10.1021/jp0611525; Kumar M. K., Ramaprabhu S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications // Int. J. Hydrogen Energy. 2007. V. 32, N 13. P. 2518—2526. DOI:10.1016/j.ijhydene.2006.11.015; Seo S. M., Kang T. J., Cheon J. H., Kim Y. H., Park Y. J. Facile and scalable fabrication of chemiresistive sensor array for hydrogen detection based on gold−nanoparticle decorated SWCNT network // Sens. Actuators B: Chem. 2014. V. 204. P. 716—722. DOI:10.1016/j.snb.2014.07.119; Kamarchuk G. V., Kolobov I. G., Khotkevich A. V., Yanson I. K., Pospelov A. P., Levitsky I. A., Euler W. B. New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1022—1026. DOI:10.1016/j.snb.2008.07.012; Star A., Joshi V., Skarupo S., Thomas D., Gabriel J.−C. P. Gas sensor array based on metal−decorated carbon nanotubes // J. Phys. Chem. B. 2006. V. 110, N 42. P. 21014—21020. DOI:10.1021/jp064371z; Kwona Y. J., Naa H. G., Kanga S. Y., Choib S.−W., Kimb S. S., Kima H. W. Selective detection of low concentration toluene gas using Pt−decorated carbon nanotubes sensors // Sens. Actuators B: Chem. 2016. V. 227. P. 157—168. DOI:10.1016/j.snb.2015.12.024; Hafaiedh I., Elleuch W., Clement P., Llobet E., Abdelghani A. Multi−walled carbon nanotubes for volatile organic compound detection // Sens. Actuators B: Chem. 2013. V. 182. P. 344—350. DOI:10.1016/j.snb.2013.03.020; Espinosa E. H., Ionescu R., Chambon B., Bedis G., Sotter E., Bittencourt C., Felten A., Pireaux J.−J., Correig X., Llobet E. Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing // Sens. Actuators B: Chem. 2007. V. 127, N 1. P. 137—142. DOI:10.1016/j.snb.2007.07.108; Chen Y., Zhu C., Wang T. The enhanced ethanol sensing properties of multi−walled carbon nanotubes/SnO2 core/shell nanostructures // Nanotechnology. 2006. V. 17, N 12. P. 3012—3017. DOI:10.1088/0957-4484/17/12/033; Wang J., Liu L., Cong S.−Y., Qi J.−Q., Xu B.−K. An enrichment method to detect low concentration formaldehyde // Sens. Actuators B: Chem. 2008. V. 134, N 2. P. 1010—1015. DOI:10.1016/j. snb.2008.07.010; Bittencourt C., Felten A., Espinosa E. H., Ionescu R., Llobet E., Correig X., Pireaux J.−J. WO3 films modified with functionalised multi−wall carbon nanotubes: morphological, compositional and gas response studies // Sens. Actuators B: Chem. 2006. V. 115, N 1. P. 33—41. DOI:10.1016/j.snb.2005.07.067; Wei B.−Y., Hsu M.−C., Su P.−G., Lin H.−M., Wu R.−J., Lai H.−J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature // Sens. Actuators B: Chem. 2004. V. 101, N 1−2. P. 81—89. DOI:10.1016/j.snb.2004.02.028; Hoa N. D., Quy N. V., Cho Y. S., Kim D. Nanocomposite of SWCNTs and SnO2 fabricated by soldering process for ammonia gas sensor application // Phys. Status Solidi A. 2007. V. 204, N 6. P. 1820—1824. DOI:10.1002/pssa.200675318; Liu Y.−L., Yang H.−F., Yang Y., Liu Z.−M., Shen G.−L., Yu R.−Q. Gas sensing properties of tin dioxide coated onto multiwalled carbon nanotubes // Thin Solid Films. 2006. V. 497, N 1–2. P. 355—360. DOI:10.1016/j.tsf.2005.11.018; van Hieu N., Thuy L. T. B., Chien N. D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/ MWCNTs composite // Sens. Actuators B: Chem. 2008. V. 129, N 2. P. 888—895. DOI:10.1016/j.snb.2007.09.088; Sánchez M., Guirado R., Rincón M. E. Multiwalled carbon nanotubes embedded in sol−gel derived TiO2 matrices and their use as room temperature gas sensors // J. Mater. Sci.: Mater. Electron. 