-
1Academic Journal
المؤلفون: G. S. Ritter, V. P. Nikolin, N. A. Popova, A. S. Proskurina, P. E. Kisaretova, O. S. Taranov, T. D. Dubatolova, E. V. Dolgova, E. A. Potter, S. S. Kirikovich, Y. R. Efremov, S. I. Bayborodin, M. V. Romanenko, M. I. Meschaninova, A. G. Venyaminova, N. A. Kolchanov, S. S. Bogachev, Г. С. Риттер, В. П. Николин, Н. А. Попова, А. С. Проскурина, П. Э. Кисаретова, О. С. Таранов, Т. Д. Дубатолова, Е. В. Долгова, Е. А. Поттер, С. С. Кирикович, Я. Р. Ефремов, С. И. Байбородин, М. В. Романенко, М. И. Мещанинова, А. Г. Веньяминова, Н. А. Колчанов, С. С. Богачев
المساهمون: This work was supported by State Budgeted Project No. 0324-2019-0042-C-01 for the Institute of Cytology and Genetics, Novosibirsk, registration ID AAAA-А17-117071240065-4, and the Russian Foundation for Basic Research, project No. 18-34-00205. Microscopical examination of cells was supported by State Budgeted Project No. 0310-2019-0005 for the Institute of Molecular and Cellular Biology, Novosibirsk.
المصدر: Vavilov Journal of Genetics and Breeding; Том 24, № 6 (2020); 643-652 ; Вавиловский журнал генетики и селекции; Том 24, № 6 (2020); 643-652 ; 2500-3259 ; 2500-0462 ; 10.18699/VJ20.647
مصطلحات موضوعية: двуцепочечные разрывы, B-190, spleen colonies, double-stranded breaks, Б-190, селезеночные колонии
وصف الملف: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2780/1427; Озеров И.В., Осипов А.Н. Кинетическая модель репарации двунитевых разрывов ДНК в первичных фибробластах человека при действии редкоионизирующего излучения с различной мощностью дозы. Компьютерные исследования и моделирование. 2015;7(1):159-176. DOI 10.20537/2076-7633-2015-7-1-159-176. [Ozerov I.V., Osipov A.N. Kinetic model of DNA double-strand break repair in primary human fibroblasts exposed to low-LET irradiation with various dose rates. Kompyuternye Issledovaniya i Modelirovanie = Computer Research and Modeling. 2015;7(1):159- 176. DOI 10.20537/2076-7633-2015-7-1-159-176. (in Russian)]; Риттер Г.С., Николин В.П., Попова Н.А., Кисаретова П.Э., Долгова Е.В., Проскурина А.С., Поттер Е.А., Кирикович С.С., Байбородин С.И., Таранов О.С., Ефремов Я.Р., Колчанов Н.А., Богачев С.С. Изучение радиопротекторного действия двуцепочечной РНК, выделенной из дрожжей Saccharomyces cerevisiae. В: Четвертый междисципл. науч. форум с междунар. участием «Новые материалы и перспективные технологии»: Сб. материалов. М., 2018;II:161-167. [Ritter G.S., Nikolin V.P., Popova N.A., Kisaretova P.E., Dolgova E.V., Proskurina A.S., Potter E.A., Kirikovich S.S., Bayborodin S.I., Taranov O.S., Efremov Y.R., Kolchanov N.A., Bogachev S.S. Study of radioprotective action of double-stranded RNA extracted from Saccharomyces cerevisiae. In: The Fourth interdisciplinary scientific forum with international participation “New Materials and Promising Technologies”: Proceedings. Moscow, 2018;II: 161-167. (in Russian)]; Bärtsch S., Kang L.E., Symington L.S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 2000;20(4):1194-1205. DOI 10.1128/mcb.20.4.1194-1205.2000.; Belli M., Sapora O., Tabocchini M.A. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. J. Radiat Res. 2002;43(S):S13-S19. DOI 10.1269/jrr.43.s13.; Bergonié J., Tribondeau L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique (1906). Yale J. Biol. Med. 2003;76(4):181-182.; Dent P., Yacoub A., Contessa J., Caron R., Amorino G., Valerie K., HaganM.P., GrantS., Schmidt-UllrichR. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res. 2003;159(3):283-300. DOI 10.1667/0033-7587(2003)159[0283:sariao]2.0.co;2.; Dische Z. In: Colowick S.P., Kaplan N.O. (Eds.). Methods in Enzymology. Vol. III. New York: Acad. Press, 1957.; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378-1394. DOI 10.4161/cbt.29854.; Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013a;528(2):74-83. DOI 10.1016/j.gene.2013.06.058.; Dolgova E.V., Nikolin V.P., Popova N.A., Proskurina A.S., Orishchenko K.E., Alyamkina E.A., Efremov Y.R., Baiborodin S.I., Chernykh E.R., Ostanin A.A., Bogachev S.S., Gvozdeva T.S., Malkova E.M., Taranov O.S., Rogachev V.A., PanovA.S., Zagrebelnyi S.N., Shurdov M.A. Pathological changes in mice treated with cyclophosphamide and exogenous DNA. Russ. J. Genet.: Appl. Res. 2013b; 3(4):291-304. DOI 10.1134/S2079059713040035.; Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995;64(1):97-112. DOI 10.1146/annurev.bi.64.070195.000525.; Goodhead D.T. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 1994;65(1): 7-17. DOI 10.1080/09553009414550021.; Leung W., Malkova A., Haber J.E. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA. 1997;94(13):6851-6856. DOI 10.1073/pnas.94.13.6851.; Li J., Read L.R., Baker M.D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 2001;21(2):501-510. DOI 10.1128/mcb.21.2.501-510.2001.; Likhacheva A.S., Nikolin V.P., Popova N.A., Rogachev V.A., Prokhorovich M.A., Sebeleva T.E., Bogachev S.S., Shurdov M.A. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation. Gene Ther. Mol. Biol. 2007;11(2):305-314.; Maréchal A., Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013;5(9). DOI 10.1101/cshperspect.a012716.; Meers C., Keskin H., Storici F. DNA repair by RNA: templated, or not templated, that is the question. DNA Repair (Amst). 2016;44:17-21. DOI 10.1016/j.dnarep.2016.05.002.; Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003a;159(5):567-580. DOI 10.1667/0033-7587(2003)159[0567:nadeoe]2.0.co;2.; Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 2003b;159(5):581-596. DOI 10.1667/0033-7587(2003)159[0581:nadeoe]2.0.co;2.; Patt H.M., Tyree E.B., Straube R.L., Smith D.E. Cysteine protection against X irradiation. Science. 1949;110(2852):213-214. DOI 10.1126/science.110.2852.213.; Peitzsch C., Kurth I., Kunz-Schughart L., Baumann M., Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother. Oncol. 2013;108(3):378-387. DOI 10.1016/j.radonc.2013.06.003.; Rogakou E.P., Boon C., Redon C., Bonner W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999;146(5):905-915. DOI 10.1083/jcb.146.5.905.; Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998;273(10):5858-5868. DOI 10.1074/jbc.273.10.5858.; Shemetun O.V., Pilinska M.A. Radiation-induced bystander effect – modeling, manifestation, mechanisms, persistence, cancer risks. Probl. Radiac. Med. Radiobiol. 2019;24:65-92. DOI 10.33145/2304-8336-2019-24-65-92.; Storici F., Bebenek K., Kunkel T.A., Gordenin D.A., Resnick M.A. RNA-templated DNA repair. Nature. 2007;447(7142):338-341. DOI 10.1038/nature05720.; Symington L.S. Focus on recombinational DNA repair. EMBO Rep. 2005;6(6):512-517. DOI 10.1038/sj.embor.7400438.; Vogin G., Foray N. The law of Bergonié and Tribondeau: a nice formula for a first approximation. Int. J. Radiat. Biol. 2013;89(1):2-8. DOI 10.3109/09553002.2012.717732.; Wang Y., Xu C., Du L.Q., Cao J., Liu J.X., Su X., Zhao H., Fan F.Y., Wang B., Katsube T., Fan S.J., Liu Q. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int. J. Mol. Sci. 2013;14(11):22449- 22461. DOI 10.3390/ijms141122449.; Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35(C):95-125. DOI 10.1016/S0079-6603(08)60611-X.; https://vavilov.elpub.ru/jour/article/view/2780