2007. V. 18, N 11. P. 1131—1136. DOI:10.1007/s10854-007-9144-5; Van Duy N., van Hieu N., Huy P. T., Chien N. D., Thamilselvan M., Yi J. Mixed SnO2/TiO2 included with carbon nanotubes for gas−sensing application // Physica E. 2008. V. 41, N 2. P. 258—263. DOI:10.1016/j.physe.2008.07.007; Dragoman M., Grenier K., Dubuc D., Bary L., Plana R., Fourn E., Flahaut E. Millimeter wave carbon nanotube gas sensor // J. Appl. Phys. 2007. V. 101, N 10. P. 106103. DOI:10.1063/1.2734873; Adjizian J.−J., Leghrib R., Koos A. A., Suarez−Martinez I., Crossley A., Wagner Ph., Grobert N., Llobet E., Ewels Ch. P. Boron− and nitrogen−doped multi−wall carbon nanotubes for gas detection // Carbon. 2014. V. 66. P. 662—673. DOI:10.1016/j.carbon.2013.09.064; Kim J., Choi S.−W., Lee J.−H., Chung Y., Byun Y. T. Gas sensing properties of defect−induced single−walled carbon nanotubes // Sens. Actuators B: Chem. 2016. V. 228. P. 688—692. DOI:10.1016/j.snb.2016.01.094; Hou Z., Xu D., Cai B. Ionization gas sensing in a microelectrode system with carbon nanotubes // Appl. Phys Lett. 2006. V. 89, N 21. P. 213502. DOI:10.1063/1.2392994; De Heer W. A., Châtelain A., Ugarte D. A carbon nanotube field−emission electron source // Science. 1995. V. 270, N 5239. P. 1179—1180. DOI:10.1126/science.270.5239.1179; de Jonge N., Lamy Y., Schoots K., Oosterkamp T. H. High brightness electron beam from a multi−walled carbon nanotube // Nature. 2002. V. 420, N 6914. P. 393—395. DOI:10.1038/nature01233; Yeow J. T. W., She J. P. M. Carbon nanotube−enhanced capillary condensation for a capacitive humidity sensor // Nanotechnology. 2006. V. 17, N 21. P. 5441—5448. DOI:10.1088/09574484/17/21/026; Snow E. S., Perkins F. K., Houser E. J., Badescu S. C., Reinecke T. L. Chemical detection with a single−walled carbon nanotube capacitor // Science. 2005. V. 307, N 5717. P. 1942—1945. DOI:10.1126/science.1109128; Chopra S., Pham A., Gaillard J., Parker A., Rao A. M. Carbon−nanotube−based resonant−circuit sensor for ammonia // Appl. Phys Lett. 2002. V. 80, N 24. P. 4632—4636. DOI:10.1063/1.1486481; Chopra S., McGuire K., Gothard N., Rao A. M., Pham A. Selective gas detection using a carbon nanotube sensor // Appl. Phys Lett. 2003. V. 83, N 11. P. 2280—2282. DOI:10.1063/1.1610251; Бузановский В. А. Электрохимические сенсоры с углеродными нанотрубьками и их использование в биомедицинских исследованиях // Биомедицинская химия. 2011. Т. 57, вып. 6. С. 12—31. DOI:10.18097/pbmc20125801012.; Barsan M. M., Ghica M. E., Brett C. M. A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes // Analytica Chimica Acta. 2015. V. 881. P. 1—23. DOI:10.1016/j.aca.2015.02.059; Chen A., Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications // Chem. Soc. Rev. 2013. V. 42, N 12. P. 5425—5438. DOI:10.1039/C3CS35518G; Pauliukaite R., Ghica M. E., Barsan M. M., Brett C. M. A. Phenazines and polyphenazines in electrochemical sensors and biosensors // Anal. Lett. 2010. V. 43, N 10–11. P. 1588—1608. DOI:10.1080/00032711003653791; Liu H.−J., Yang D.−W., Liu H.−H. A hydrogen peroxide sensor based on the nanocomposites of poly(brilliant cresyl blue) and single walled−carbon nanotubes // Anal. Methods. 2012. V. 4, N 5. P. 1421—1426. DOI:10.1039/C2AY05881B; Ghica M. E., Wintersteller Y., Brett C. M. A. Poly(brilliant green)/carbon nanotube−modified carbon film electrodes and application as sensors // J. Solid State Electrochem. 2013. V. 17, N 6. P. 1571—1580. DOI:10.1007/s10008-013-2040-4; Pifferi V., Barsan M. M., Ghica M. E., Falciola L., Brett C. M. A. Synthesis characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4−ethylenedioxythiophene) // Electrochim. Acta. 2013. V. 98. P. 199—207. DOI:10.1016/j.electacta.2013.03.048; Ghica M. E., Brett C. M. A. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors // Talanta. 2014. V. 130. P. 198—206. DOI:10.1016/j.talanta.2014.06.068; Lin Y., Lu F., Tu Y., Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles // Nano Lett. 2004. V. 4, N 2. P. 191—195. DOI:10.1021/nl0347233; Rubianes M. D., Rivas G. A. Carbon nanotubes paste electrode // Electrochem. Commun. 2003. V. 5, N 8. P. 689—694. DOI:10.1016/S1388-2481(03)00168-1; Koehne J. E., Chen H., Cassell A. M., Ye Q., Han J., Meyyappan M., Li J. Miniaturized multiplex label−free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays // Clin. Chem. 2004. V. 50, N 10. P. 1886—1893. DOI:10.1373/clinchem.2004.036285; Pedano M. L., Rivas G. A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes // Electrochem. Commun. 2004. V. 6, N 1. P. 10—16. DOI:10.1016/j.elecom.2003.10.008; Wong S. S., Josevlevich E., Wooley A. T., Cheung C. L., Lieber C. M. Covalently functionalized nanotubes as nanometer−sized probes in chemistry and biology // Nature. 1998. V. 394. P. 52—55. DOI:10.1038/27873; Mäklin J., Mustonen T., Kordás K., Saukko S., Tóth G., Vähäkangas J. Nitric oxide gas sensors with functionalized carbon nanotubes // Phys. Status Solidi B. 2007. V. 244, N 11. P. 4298—4302. DOI:10.1002/pssb.200776118; Kozhitov L. V., V׳et N. Kh., Kostikova A. V., Zaporotskova I. V., Kozlov V. V. The simulation of carbon material structure based on polyacrylonitrile obtained under IR heating // Modern Electronic Materials. 2016. V. 2, N 1. P. 13—17. DOI:10.1016/j.moem.2016.08.003; Zaporotskova I. V., Polikarpova N. P., Vil’keeva D. E. Sensor activity of carbon nanotubes with a boundary functional group // Nanoscience and Nanotechnology Lett. 2013. V. 5, N 11. P. 1169—1173. DOI:10.1166/nnl.2013.1704; Dewar M. J. S., Thiel W. Ground states of molecules. The MNDO method. approximations and parameters // J. Amer. Chem. Soc. 1977. V. 99, N 15. P. 4899—4907. DOI:10.1021/ja00457a004; Войтюк А. А. Применение метода MNDO для исследования свойств и реакционной способности молекул // Журн. структурной химии. 1988. Т. 29, № 1. С. 138—162.; Koch W., Holthausen M. A chemist’s guide to density functional theory. − Weinheim : Wiley−VCH, 2001. − 313 p. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527303723.html; Polikarpova N. P., Zaporotskova I. V., Vilkeeva D. E., Polikarpov D. I. Sensor properties of carboxyl−modifies carbon nanotubes // Nanosystems: Phys. Chem. Math. 2014. V. 5, N 1. P. 101—106. http://nanojournal.ifmo.ru/en/wp-content/uploads/2014/02/NPCM51_P101-106.pdf; Polikarpova N. P., Zaporotskova I. V., Boroznin S. V., Zaporotskov P. A. About using carbon nanotubes with amino group modification as sensors // J. Nano− Electron. Phys. 2015. V. 7, N 4. P. 04089 (3 pp). http://essuir.sumdu.edu.ua/bitstream/123456789/44562/1/Polikarpova_Carbon_nanotube.pdf; https://met.misis.ru/jour/article/view/241